N

N
N

HAL

open science

Probalistic and piecewise deterministic models in biology

Bertrand Cloez, Renaud Dessalles, Alexandre Genadot, Florent Malrieu, Aline

Marguet, Romain Yvinec

» To cite this version:

Bertrand Cloez, Renaud Dessalles, Alexandre Genadot, Florent Malrieu, Aline Marguet, et al.. Probal-
istic and piecewise deterministic models in biology. Journées MAS 2016. Phénomeénes complexes et
hétérogenes, Société de Mathématiques Appliquées et Industrielles (SMAI). FRA., Aug 2016, Greno-

ble, France. pp.1-19. hal-01595098

HAL Id: hal-01595098
https://hal.science/hal-01595098v1
Submitted on 2 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Copyright


https://hal.science/hal-01595098v1
https://hal.archives-ouvertes.fr

PROBABILISTIC AND PIECEWISE DETERMINISTIC MODELS IN BIOLOGY

BERTRAND CLOEZ*, RENAUD DESSALLES!, ALEXANDRE GENADOT!, FLORENT MALRIEUS,
ALINE MARGUET", AND ROMAIN YVINECH#

ABSTRACT. We present recent results on Piecewise Deterministic Markov Processes (PDMPs), involved in bi-
ological modeling. PDMPs, first introduced in the probabilistic literature by [30], are a very general class of
Markov processes and are being increasingly popular in biological applications. They also give new interest-
ing challenges from the theoretical point of view. We give here different examples on the long time behavior
of switching Markov models applied to population dynamics, on uniform sampling in general branching mod-
els applied to structured population dynamic, on time scale separation in integrate-and-fire models used in
neuroscience, and, finally, on moment calculus in stochastic models of gene expression.

INTRODUCTION

The piecewise deterministic Markov processes (denoted PDMPs) were first introduced in the literature by
Davis [30, 31]. The key point of his work was to endow the PDMP with rather general tools, similar as such that
already exist for diffusion processes. Indeed, PDMPs form a family of non-diffusive cadlag Markov processes,
involving a deterministic motion punctuated by random jumps. The motion of the PDMP {X(¢)};>0 depends
on three local characteristics, namely the jump rate A, the deterministic flow ¢ and the transition measure @
according to which the location of the process at the jump time is chosen. The process starts from x and follows
the flow (z,t) until the first jump time 7 which occurs either spontaneously in a Poisson-like fashion with
rate A(¢(z,t)) or when the flow ¢(x,t) hits the boundary of the state-space. In both cases, the location of
the process at the jump time 77, denoted by Z; = X (T1), is selected by the transition measure Q(p(z,T1),-)
and the motion restarts from this new point as before. This fully describes a piecewise continuous trajectory
for {X(¢)}1>0 with jump times {7} } and post jump locations {Z}, and which evolves according to the flow ¢
between two jumps.

Since the seminal work of Davis, PDMPs have been heavily studied from the theoretical perspective, we may
refer for instance the readers to [27, 2, 1, 57, 7, 9] among many others.

From the applied point of view, and more precisely in biological applications, these processes are sometimes
referred as hybrid, and are especially appealing for their ability to capture both continuous (deterministic)
dynamics and discrete (probabilistic or deterministic) events. First applications date back at least to the studies
of the cell cycle model [53, 52], and more recent works, to name just a few, in neurobiology [63, 35, 35|, cell
population and branching models [4, 22, 60, 36, 51, 20], gene expression models [72, 56, 33], food contaminants
[14, 12] or multiscale chemical reaction network models [28, 3, 50, 46]. See also [47, 16, 66] for selected reviews
on hybrid models in biology.

The paper is organized as follows. In Section 1, we present long time behavior results for switched flows in
population dynamics. In Section 2, we present many-to-one formulas and description of the trait of an individual
uniformly sampled in a general branching model applied to structured population dynamic. In Section 3, we
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2 PROBABILISTIC AND PIECEWISE DETERMINISTIC MODELS IN BIOLOGY

present limit theorems and time scale separation in integrate-and-fire models used in neuroscience. Finally, in
Section 4, we derive asymptotic moments formulas in a stochastic model of gene expression.

