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Recent in silico studies suggested that the transcription cofactor LIM-only protein FHL2 
is a major transcriptional regulator of mouse natural killer (NK) cells. However, the expres-
sion and role of FHL2 in NK cell biology are unknown. Here, we confirm that FHL2 is 
expressed in both mouse and human NK cells. Using FHL2−/− mice, we found that FHL2 
controls NK cell development in the bone marrow and maturation in peripheral organs. 
To evaluate the importance of FHL2 in NK cell activation, FHL2−/− mice were infected 
with Streptococcus pneumoniae. FHL2−/− mice are highly susceptible to this infection. 
The activation of lung NK cells is altered in FHL2−/− mice, leading to decreased IFNγ 
production and a loss of control of bacterial burden. Collectively, our data reveal that 
FHL2 is a new transcription cofactor implicated in NK cell development and activation 
during pulmonary bacterial infection.

Keywords: nK cell, maturation, Fhl2, transcriptional factor, pneumococcal infections, mouse models

inTrODUcTiOn

Natural killer (NK) cells are innate lymphocytes involved in tumor recognition, hematopoietic 
allograft rejection, pregnancy, and control of microbial infections (1). NK cells protect the host 
directly through the production of cytotoxic effectors, such as perforin and granzymes. To sense 
target cells, NK cells are educated during development and possess a large panel of antigen-specific 
receptors. NK cell development takes place in the bone marrow (BM) after birth and is supported 
by stromal cells through receptor–ligand interactions and the production of cytokines and growth 
factors (2, 3). Many transcription factors guide the process of NK cell genesis, which is characterized 
by the sequential acquisition of an array of cell-surface molecules that define distinct NK cell subsets 
(4–6). Mature NK cells are mostly found in the spleen, lymph nodes, lung, liver and blood, where 
they exert their cytotoxic immune functions. NK cells also participate in shaping immune responses 
through the production of cytokines, such as IFNγ and TNFα and through their crosstalk with other 
immune cells (7). Specifically, by producing IFNγ, NK cells play a critical role in the control of several 
bacterial infections, including pneumonia (8–10). Thus, during Streptococcus pneumoniae-triggered 
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lung infection, NK cells are one of the major cells responsible 
for IFNγ production. IFNγ production correlates with the lung 
infiltration and activation of neutrophils and is required for 
protection against S. pneumoniae (11–13).

Four-and-a-half LIM-only protein 2 (FHL2) belongs to the 
LIM-only protein family. LIM domains are double zinc finger 
motifs that mediate protein–protein interactions. FHL2 is highly 
conserved among species and plays important roles in cell 
proliferation, apoptosis, and signal transduction (14, 15). In the 
cytoplasm, FHL2 can also interact with integrins and signaling 
intermediates, such as MAPKs and TRAF-6 (16, 17). Moreover, 
upon cell activation, FHL2 can rapidly translocate to the nucleus, 
where it exerts transcriptional cofactor activities that regulate 
the activity of major transcription factors, such as NF-κB, AP-1, 
and Foxo1 (18–20). Moreover, FHL2 has been implicated in 
several immune and inflammatory diseases, such as arthritis 
and vascular restenosis (21, 22). FHL2 is also involved in lung 
inflammation, including asthma, fibrosis, and influenza A virus 
propagation (23–25).

Interestingly, a study using in silico analysis cited FHL2 as a 
protein that could modulate more than 50% of the known NK cell 
fingerprint (26). Using microarrays data and a network modeling 
approach, the authors identified 93 genes preferentially expressed 
in resting NK cells and putative transcriptional regulators of these 
genes. FHL2 was predicted to be a major regulator of those genes 
as well as well-known transcriptional factors, such as Tbx21, 
Eomes, or Stat5. Our present study provides new evidence that 
FHL2 is expressed in human and mouse NK cells and participates 
in NK cell development. Using S. pneumoniae pulmonary infec-
tion and FHL2−/− mice (27), we showed that the activation of lung 
NK cells is altered in FHL2−/− mice. We also found that FHL2 
is a major mediator of IFNγ production during S. pneumoniae 
infection, leading to an impaired neutrophil-mediated immune 
response, a loss of control of the bacterial burden, and, finally, to 
an enhanced animal mortality when FHL2 is absent. Thus, the 
transcription cofactor FHL2 is implicated in NK cell develop-
ment and in the capacity of NK cells to regulate the antibacterial 
immune response.

resUlTs

Fhl2 expression in human and Mouse nK 
cells
The transcription cofactor FHL2 was predicted in silico to regulate 
resting NK cells (26). We first addressed the question of whether 
NK cells express FHL2 at the mRNA and protein level. Based on 
global mining of the Gene Expression Omnibus (GEO) database, 
we analyzed the enrichment of FHL2 in different mouse NK cell 
populations in comparison to other leukocyte subsets. Mouse 
NK cells from the spleen, liver, and small intestine were found 
to express FHL2 mRNA (Figure 1A). We confirmed these results 
by showing that FHL2 mRNA is expressed in NK cells sorted 
from mouse spleen (Figure  1B). We also showed that splenic 
NK cells express FHL2 protein in their cytoplasm at steady-state 
(Figures 1C,D). We, next, examined FHL2 expression in human 
NK cells. NK cells purified from the peripheral blood of healthy 

donors expressed FHL2 at both the mRNA level (Figure  1E) 
and the protein level (Figures 1F,G). As FHL2 is a transcription 
cofactor known to be localized in the cytoplasm at steady-state 
and to translocate into the nucleus after activation, we stimulated 
murine NK cells with rmIL-15 to evaluate the localization of 
FHL2. In these conditions, immunofluorescence studies showed 
that FHL2 is translocated into the nucleus of NK cells, whereas 
it was present in the cytoplasm of resting NK cells (Figure 1H). 
Interestingly, in NK cells purified from the peripheral blood of 
patients with bacterial infection, FHL2 was mainly located in the 
nucleus (Figure 1I). Altogether, these data emphasize that FHL2 
is expressed in both mouse and human NK cells.

nK cell Development in Fhl2−/− Mice
Our data indicate that FHL2 is expressed on NK cells. To decipher 
the role of this transcription cofactor in NK cells, we next used 
FHL2-deficient mice (FHL2−/−). First, we studied the NK cell com-
partment in these mice. The relative number and the percentage 
of NK cells in several peripheral organs, such as the spleen, blood, 
and lungs, was significantly lower in FHL2−/− mice compared to 
wild-type (WT) mice (Figures 2A,B). Moreover, the remaining 
NK cells in FHL2−/− mice displayed an altered phenotype, with 
lower expression of the surface receptors NK1.1 and NKG2D in 
the spleen (Figure 2C) and in the lungs (data not shown) than on 
WT NK cells. Furthermore, monitoring CD11b expression on the 
NK cell surface allows the study of their maturation status in the 
peripheral organs (28). In the spleen of FHL2−/− mice, there was 
a significant reduction of mature CD11b+ NK cells compared 
with WT mice (Figure 2C). In the BM, precursors committed to 
the NK-cell lineage express the γ-subunit of the IL-2/IL-15 recep-
tor CD122 and lack other lineage markers. Subsequently, these 
precursors reach an immature NK-cell phenotype, characterized 
by the sequential acquisition of NK receptor expression at the cell 
surface, such as NK1.1 (stage 2), NKp46 (stage 3), DX5 (stage 4), 
and then CD11b (stage 5) (29). In the BM of FHL2−/− mice, we 
showed a non-significant decrease in NK cell precursors (CD122+ 
NK1.1+) and NK cells at stage 3 (NK1.1+ NKp46+ NK cells). By 
contrast, an important difference was observed in the percentage 
of NK cells at stage 5 (DX5+ CD11b+ NK cells) between WT mice 
(39.5% NKp46+ NK cells) and FHL2−/− mice (24.3% NKp46+ NK 
cells) (Figures  2D,E). Altogether, these data suggest a role for 
FHL2 in the development and the maturation of NK cells.

The nK cell Defect in Fhl2−/− Mice 
enhances Their susceptibility to S. 
pneumoniae infection
Natural killer cells are implicated in innate immune defense 
during S. pneumoniae infection through the production of IFNγ 
(30, 31). Owing to the large number of pneumococcal serogroups 
and the possible differences in the associated immune responses, 
we first confirmed that NK cells contribute to the clearance of 
S. pneumoniae serotype 1 using NKp46(iCre) R26R(DTR) mice. 
Diphtheria toxin (DT) injection in these mice results in NK cell 
ablation in the peripheral blood as well as in the spleen, lymph 
nodes, and lungs (32). Upon infection with LD50 S. pneumo-
niae (5 × 105 cfu) and DT injection, 90% (12 out of 13) of the 
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FigUre 1 | Fhl2 expression in human and mouse natural killer (nK) cells. (a) Genome-wide expression analysis was performed on mouse cells using raw 
microarray data generated by the Immgen Consortium. The list of all Gene Expression Omnibus accession numbers and corresponding cell populations and series 
is available in Table S1 in Supplementary Material. (B–D,h) NK cells were purified from wild-type mouse spleens. (e–g) NK cells were purified from the peripheral 
blood of healthy donors. (B,e) FHL2 mRNA was analyzed using RT quantitative PCR and normalized to GAPDH mRNA in purified NK cells and in non-NK cells. The 
data are shown as the means ± SEM of at least three independent experiments. *p < 0.05 using the Mann–Whitney test. (c,F) Western blot analysis of NK cell 
lysates. Data are representative of three experiments. (h) NK cells were stimulated for 30 min with rmIL-15. (i) NK cells were purified from the peripheral blood of 
patients with a severe bacterial Community-Acquired Pneumonia. (D,g–i) FHL2 protein expression was assessed by immunofluorescence using an anti-FHL2 
antibody, and DRAQ5™ was used to detect dsDNA. These panels show representative staining of at least two independent experiments.
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NKp46(iCre) R26R(DTR) mice died (Figure 3A). In contrast, in 
the absence of DT injection, 50% (6 out of 12) of the NKp46(iCre) 
R26R(DTR) mice died (Figure  3A). Hence, mice that were 
depleted of NK cells had enhanced mortality resulting from S. 
pneumoniae infection.