1. LONG TIME BEHAVIOR OF SOME PDMP FOR POPULATION DYNAMICS

In this section, we present recent results on long time behavior and exponential convergence of some PDMP
used in population dynamics, in particular, for modeling population growth in a varying environment.

We consider processes (X, I;);>0, where the first component X, has continuous paths in a continuous space
E, namely a subset of R?, for some integer d, and the second component I; is a pure jump process on a finite
state space F' or in N. The continuous variable represents the number of individuals (or more precisely the
population density or the relative abundance) of a population and the discrete variable models the population
environment. In a fixed environment I; =i € F, we assume that (X;):>o evolves as the solution of an ordinary
differential equation, that is

VE>0, 0,X,=F9(X,), (1.1)

where F() is some smooth function. For instance, the oldest and maybe the most famous model to represent
the evolution of a population is the choice E' =R, and

FO 2 a;z, a; €R. (1.2)

When there is no variability in the environment, solutions are given by exponential functions and there is either
explosion or extinction according to the sign of a;. We develop in Subsection 1.1 this toy model when the
environment varies. Almost all properties (almost-sure convergence, moments...) can be derived and it gives a
first hint to understand more complicated models such as multi-dimensional linear models or non-linear models.
These generalizations are described in Subsection 1.2, and 1.3, respectively. For non-linear population models,
maybe one of the most famous models is given by the Lotka-Volterra equations (also known as the predator-prey
equations), with state-space E = Ri and

(%) _ 047;17(1 — a;r — bzy) L ) ) )
F (x,y) (ﬂix(lclazdly) s Qi b ciydiy i, B € Ry

To end the introduction of this section, let us mention that all of these models are particular instance of
a class of switching Markov model, see for instance [9, 71] for general references. Some other examples of
application are developed in [57, 38, 61].

1.1. Malthus model. Let us consider, in this subsection, that (I;)¢>0 is an irreducible continuous time Markov
chain on a finite state space F'. We denote by v its unique invariant probability measure. The process (X¢)¢>0
will be the solution of

Vit Z 07 (’)tXt = (L]tXt.

This means that F(®) is given by (1.2). Thus, we have

t
Vi >0, X, = Xoedo s,
The almost-sure behavior of this process is easy to understand. Indeed, by the ergodic theorem, we have that

1 [t
t_1>i+moo g/o ar,ds = Z a;v({i}). = v(a).
i€l

Then, we have the following dichotomy: either v(a) > 0 and (X;);>o tends almost-surely to infinity at an
exponential rate, or v(a) < 0 and (X;);>0 tends to 0. The second statement can be understood as the extinction
of the population, even if, in contrast with classical birth and death processes, (X;)¢>0 never hits 0; that is the
extinction time (or the hitting time of 0) is almost-surely infinite.

The convergence of moments of (X;):>¢ is more tricky than the almost-sure convergence. Indeed, one cannot
use a dominated convergence theorem or a Jensen inequality (which is in the wrong way). Nevertheless, we
have
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FIGURE 1. Trajectory of (X;);>o in the Malthus model.

Lemma 1.1 (Convergence of moments). If v(a) > 0 then

: a) _
Vg > 0, t—li-s-mooE[Xt] = 4o0.

If v(a) < 0 then there exists p > 0 such that
Vg <p, lim E[X[}]=0.

t——+oo

The proof which follows comes from [6]; see also [32].

Proof. If we denote by A the generator of the process (I¢):>0 and pg the vector corresponding to its initial law,
then the Feynman-Kac formula states that, for every p > 0,

E[ti] = E[Xg]E |:ef0 pazsds:| — E[X(I))]Moet(A+pD)1,

where it is the classical exponential of matrices, D is the diagonal matrix such that D; ; = a; and 1 is the vector
made of ones. Now, classical results on matrices (including Perron-Frobenius Theorem) give the existence of
two constants cp, Cp, > 0 such that

Cpe)\pt g /,L[)et(A+pD)1 S Cpe/\pt7

where )\, is the (unique) eigenvalue of largest real part of the matrix (A + pD). It then remains to understand
the sign of A, to understand the moment behaviour. By definition of A,, there exists v, such that

vp(A+ pD) = A\pvp.

Moreover, for p = 0, we have A9 = 0 and vp = v. Again classical results on matrices ensure that p — X, and
p — v, are smooth and then differentiating in p, we obtain

vpD + Opvp(A + pD) = vp0pAp + Ap0pvp.

In particular, for p = 0 and multiplying by 1 by the right, we have v(a) = (9p\p) =0 As a consequence, if
v(a) > 0, then p — ), is increasing in a neighborhood of 0 and for all p > 0 small enough we have A\, > 0.
Thus, E[X?] tends to infinity for p small enough, and then for all p > 0 by the Jensen inequality. In contrary,
if v(a) < 0 then there exists p > 0 such that lim;, ;. E[X?] = 0 and also for all ¢ < p, again by Jensen
inequality. (]
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Understanding the long time behavior of moments is primordial when we are interested in the convergence
to some invariant law more general than dy. Indeed, moments provide Lyapunov-type functionals ensuring that
the process returns frequently in a compact-set.

1.2. Others linear models. From a modeling point of view, the results of the previous section are easily
understandable. Indeed, it is enough that the environment has in mean a positive effect to ensure an exponential
growth, while if the environment is, in mean, not favorable, then the population goes to extinct.

However, note that this interpretation only holds because the growth parameter is well-chosen. Indeed, let
us first consider a discrete time analogous of the Malthus model: the sequence (Y3,),>0 satisfying

n Z Oa Yn+1 = @nYna

where (0,,), is a sequence of i.i.d. non-negative random variables. Here ©,, represents the mean number of
children per individuals at generation n (all individuals have the same number of children which depends on
the environment). If (0,,),>¢ is a constant sequence then Y;, = ©1Y; and a dichotomy occurs with respect to
a critical value ©1 = 1. When (0,,),>¢ is a sequence of i.i.d random variable, then there is also a dichotomy
but the critical value (to be smaller or larger than 1) is no longer E[©4] but exp (E[ln(©1)]). Indeed, we have

n—1 1

V>0, Y, =Yy [] O = Xoeoemo "0,

k=0
This is exactly the same phenomenon for Galton-Watson chain in random environment, see for instance [5] and
[42, Section 2.9.2].

There is a similar (but more complex, maybe) problem in upper dimension. Let us consider that £ = R?,

F ={0,1}, and (I;)¢>0 jumps from 0 to 1 and from 1 to 0 with the same rate A > 0, and

-1 4 1 —1/4
0) . 4 : My .
F® o (_1/4 _1) v, FYW:o ( 4 1 ) v. (1.3)

Then the solutions of the equation 0, (5) =F® (;) are given by

x(t)=e*(cos(t)z(0) — sin(t)y(0)/4)
vt 20, { y(t)=e "t (4sin(t)x(0) + cos(t)y(0)). (1.4)

It is easy to see that there exists some constants C' > 0 such that for all £ > 0,
[(z(t),y(®))] < Ce™"|[((0), y(0))]|.

This property is also satisfied by the solutions of 0y <;U) =F0© (z) However, we have the following theorem.

Theorem 1.2 ([8]). Let (X;)i>0 be the solution of Equation (1.1) with flows defined in (1.3). There exists
Be > 0 such that if A < B, then

Jim X ()] =0,
and if X > B then lim;_, 1 o || X (t)|| = +00. Moreover, the speed of convergence is exponential.

For this type of results for more general vector fields, see for instance [8, 57, 54]. Let us briefly explain
this phenomenon. One can see that, whatever the initial conditions of the solutions (z,y) of (1.4), the map
t— ||(z(t),y(t))] is not decreasing; see for instance Figure (2).

Then, heuristically, we see that if I jumps sufficiently fast (before the decay of the distance) then the distance
may grow. However, if I is too slow, then (X;);>¢ essentially follows one of the two flows and goes rapidly to 0.

Switching linear models can have even more unpredictable behavior than the previous one. Indeed, in [54],
the author exhibits two different linear functions F(®, F(1) on R? and two critical values $» > (1 such that the
switched process (X;);>o tends to infinity for at least one A € (81, 82) and to 0 if A € (0, 51) U (B2, +00).
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FIGURE 2. Graph of t — ||(x(t),y(t))|| = e *\/15sin*(t) + 1 for (1.4) when (x9,%0) = (1,0).