As we have shown that FHL2−/− mice displayed an NK cell 
deficiency, we next assessed the behavior of these mice during 
S. pneumoniae infection. Strikingly, 95% (20 out of 21) of the 
FHL2−/− mice infected with 5 ×  105  cfu of S. pneumoniae died 
compared to 50% of the WT mice (Figure 3B). Our previous data 
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FigUre 2 | natural killer (nK) cell development in Fhl2−/− mice. Flow cytometric analysis of NK cells in various organs of FHL2−/− and wild-type mice. (a,B) 
NK cells were defined as CD19− CD3ϵ− NKp46+ cells. (a) One representative experiment of the gating in different organs is shown. The percentage of NK cells in 
each organ is indicated. (B) Dots corresponding to the NK cell number and percentage for the indicated organs ± SEM of three experiments (n = at least 10 mice) 
are shown. (c) Flow cytometric analysis of NK1.1 and NKG2D expression and the CD11b+ percentage within CD19− CD3ϵ− NKp46+-gated spleen NK cells ± SEM 
of two distinct experiments are shown. (D) Gating strategy to identify the different stages of NK cell development in the bone marrow (BM). The percentages of cells 
in each of the specified gates are indicated. (e) Dots corresponding to the NK cell frequency for the indicated stage of development in the BM ± SEM of two distinct 
experiments are shown. (B,c,e) Each dot represents the data from one mouse. (B,c,e) *p < 0.05, **p < 0.01, ***p < 0.001 by Mann–Whitney test. (a–c) Data 
were confirmed using FHL2+/+ littermate mice.
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indicated a lower NK cell number in FHL2−/− mice compared to 
WT mice, but there were still NK cells in the lungs of FHL2−/− 
mice. To further investigate the FHL2-dependent control of S. 
pneumoniae, we next analyzed the activation of the remaining NK 
cells in the lungs of FHL2−/− mice 24 h following intranasal chal-
lenge with the bacteria. CD69 is rapidly expressed at high levels on 
activated NK cells, including during S. pneumoniae infection, and 
acts as a costimulatory molecule in cytokine secretion (33, 34). 
Upon S. pneumoniae infection, CD69 was less robustly induced 
on the surface of lung NK cells in FHL2−/− mice compared to WT 

mice (Figure 3C). Two other activation NK cell markers, CD62L 
and CD11b, were also less induced on lung NK cells in FHL2−/− 
mice compared to WT mice (data not shown). It is of note that 
we did not observe any NK cell proliferation nor apoptosis during 
the early course of pneumococcal infection in WT mice as well as 
in FHL2−/− mice (data not shown). Next, we aimed to rescue the 
susceptibility of FHL2−/− mice to S. pneumoniae. We transferred 
purified FHL2−/− or WT NK cells into FHL2−/− mice at the time 
of infection. In accordance with the previous results obtained in 
FHL2−/− mice, upon infection with 5 × 105 cfu S. pneumoniae, 88% 
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FigUre 3 | The natural killer (nK) cell defect of Fhl2−/− mice enhances their susceptibility to Streptococcus pneumoniae infection. Mice were infected 
i.n. with 5 × 105 cfu (LD50) S. pneumoniae. (a) NKp46(iCre) R26R(DTR) mice were untreated (gray plot) or treated (black circle) with diphtheria toxin (4 ng/g) twice, 
24 h before and 24 h after infection. (B) FHL2−/− mice (black plot) and wild-type (WT) mice (gray circle) were infected with S. pneumoniae. (c) Flow cytometric 
analysis of CD69 expression on lung NK cells. Each dot represents the data obtained for one mouse. Experiment representative of four independent experiments. 
**p < 0.01 by Mann–Whitney test. (D) Purified NK cells from FHL2−/− mice (FHL2−/− NK cells → FHL2−/− mice; black plot) or WT mice (WT NK cells → FHL2−/− mice; 
gray circle) were i.v. injected in FHL2−/− recipient mice at the time of infection. (a,B,D) Survival is shown for two or three independent experiments pooled together. 
Statistical analysis was performed using the Mantel–Cox test (**p < 0.01, ***p < 0.001). The surviving mice were kept until day 10 postinfection. None died after day 
7. (B) Data were confirmed using FHL2+/+ littermate mice.
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(7 out of 8) of the FHL2−/− mice that received FHL2−/− NK cells 
(FHL2−/− NK cells → FHL2−/− mice) died (Figure 3C). In sharp 
contrast, only 47% (8 out of 17) of the FHL2−/− mice that received 
WT NK cells (WT NK cells → FHL2−/− mice) died (Figure 3D). 
Altogether, these data strongly highlight the key functions of 
FHL2 expression in NK cells during pulmonary infection with 
S. pneumoniae.