1.3. A general theorem for convergence. In this subsection, we expose a condition similar to Subsection
1.1 for ensuring convergence to an equilibrium (not necessary dp). As pointed out in the previous section, we
have to measure precisely the growth of each underlying flow. So we assume that for all ¢ € F, there exists
p(i) € R such that

(@ —y, FO(x) = FO(y)) < —p(i)|x —y]*. (1.5)
The parameter p(i) measures the contraction of a solution % = F*)(u) with respect to the norm || - ||. Indeed,
for two solutions, u! and u?, we have

Ve >0, fu'(t) - WP@)* < e Du’(0) — u?(0)].
Note that the next result does not rely on a specific norm, but it has to be the same for all flows. A sufficient
condition to prove (1.5) is given by the next lemma.
Lemma 1.3. Let G : R — R be a C* map and let J,G be its Jacobian matriz at the point x € R, If for all
u,z € RY,
(u, 3.6 - u) < —pllul?,

then, for all x,y € RY,

(r—y,G(z) = G(y)) < —pllx -yl (1.6)
In particular, if G = VV, for some C? function V, then (1.6) holds under the classical condition that V is
strongly convex with constant p; namely for all x € R?,

Hess, V> pl,
in the sense of quadratic form.
Proof. 1t is classic to derive the previous bounds using the mean value theorem for the following map
(zr—y,Gx) -Gty + (1 - t)z))
llz —yl? '

Yt
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We can now state the main result of this subsection.

Theorem 1.4 ([24]). Assume that (I;)i>0 is an irreducible Markov process on a finite state space F with
invariant measure v, (X;)i>o satisfies (1.1), and that Eq. (1.5) holds. If

S pliyw(i) > 0,

icF
then (X, It) converges in law to a unique invariant law.

The proof of this theorem is given in [24, 7]. The proof of [24] is based on a generalization (developed in [44])
of the classical Harris Theorem [43], which does not hold in general for PDMP (see for instance the introduction
of [7]). One of the main point of the proof is the construction of a Lyapunov function V', in the sense that there
exist, C, v, K > 0 such that

vt >0, E[V(Xy, It)] < Ce™ "'V (Xo, Ip) + K. (1.7)
The construction of V' and the control of its moments are based on Lemma 1.1.

Note that another proof of the previous theorem is given in [7]. Nevertheless, the proof of [24] takes the ad-
vantage to be generalizable in many contexts (dependent environment, non-deterministic underlying dynamics,
asymptotic assumptions...). See [24] for details.

Closely related articles [10, 58, 59] deal with a fluctuating Lotka-Volterra model. They show that random
switching between two environments both favorable to the same specie can lead to the extinction of this specie
or coexistence of both species.

As Theorem 1.4, their proofs are based on the construction of a Lyapunov function. Nevertheless instead of
controlling the exit from a compact set of R to infinity, this Lyapunov function is used to control the exit from
a compact set included in (0,00)2 to the axes {(0,y)|y > 0} or {(z,0,)]z > 0}. A complete description of this
model is given in [58]. Note however that their counter-intuitive result is similar to the one of Theorem 1.2. It
is based on the fact that, when I jumps sufficiently fast (namely A being large in Theorem 1.2), then X is close
to follow the following deterministic dynamics:

VE>0, Xy = w(i)F(X).
i€F

Finally, we end this section mentioning that such hybrid framework can also be applied to models where
the population is represented by a discrete variable, and/or the environment fluctuates continuously. One can
cite for instance [26], where the author studies a model of interaction between a population of insects and a
population of trees. Another example is the chemostat model (a type of bioreactor), introduced in [29] and
studied in [25, 19, 18, 23]. Lyapunov functions are again a key theoretical tool to study long time behavior for
such models. However, we point out that extinction events may occur in discrete population models, and that
the interplay between the discrete and continuous components makes the problem more difficult than standard
absorbing time studies in purely discrete population models. Nevertheless, it was proved in [23, Theorem 3.4]
that extinction event is almost-surely finite and has furthermore exponential tails. This generalizes part of a
result of [25].

2. UNIFORM SAMPLING IN A BRANCHING STRUCTURED POPULATION

In this section, which is a short version of [60], we give a characterization of the trait of a uniformly sampled
individual among the population at time ¢ in a structured branching population.

2.1. Introduction. We consider a branching Markov process where each individual w is characterized by a
trait (X®, ¢ > 0) which dynamic follows an X-valued Markov process, where X := X x R, and X C (R4)* for
some d > 1. For any € X, the last coordinate corresponds to a time coordinate and we denote by = € X the
vector of the first d coordinates. We assume that this trait influences the lifecycle of each individual (in terms
of lifetime, number of descendants and inheritance of the trait). Then, an interesting problem consists in the

characterization of the trait of a "typical” individual in the population. This is the question we address here.
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Let us describe the process in more details. We consider a strongly continuous contraction semi-group with
associated infinitesimal generator G : D(G) C Cp(X) — Cp(X), where Cp(X) denotes the space of continuous
bounded functions from X to R. Then, each individual u has a trait (X}, ¢ > 0) which evolves as a Markov
process defined as the unique X-valued cadlag solution of the martingale problem associated with (G, D(G)).
An individual with trait z dies at an instantaneous rate B(x), where B is a continuous function from X to R,.
It is replaced by A, (x) children, where A, () is a N-valued random variable with distribution (py (z),k > 0).
For convenience, we assume that p;(z) = 0 for all z € X. The trait of the descendants at birth depends on the
trait of the mother at death. For all k € N, let P®*) (z,-) be the probability measure on X* corresponding to

the trait distribution at birth of the & descendants of an individual with trait x. We denote by Pj(k) (z,-) the

jth marginal distribution of P*) for all k € N and j < k.

Finally, we denote by M p(X) the set of point measures on X'. Following Fournier and Méléard [39], we work
in D (R4, Mp (X)), the state of cadlag measure-valued Markov processes. For any Z € D (R4, Mp (X)), we
write:

Zy= dxp, t >0,
ueVy
the measure-valued process describing the dynamic of the population where V; denotes the set of all individuals
in the population at time ¢. We will denote by N; the cardinality of V; and by:

m(z,s,t) =E (Nt|Zs =02,

its expected value, for 0 < s < t.

An example of such a process is the size-structured population where each individual grows exponentially
fast. For more details we refer the reader to [36] or [13]. Then, at rate B(X}*), the individual u splits at time
t in two daughter cells of size X}*/2. Figure 3 is a realization of such a process. The diameter of each circle
corresponds to the size of the individual at division and the length of the branch represents the lifetime of each
individual. In particular, we notice the link between the lifetime and the size of each individual: the bigger the
cell is, the shorter its lifetime is.

In Section 2.2, we give the chosen assumptions on the model to ensure that our process is well-defined. Then,
in Section 2.3, we describe the process corresponding to the trait of a "typical” individual in the population.
Finally, in Section 2.4, we explain why this process corresponds to the trait of a uniformly sampled individual
in a large population approximation.
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2.2. Definition and existence of the structured branching process. To define rigorously the structured
branching process on R, we need to ensure that almost surely the number of individuals in the population
does not blow up in finite time.

As explained in the previous description of the process, the lifetime of each individual depends on the dynamic
of the trait through the division rate B. One way of dealing with this dependency is to assume that the division
rate is upper bounded by some constant B. Then, in the case of a binary division, the expected number of
individuals in the population at time ¢ is upper bounded by the expected value of a Yule process with birth
rate B at time ¢ which is equal to exp(Bt) and which is bounded on compact sets. In the case of an unbounded
division rate, the same reasoning applies if we can control the excursions of the dynamic of the trait. Thus,
we consider two sets of hypotheses: the first one controls what happens regarding divisions (in term of rate of
division and of mass creation) and the second one controls the dynamic of the trait between divisions.

Assumption 1. We consider the following assumptions:
(1) There exist by, by > 0 and v > 0 such that for all x € X,

B($> <b |.’1?|’Y + bs.
(2) There exists z € X such that for allz € X, k € N:

k
/ ( E @) p) (z,dyy ...dyx) < TV z, componentwise.
xk

i=1
(3) There exists Tw > 0 such that for all x € X,

m(z) = Z kp(x) <.
k

The first point controls the division rate. The second point means that we consider a fragmentation process
with a possibility of mass creation at division when the mass is small enough. In particular, clones are allowed
in the case of bounded traits and bounded number of descendants and any finite type branching structured
process can be considered.