Fhl2 Deficiency Decreases S. 
pneumoniae-induced iFnγ Production by 
nK cells
The involvement of IFNγ in the development of pulmonary 
pneumococcal infection has been studied in detail and has been 
associated with enhanced clearance of bacteria (12, 35, 36). To 
further understand the elevated susceptibility of FHL2−/− mice 
to S. pneumoniae, we next analyzed IFNγ production in the 
bronchoalveolar lavage (BAL) and in the lungs 24  h following 
intranasal challenge with the bacteria. Local pulmonary IFNγ 
production was quantified by ELISA for the BAL and by real-time 
PCR for the lungs of infected mice. In the BAL, IFNγ produc-
tion was significantly less induced in FHL2−/− mice compared to 
WT mice upon S. pneumoniae infection (Figure 4A). The fold 

increase of IFNγ transcripts in the lungs after 24 h of infection 
was also significantly higher in WT mice compared to FHL2−/− 
mice (Figure 4B). Other IFNγ-related genes, such as CXCL9 and 
STAT1, are known to be increased during S. pneumoniae lung 
infection (12). We, next, studied the expression of these two 
genes in the lungs of WT and FHL2−/− mice 24 h after infection. 
In accordance with the results obtained with IFNγ, the CXCL9 
and STAT1 transcripts were less robustly increased in FHL2−/− 
compared to WT mice (Figure 4C). To further characterize the 
specific role of NK cells in the defect of IFNγ level in infected 
FHL2−/− mice, we next analyzed the intracellular production of 
IFNγ in WT and FHL2−/− lung NK cells following infection. The 
frequency of IFNγ-producing NK cells in the lung of FHL2−/− mice 
was reduced compared to their WT counterparts (Figure 4D).

To compensate for the IFNγ defect in FHL2−/− mice infected 
with S. pneumoniae, we next treated those mice with two i.p. injec-
tions of recombinant mouse (rm)IFNγ. Interestingly, treatment 
of FHL2−/− mice with rmIFNγ rescued the phenotype, as only 
50% (8 out of 16) of the FHL2−/− mice infected with 5 × 105 cfu 
S. pneumoniae and treated with rmIFNγ died compared to 
90% of the untreated FHL2−/− mice (16 out of 18) (Figure 4E). 
During S. pneumoniae infection, different cell types participate 
in the production of IFNγ, including NK cells, NKT cells, and 
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FigUre 4 | Fhl2 deficiency decreases S. pneumoniae-induced iFnγ production by natural killer (nK) cells. Mice were infected i.n. with 5 × 105 cfu 
(LD50) S. pneumoniae.  (a) The protein expression of IFNγ was determined by ELISA in the bronchoalveolar lavage obtained from wild-type (WT) and FHL2−/− mice, 
24 h postinfection. Results of two distinct experiments are shown. (B,c) qRT-PCR was performed to assess the mRNA expression of (B) IFNγ and (c) CXCL9 and 
STAT1 in total lungs obtained from WT and FHL2−/− mice, 24 h postinfection. Experiment representative of two independent experiments. (D) Intracellular IFNγ levels 
in lung NK cells were detected using flow cytometry (n = 5). (a–D) Each dot represents the data from 1 mouse. *p < 0.05, **p < 0.01 by Mann–Whitney test. (e) 
FHL2−/− mice were untreated (black circle) or i.p. injected (gray plot) with rmIFNγ (10 μg/mouse) twice, at the time of infection and 48 h postinfection. (F) Purified NK 
cells from IFNγ−/− mice (IFNγ−/− NK cells → FHL2−/− mice; black plot) or WT mice (WT NK cells → FHL2−/− mice; gray circle) were i.v. injected in FHL2−/− recipient 
mice at the time of infection. (e,F) Survival is shown for two or three independent experiments pooled together. Statistical analysis was performed using the 
Mantel–Cox test (**p < 0.01). The surviving mice were kept until day 10 postinfection. None died after day 7.
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γδ T cells (11, 37). To test the specific role of NK cells in IFNγ 
production during S. pneumoniae infection, we transferred NK 
cells purified from IFNγ-deficient mice into FHL2−/− mice before 
lung infection. When reconstituted with IFNγ-deficient NK 
cells (IFNγ−/− NK cells → FHL2−/− mice), 88% (7 out of 8) of the 
FHL2−/− mice died, whereas 50% (5 out of 10) of the FHL2−/− mice 
reconstituted with WT NK cells (WT NK cells → FHL2−/− mice) 
survived (Figure  4F). Altogether, we demonstrate that the 

production of IFNγ by NK cells is impaired in FHL2−/− mice, 
leading to increased susceptibility to S. pneumoniae infection.