As explained before, we make a second assumption to control the behavior of traits between divisions.

Assumption 2. There exist c1,co > 0 such that for all x € X:
Gh, (x) < erhs (@) + c2,

where 7 is defined in Assumption 1 and for z € (R)%, hy(z) = |z|7 = (Z?Zl :ci>7.

This assumption ensures in particular that the trait does not blow up in finite time in the case of a determin-
istic dynamic for the trait. Assumptions 1(1) and 2 are linked via the parameter v which controls the balance
between the growth of the population and the dynamic of the trait. In particular, if Assumption 1 is satisfied
for v = 0, the division rate is bounded and Assumption 2 is always satisfied.

Under Assumptions 1 and 2, the previously described measure-valued process is well-defined as the strongly
unique solution of a stochastic differential equation.

The proof of existence relies on a recursive construction of a solution via the sequence of jumps time of the
population. Then, we prove that this sequence is unique conditionally to the Poisson point measure determining
the jumps in the population and to the stochastic flows corresponding to the dynamic of the trait. Finally,
using Assumptions 1 and 2, we prove that the number of individuals in the population does not blow up in
finite time. This is detailed in [60] (Theorem 2.3.).

2.3. The trait of sampled individuals at a fixed time : Many-to-One formula. In order to characterize
the trait of a uniformly sampled individual, the spinal approach ([21],[55]) consists in following a "typical”
individual in the population whose behavior summarizes the behavior of the entire population. In this section,
we give the dynamic of the trait of a typical individual: it is a Markov process called the auxiliary process.
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From now on, we assume that for all x € X', ¢t > 0 and s < ¢, m(x, s,t) # 0. With a slight abuse of notation,
we denote by X the trait of the unique ancestor living at time s of u.
Let f be a non-negative measurable function and x € X'. The idea is to notice that the following operator:

E[Y ey, £ (X9 |20 = 6]

m(x,r,t)

P f(x) = : (2.1)

is a conservative (non-homogeneous) semi-group. Then, the auxiliary process is defined as the time-inhomogeneous
Markov process with associated family of semi-groups PT(tS) ,r < s<t). It describes the dynamic of the trait

of a "typical” individual in the population in the sense that it satisfies a so-called "Many-to-One” formula. This
formula is true under Assumptions 1, 2 and under the following technical assumptions:

Assumption 3. There exists a function C such that for all j <k, j,k € N and 0 < s <t, we have:

t)
sup sup y, > ;k)($, dy) < C(¢t), vt > 0.
zeX s€(0,t] m Z,s, t

This assumption tells us that we control uniformly in x the benefit or the penalty of a division.

Assumption 4. For allt >0 and x € X we have:

- s m(x,s,t) is differentiable on [0,t] and its derivative is continuous on [0, 1],
- forall f € D(A) :={f € D(G) s.t. m(-,s,t)f € D(G) Vt >0, Vs <t}, s — G(m(-,s,t)f)(z) is contin-

uous,
We can now state the Many-to-One formula.

Theorem 2.1. Under Assumptions 1, 2, 3 and 4, for all t > 0, for all zy € X and for all non-negative
measurable functions f : X — Ry, we have:

s, [Z ! <X;*>] =m0, 0,0Es, [£ (Y)]. (2:2)
ueVy

where (Y() s < t) is an inhomogeneous-Markov process with infinitesimal generator (A@,D(A)) gtven for
fe€D(A) and x € X by:

AD f(z) =60 f(z) + BO () / (f (0) — f (2)) PO (x,dy).,

x
where: 60 (2 = Sl 01 (xznzxf;gct))g (m(,5,6) (@)
BY(2) :B(x)/ m (z, dy),
PO (0, dy) — mﬁiii ( m( iii dy))l'

Comments on the proof. To prove the Many-to-One formula (2.2), we first show that the family of semi-groups

(P,S? ,r<s< t) is uniquely defined as the unique solution of an integro-differential equation (see Lemma 3.2

n [60]). In particular, we need Assumption 3 to prove the uniqueness. Then, the infinitesimal generator

((A@) . ,D (.A)) of the auxiliary process is obtained by differentiation of the semi-group (Pﬁfs) 7 <5< t)
s<t

using Assumption 4.
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Remark 2.2. We can also prove a pathwise version of (2.2) using a monotone class argument (Theorem 3.1.
in [60]).