impaired antibacterial immune response 
in Fhl2-Deficient Mice
IFNγ production during S. pneumoniae infection is involved in 
the regulation of the neutrophil-mediated host defense against 
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this infection (38, 39). To further characterize the development 
of the immune response in FHL2−/− mice during S. pneumoniae 
infection, we analyzed the recruitment of neutrophils in the 
BAL and lung tissue. Histological analysis showed significantly 
attenuated infiltration of neutrophils in the lungs of FHL2−/− mice 
compared to WT mice (Figures 5A,C). In accordance with this 
observation, the neutrophil number in the BAL of FHL2−/− mice 
was lower than in WT mice 24  h postinfection (Figure  5B). 
Neutrophil activation is associated with upregulation of CD11b, 
shedding of CD62L, and degranulation of antibacterial products 
such as neutrophil myeloperoxidase (MPO) (40). The CD11b 
fluorescence intensity of neutrophils was lower in the BAL of 
FHL2−/− mice than in WT mice (Figure  5D). In contrast, the 
percentage of CD62L+ neutrophils was higher in FHL2−/− mice 
than in WT mice (Fic. 5D). Moreover, the level of MPO in the 
BAL was significantly lower in FHL2−/− mice than in WT mice 
(Figure 5E). Interestingly, the neutrophil recruitment and activa-
tion defect was compensated by the transfer of purified WT NK 
cells into FHL2−/− mice at the time of infection (Figure 5F).

As neutrophils are known to play a critical role in the kill-
ing of S. pneumoniae, we next evaluated the impact of FHL2 
deficiency on the clearance of the bacteria. In accordance with 
the survival results, 48 h after inoculation, the bacterial load in 
the lungs of FHL2−/− mice was significantly higher than in WT 
mice (Figure 5G). The number of bacteria in the BAL of FHL2−/− 
mice was also increased compared to WT mice (Figure  5G). 
Altogether, these data highlighted the impaired neutrophil-
mediated immune response to S. pneumoniae in FHL2−/− mice, 
leading to a defect in bacterial control.

DiscUssiOn

Natural killer cell development, maturation, and functions 
are controlled by successive and coordinated actions of tran-
scription factors (29, 41). Whole-genome studies contribute 
to improving the knowledge of the complex NK cell biology 
and in silico analyses pinpoint the potential role of FHL2 as a 
major transcriptional regulator of the signature genes of resting 
NK cells (26). Here, we show that FHL2 is expressed in both 
human and mouse NK cells at the mRNA and protein level. 
Moreover, FHL2 is expressed in the cytoplasm in resting NK 
cells and translocates to the nucleus upon activation. These 
results are consistent with those described in other cell types, 
such as cardiac muscle cells, in which FHL2 is associated with 
integrins in the cytoplasm (42) and could also be found in the 
nucleus acting as a transcriptional cofactor (15). Using FHL2−/− 
mice, we demonstrated that NK cells in vivo are impacted by 
FHL2 deficiency as those mice display a defect in peripheral 
NK cell numbers, frequency, and maturation. The absence of 
FHL2 results in alterations in NK cell progenitors at the early 
stages of development, making FHL2 a potential cofactor 
of transcription factors acting during these stages of NK cell 
development (41). Notably, FHL2 has already been associated 
with hematopoietic stem cell differentiation. FHL2 is expressed 
in subsets of hematopoietic progenitor cells, and most recently, 
FHL2 was identified as a critical modulator of hematopoietic 
progenitor cell functions under stress conditions (43, 44). 