Unlike previous works on this subject ([41], [45], [22]), the existence of our auxiliary process does not rely
on the existence of spectral elements for the mean operator of the branching process. In particular, we can
apply this result to models with a varying environment. The dynamic of this auxiliary process heavily depends
on the comparison between m(z,s,t) and m(y, s, t), for z,y € X. It emphasizes several bias due to growth of
the population. First, the auxiliary process jumps more than the original process, if jumping is beneficial in
terms of number of descendants. This phenomenon of time-acceleration also appears for examples in [21], [55]

r [45]. Moreover, the reproduction law favors the creation of a large number of descendant as in [4] and the
non-neutrality favors individuals with an efficient” trait at birth in terms of number of descendants. Finally, a
new bias appears on the dynamic of the trait because of the combination of the random evolution of the trait
and non-neutrality. Indeed, if the dynamic of the trait is deterministic, we have g fl@)=Gf(x).

2.4. Ancestral lineage of a uniform sampling at a fixed time in a large population. The Many-to-One
formula (2.2) gives the law of the trait of a typical individual in the population. But so far, we did not prove that
it corresponds to the trait of a uniformly sampled individual. In particular, we have to take into account that
the number of individuals in the population is stochastic and depends on the dynamic of the trait. Using the
law of large numbers, we can approximate the number of individuals in a population starting for n individuals,
divided by m, by the mean number of individual in the population. That is why we now look at the ancestral
lineage of a uniform sampling in a large population.

It only makes sense to speak of a uniformly sampled individual at time ¢ if the population does not become
extinct before time ¢. For all ¢ > 0, let Q; = {N; > 0} denote the event of survival of the population. Let
v € Mp(X) be such that:

P, (Q:) > 0.

We set

n
Vp = E 5X¢7
=1

where X; are i.i.d. random variables with distribution v. For ¢t > 0, we denote by U(t) the random variable

(t), s < t) the process describing the trait of

with uniform distribution on V; conditionally on €2; and by (
a sampling along its ancestral lineage. If X is a stochastic process, we denote by X" the process with initial

distribution v € Mp(X).

Theorem 2.3. Under Assumptions 1,2, 8 and 4, for any t > 0, the following convergence in law in D ([0, ], X)
holds:

(x 0,t)v(dx)

XU(t),Vn Y(t),‘n't h d '
— , where my(dx) fX (©.0.0)0(da)

[0,] n—4oo  10:1]

Remark 2.4. If we start with n individuals with the same trait x, we obtain:

U(t),vn (t)
B[F (X )] o e F (V)]
Therefore, the auziliary process describes exactly the dynamic of the trait of a uniformly sampled individual
in the large population limit, if all the starting individuals have the same trait. If the initial individuals have
different traits at the beginning, the large population approxzimation of a uniformly sampled individual is a linear
combination of the auxiliary process.
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3. AVERAGING FOR SOME INTEGRATE-AND-FIRE MODELS

3.1. The model. We examine the following slow-fast hybrid version of integrate-and-fire models [17], used in
mathematical neuroscience. In such a setting, X represents the membrane potential of a neural cell which is
increasing until it reaches some threshold ¢, corresponding to the time where a nerve impulse is triggered, and
then the potential is reset to some lower value. More precisely, the process (X (t),t € [0,77]), with T’ some time
horizon, obeys the following dynamic:

(1) Initial state: At time 75 = 0, the process starts at X(T§) = &, a random variable with support
included in (m, ¢) where {c} is considered as a boundary and m < ¢ is some real.

(2) First jumping time: Let Y be a continuous time Markov chain valued in a countable space ). This
chain starts at Y (0) = ¢, a Y-valued random variable. The first hitting time of the boundary occurs at
time 77 defined as

¢
Ty = inf {t >0 & +/ a(Y(s))F(X(s))ds = c} ,
Ty
where « is a positive measurable function such that «()’) is bounded from above and F' is a