Overall, FHL2 is implicated in cell differentiation, and it will 
be of interest to investigate the potential interaction of FHL2 
with transcription factors regulating NK cell development and 
maturation. Moreover, the issue of intrinsic versus extrinsic 
effects of FHL2 is unresolved. In that regard, bone marrow 
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FigUre 5 | continued 
impaired antibacterial immune response in Fhl2-deficient mice. Mice 
were infected i.n. with 5 × 105 cfu (LD50) S. pneumoniae. (a,c) Histological 
examination of the lung tissue obtained from wild-type (WT) and FHL2−/− 
mice 24 h postinfection, stained with hematoxylin-eosin and examined by 
light microscopy. (a) Semi-quantitative pathology scores (described in 
experimental procedures) for the neutrophil number per lung microscopic 
field. The data are presented as the means ± SEM of two distinct 
experiments (n = 5 mice per group) are shown. *p < 0.05 by Mann–Whitney 
test. (B) Neutrophil numbers were determined by flow cytometry in the 
bronchoalveolar lavage (BAL) obtained from WT and FHL2−/− mice 24 h 
postinfection. (c) Representative photomicrographs of lung sections to show 
neutrophil colonization of WT and FHL2−/− lungs. (D) Flow cytometric analysis 
of CD11b expression and CD62L+ percentage on F4/80− Ly6Ghigh-gated 
neutrophils in the BAL obtained from WT and FHL2−/− mice 24 h 
postinfection. Data are representative of three distinct experiments. (e) The 
protein expression of myeloperoxidase (MPO) was determined by ELISA in 
the BAL obtained from WT and FHL2−/− mice 48 h postinfection. The 
mean ± SEM of two experiments is shown. (F) Purified natural killer cells 
from FHL2−/− mice or WT mice were i.v. injected in FHL2−/− recipient mice at 
the time of infection. Then, neutrophil numbers and MPO expression were 
determined by flow cytometry and ELISA, respectively, in the BAL 24 h 
postinfection (n = 5). (g) Bacterial burden in the lungs and BAL obtained 
from WT and FHL2−/− mice 48 h postinfection. Data are representative of two 
distinct experiments. (B,D–g) Each dot represents the data from one mouse. 
*p < 0.05, **p < 0.01 by Mann–Whitney test.
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chimera experiments would be decisive to determine whether 
FHL2 induces cell-intrinsic effects in NK cells or acts indirectly 
through non-hematopoietic cells.

Natural killer cells are key players of the early immune response 
to S. pneumoniae infection, but their contribution to pathogenesis 
remains unclear and dependent on the S. pneumoniae serotype 
used. Using NK cell depletion models, research has highlighted 
the essential role of NK cells in the early response to pulmonary S. 
pneumoniae serotype 3 infection (30), although they are involved 
in pathogenesis in a model of pneumococcal meningitis and in 
pulmonary infection with a serotype 2 or a clinical specimen of S. 
pneumoniae (11, 31, 45). Using NKp46(iCre) R26R(DTR) mice, 
in which NK cells may be specifically depleted, we showed in this 
study that NK cells are indispensable for the early control of the 
pathogenic strain of S. pneumoniae serotype 1, a major serotype 
associated with invasive disease in humans (46). Moreover, the 
higher susceptibility of FHL2−/− mice compared to WT mice to 
S. pneumoniae serotype 1 infection is clearly linked to the NK cell 
defect as the transfer of WT NK cells into FHL2−/− mice rescued 
their immune protection.

IFNγ production is the main contribution of NK cells during 
S. pneumoniae infection and is critical for protection against 
this pathogen (12). Our study demonstrates that FHL2 is 
implicated in IFNγ production during S. pneumoniae infection 
and that treatment with rmIFNγ protected FHL2−/− mice. As 
a consequence of the IFNγ defect, neutrophil recruitment and 
activation were lower in FHL2−/− mice compared to WT mice. 
Moreover, the control of the bacterial burden was impaired in 
FHL2−/− mice compared to WT mice, leading to the enhanced 
mortality of these mice. FHL2 has already been implicated in 
different inflammatory process in mice (21, 22) as well as in 
humans, where FHL2 was proposed to be a marker of lung 

fibrosis (47). Recently, loss of FHL2 has been associated with 
an impaired inflammatory reaction after cardiac ischemia 
owing to a defect in immune cell migration (48). Consistent 
with the impaired IFNγ production in FHL2−/− mice, we also 
found that CXCL9 and STAT1, two IFNγ-related genes that 
are upregulated during S. pneumoniae infection (12), are also 
less robustly expressed in FHL2−/− infected mice compared to 
WT mice. Interestingly, CXCL9 is one of the chemokines that 
recruits CD4+ T lymphocytes. Pneumococcal-specific CD4+ T 
lymphocytes have an important role in protection against bacte-
rial carriage and pulmonary infection through the production of 
IL-17 and IFNγ at late time points (49–51).

Using NK cells purified from IFNγ−/− mice and transferred 
into FHL2−/− mice, we demonstrated that among all cells that 
produce IFNγ during S. pneumoniae infection, NK cells are the 
major cell population impacted in those mice and that their 
defect in IFNγ production is sufficient to weaken the antibacte-
rial immune response. FHL2 can regulate the activity of many 
signaling pathways, including TRAF6 in osteoclasts, MAPKs in 
muscle cells and mesenchymal stem cells, and NK-κB in differ-
ent cell types (18, 52, 53). Interestingly, TRAF6, NF-κB, and the 
MAPKs are members of the signaling pathways activated in NK 
cells for IFNγ secretion [for review, see Ref. (54)], and NF-κB 
activation is crucial during pneumococcal pneumonia (55). 
Therefore, it will be important in future studies to investigate 
the interactions of FHL2 with these signaling routes to further 
decipher the molecular mechanisms leading to IFNγ production 
in NK cells. The impaired IFNγ production in FHL2−/− mice 
could also be the consequence of the low number and defective 
maturation status of NK cells. Indeed, NK cell effector functions 
are associated with the maturation state of NK cells in periph-
eral organs, and the activation of NK cells is required for IFNγ 
production (28). In the lungs of FHL2−/− mice, the proportion 
of mature CD11b+ NK cells at steady-state and CD69+ activated 
NK cells after S. pneumoniae infection were lower than that in 
WT mice.

The transcription cofactor FHL2 regulates numerous cellular 
processes. In this study, we have identified FHL2 as an impor-
tant mediator that regulates NK cell development, maturation, 
and activation. FHL2 deletion has functional consequences as 
FHL2−/− mice loose their ability to control pulmonary S. pneu-
moniae infection owing to a defect in IFNγ production.

This study paves the way for further investigations to delineate 
the molecular mechanisms by which FHL2 regulates the physi-
ologic and pathologic states of NK cells.

eXPeriMenTal PrOceDUres

Mice, Treatments, and cell line
Wild-type (WT) C57BL/6JRj mice were purchased from Janvier 
Labs (France). FHL2−/−, NKp46(iCre) R26R(DTR), and IFNγ−/− 
mice are described elsewhere (18, 32, 56). Some experiments using 
FHL2−/− mice were confirmed using FHL2−/− and FHL2+/+ lit-
termates obtained from intercrossing FHL2+/− mice. The animals 
were used between 7 and 13 weeks of age. All experiments were 
performed in the animal facilities of Tours University according 
to guidelines of the ethical committee. For NKp46 cell depletion, 
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NKp46(iCre) R26R(DTR) mice were injected intraperitoneally 
(i.p.) with DT (4 ng/g, Servibio) twice, 1 day before and 1 day after 
S. pneumoniae infection. For treatment with IFNγ, FHL2−/− mice 
were injected i.p. with rmIFNγ (10 μg/mouse, Peprotech) twice, 
on day 0 and day 2 postinfection.

Bacteria, infection, and assessment of 
Bacterial counts
Streptococcus pneumoniae serotype 1 (clinical isolate E1586) 
and working stocks were prepared as described previously (57). 
Mice were anesthetized and administered intranasally (i.n.) with 
5 × 105 bacteria (LD50). The mice were monitored every 12 h for 
illness and mortality for up to 10 days. The bacterial burden in the 
lungs and BAL samples was measured by plating lung homogen-
ates or BAL samples onto blood agar plates. Colony-forming 
units were enumerated 24 h later.

cell Preparation
Lungs were perfused with 10  mL PBS injected into the heart. 
Splenocyte and lung suspensions were obtained by mechanical 
disruption and enzymatic digestion, respectively, using gen-
tleMACS dissociators (Miltenyi Biotech) according to the kit 
manufacturer’s instructions. Bronchoalveolar lavage (BAL) was 
performed as described previously (58). Red blood cells were 
lysed in BD Pharm Lyse™ lysing buffer (BD Biosciences).

human cell isolation
Blood samples were collected from healthy volunteers from the 
Etablissement Francais du Sang. Blood samples from patients 
with a Community-Acquired Pneumonia were obtained from the 
Intensive Care Unit of the University Hospital of Tours. Human 
blood NK cells were isolated from PBMC by negative magnetic 
selection using NK Cell Isolation Kit (Miltenyi Biotec). The study 
was approved by the French national bioethics authorities (CPP-
37 2012-R21).

Flow cytometry and antibodies
Flow cytometric analyses were performed using a 
MACSQuant® Analyzer (Miltenyi Biotec) and VenturiOne 
software (AppliedCytometry). The following mAbs were used: 
FITC-conjugated anti-CD62L (MEL-14), APC-conjugated 
anti-Ly6G (1A8), FITC-conjugated anti-CD3ϵ (145-2C11), 
FITC-conjugated anti-CD19 (1D3), PerCP-Cy5.5-conjugated 
anti-NK1.1 (PK136), PE-conjugated anti-CD122 (TM-beta1), 
APC-conjugated anti-CD49b (DX5), FITC-conjugated anti-
Ter119 (TER-119), and PE-Cy7-conjugated anti-IFNγ (XMG1.2) 
were from BD Biosciences (East Rutherford, NJ, USA); vioblue-
conjugated anti-F4/80 (clone BM8), APC-eFluor780-conjugated 
anti-CD45 (30-F11), FITC-conjugated anti-CD86 (GL1), PerCP-
eFLuor710-conjugated anti-MHC2 (M5/114), eFluor450-con-
jugated anti-CD335 (NKp46, 29A1.4), PerCP-Cy5.5-conjugated 
anti-CD11b (M1/70), PE-Cy7-conjugated anti-CD27 (LG.7F9), 
APC-conjugated anti-CD69 (H1.2F3), PE-Cy7-conjugated 
anti-CD314 (NKG2D; CX5), and APC-eFluor780-conjugated 
anti-CD45 (30-F11) were from Affymetrix eBioscience. Dead 
cells were stained with LIVE/DEAD® Fixable Aqua Dead Cell 
Stain kit (Molecular Probes).

adoptive Transfer of nK cells
Splenocyte suspensions from WT, FHL2−/−, or IFNγ−/− donor 
mice were obtained by mechanical disruption of the spleens of 
the mice using gentleMACS dissociators (Miltenyi Biotech). 
Red blood cells were lysed in BD Pharm Lyse™ lysing buffer 
(BD Biosciences). The preparations were then enriched in NK 
cells by negative depletion using a mouse NK cell isolation kit 
(Miltenyi Biotec). The NK cell purity was at least 70%. Then, 
1 × 106 donor NK cells/mouse were injected i.v. into FHL2−/− 
recipient mice.

real-time Pcr
Total RNA was extracted from NK cells or from lung tissue using 
the NucleoSpin RNA extraction kit (Macherey-Nagel). Total 
RNA was quantified using a Nanodrop 2000c spectrophotometer 
(Thermo Scientific), and then single-strand cDNA was synthesized 
from 500 ng total RNA from each sample with the High Capacity 
cDNA Reverse Transcription kit (Applied Biosystems) according 
to the manufacturer’s instructions. PCR reactions were prepared 
with 5 µL of cDNA using SYBR Premix Ex Taq (Takara Bio Inc.) 
and were performed on a LightCycler 480 (Roche Diagnostics 
GmbH). The sequences of the primers used in this study are as fol-
lows: mouse GAPDH 5′-TCAGATCCACGACGGACACA-3′ and 
5′-TGCCCAGAACATCATCCCTG-3′; mouse IFNγ 5′-GTGGG 
TTGTTGACCTC AAACTAGGC-3′ and 5′-GTCTGAATAACT 
ATTTTAACTCAAG-3′; mouse CXCL9 5′-GGAGTTCGAGGA 
ACCCTAGTG-3′ and 5′-GGGATTTGTAGTGGATCGTGC-3′; 
mouse STAT1 5′-CGGAGTCGGAGGCCCTAAT-3′and 5′-ACA 
GCAGGTGCTTCTTAATGAG-3′; mouse FHL2 5′-ATGACTG 
AACGCTTTGACTGC-3′ and 5′-CGATGGGTGTTCCACACT 
CC-3′; human FHL2 5′-GTACAGACTGCTATTCCAACGAG-3′ 
and 5′-GCACT GCATGGCATGTTGTT-3′.

immunofluorescence
Approximately 2 × 105 cells were seeded onto Superfrost slides 
and fixed with 4% formaldehyde in PBS. Non-specific binding 
sites were blocked by incubation with 10% goat serum and 1% 
BSA in PBS, and then, the slides were stained with primary 
mouse anti-FHL2 antibody (F4B2-B11 from Thermo Fisher 
Scientific) overnight at 4°C. Bound antibodies were detected 
using FluoProbes488-conjugated anti-IgG secondary antibody 
(Interchim). DRAQ5™ (Biostatus) was used to detect dsDNA. 
The samples were analyzed with Leica TCS SP8 confocal micro-
scope and Leica LAS X software available in the microscopy 
facility of the Tours University.

histological analysis
Lungs were collected in 4% paraformaldehyde in PBS and the 
lung sections, cut at approximately 4  µm in thickness, were 
stained with hematoxylin-eosin. A study pathologist examined 
the tissue sections in a blinded fashion using light microscopy 
on a Leica Diaplan microscope. All histopathological findings 
were graded in a semi-quantitative fashion on a scale of 0–4 
(0: absent, 1: mild, 2: moderate, 3: severe, 4: very severe). All 
lung preparations and analyses were performed at the LAPV 
(Amboise, France).
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elisa
The concentration of IFNγ and MPO secreted into the BAL were 
measured using optimized standard sandwich ELISA (R&D 
systems) according to the kit manufacturer’s instructions.

Microarray analysis
Raw Affymetrix.CEL files generated by the Immgen Consortium 
and corresponding to various immune cell populations were 
downloaded from the GEO repository (Series GSE75202 and 
GSE37448).

Quality control and normalization of the expression data 
by Robust Multi-Array Average (59) was performed through 
Bioconductor in the R statistical environment (version 3.2.0) 
using the oligo package (version 1.32.0).

A list of all GEO accession numbers and corresponding cell 
populations and series is available as Table S1 in Supplementary 
Material.

statistical analysis
All results are expressed as the means  ±  SEM. Statistical 
significance was determined using the Mantel–Cox test or the 
Mann–Whitney test, depending on the analysis. The data were 
analyzed using GraphPad Prism 5 (GraphPad Software). We con-
sidered p-values < 0.05 to be significant (*p < 0.05; **p < 0.01; 
***p < 0.001).
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