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Abstract
Nitrogen fertilizer is the most used nutrient source in modern agriculture
and represents significant environmental and production costs. In the
meantime, the demand for grain increases and production per area has to
increase as new cultivated areas are scarce. In this context, breeding for
an efficient use of nitrogen became a major objective. In wheat, nitrogen
is required to maintain a photosynthetically active canopy ensuring grain
yield and to produce grain storage proteins that are generally needed to
maintain a high end-use quality. This review presents current knowledge
of physiological, metabolic and genetic factors influencing nitrogen
uptake and utilization in the context of different nitrogen management
systems. This includes the role of root system and its interactions with
microorganisms, nitrate assimilation and its relationship with photosyn-
thesis as postanthesis remobilization and nitrogen partitioning. Regarding
nitrogen-use efficiency complexity, several physiological avenues for
increasing it were discussed and their phenotyping methods were
reviewed. Phenotypic and molecular breeding strategies were also
reviewed and discussed regarding nitrogen regimes and genetic diversity.

Key words: bread wheat — breeding — nitrogen uptake
efficiency — nitrogen-utilization efficiency

Nitrogen-use efficiency (NUE) has been the subject of a wealth
of literature and underpinning projects for its improvement.
There seems to be consensus on the need to increase NUE in
breeding, but, to the best of our knowledge, NUE has not been
the target of dedicated breeding programmes. Rather, it has been
improved through the indirect selection for yield, in environ-
ments targeted by breeding programmes. Sadras and Richards
(2014) have suggested that indirect selection for yield serves as
a benchmark for any alternative approach. Several studies have
evaluated a posteriori breeding improvement of NUE (Ortiz-
Monasterio et al. 1997, Guarda et al. 2004, Muurinen et al.
2006, Cormier et al. 2013). For example, Cormier et al. (2013)
quantified NUE improvement at 0.13 kg DM/kg N/year between
1985 and 2010 in France. Supposing an average French grain
yield of 7 t/ha and assuming a reference NUE value between
37.8 kg DM/kg N (Cormier et al. 2013) and 33.3 kg DM/kg N
(average value for wheat used in French balance sheet N recom-

mendation methods; Meynard 1987), this equates to a saving of
approximately 6–8 kg N/ha after 10 years of genetic improve-
ment. From an economic standpoint, the variations in fertilizer
N/grain price ratio essentially determine the quantity of N applied.
The impacts of this volatility on on-farm NUE and required N
savings can be shown in two examples. Firstly, 10 years of breed-
ing (i.e. a saving of 6–7 kg N/ha) can compensate for a variation
in N/grain price ratio from 5 to 6, that is 16% of the total
observed volatility over the past 10 years (Cohan 2009).
Secondly, over the same 10-year period, Sylvester-Bradley and
Kindred (2009) showed that this price ratio has varied from 3 to 9
(Sylvester-Bradley and Kindred 2009), leading to a necessity to
increase NUE from 23.8 to 28.6 kg DM/kg N requiring almost
40 years of breeding progress.
Overall, this leads us to conclude that breeding programmes

need to tackle NUE more efficiently than it has been doing at
the current rate.

Definitions of NUE
The concept of nitrogen-use efficiency (NUE) has been widely
used to characterize plant responses to different levels of nitro-
gen (N) availability. It is important to distinguish the concept of
NUE and the NUE as a phenotypic trait.
Several definitions and evaluation methods have been sug-

gested (reviewed in Good et al. 2004, Fageria et al. 2008). Moll
et al. (1982) defined the most use of NUE, at least among breed-
ers, which computes the grain dry mass divided by the total N
available to a plant. It is divided into two components:

NUE ¼ NUpE� NUtE;

where NUpE is the N-uptake efficiency calculated as the total
amount of N in above-ground plant at harvest divided by the
available N in soil, and NUtE is the utilization efficiency calcu-
lated as the grain dry mass divided by the total amount of N in
above-ground plant at harvest. When different genotypes are
compared, the computation of these components faces two main
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issues: (i) the complex estimation of N available to the crop and
(ii) the estimation of the total amount of N in the above-ground
plant.
N available to the crop results from residual soil N at sowing

and then aerial N deposition, mineralization of organic N and
the actual availability of applied N. Thus, the estimation of
N available to the crop is complex, and an often-used proxy has
been the total amount of applied mineral N fertilizer added to an
estimation of residual soil N at sowing or after winter. For 15
barley genotypes, Bingham et al. (2012) compared different
methods to estimate available N. The first one was independent
of genotype and used only residual soil N after winter and
applied N fertilizer. The two others were dependent on the
genotype and required a control without N fertilization (N0).
Available N for the fertilized treatment (NT) was then estimated
either (i) by adding the above-ground plant N at harvest for N0 to
the applied N fertilizer or (ii) by adding soil N at harvest to (i).
Bingham et al. (2012) showed that genotype rankings were very
similar between the three methods, and thus, the simplest method
can be used.
However, as discussed in Cormier et al. (2013), this can lead

to an overestimation of NUE in low N situations and to an
underestimation of NUE in high N situations, making compar-
ison and/or joint analyses of different studies difficult. Experi-
menting a large collection of genotypes, Cormier et al. (2013)
suggested estimating available N from the distribution of the
total plant N at harvest. They proposed to use the total amount
of N in above-ground plant at harvest of the top 5% genotypes
as an estimation of N that was available to the whole series.
To estimate the total amount of N in the plant, usually only

the aerial parts are sampled. Not taking into account N in the
roots would increase NUtE and decrease NUpE. However, mea-
suring the quantity of root N (in the first 30-cm soil layer) of a
set of cultivars grown at two N levels, Allard et al. (2013)
showed that only a small fraction of total N is partitioned to the
roots (about 4% or 10 kg/ha at harvest). Here again, the geno-
type rankings were very similar with or without taking into
account root N.
Looking at the successes and debates that agitated other scien-

tific communities may help to improve the approaches on wheat
NUE. Ecologists developed another decomposition of NUE.
Originally called ‘nitrogen utility’, Hirose (1971) defined it as
the flux ratio of dry mass productivity for a unit of N taken up
from the soil. Berendse and Aerts (1987) suggested dividing it
into two components to make it biologically meaningful in a
context of perennial species in a steady-state system (i.e. annual
biomass production = annual biomass loss; annual N
uptake = annual N loss). Thus, NUE was defined as the product
of the nitrogen productivity rate (NP; dry mass growth per unit
of plant N) and the mean time residence of N (MRT). Later, Hir-
ose (2011) revisited this definition and specified how it should
be calculated to make it also suitable for non-steady-state sys-
tems such as annual crops.
Compared to Moll et al. (1982), this definition has the poten-

tial to deliver a dynamic vision of NUE, which is directly related
to photosynthetic activity along the plant cycle. Nevertheless, it
only focuses on N utilization, as plant efficiency in extracting N
from the soil is not taken into account. However, in annual
crops, this is an important parameter to consider as substantial
amounts of N fertilizer are applied, implying environmental and
economic issues.
In a similar way, in the water-use efficiency (WUE) commu-

nity, it has been explicitly decided not to account for water

available to the plant. The focus has been on viewing yield as
the final objective through Passioura’s (1977) seminal equation:

GY ¼ WU�WUE� HI;

where WU is the water use (mm transpired), WUE is the water-
use efficiency (kg above-ground dry matter/mm water transpired)
and HI is the harvest index (kg grain/kg above-ground dry mat-
ter).
In relation to NUE formalization, NUtE would then be equiva-

lent to WUE 9 HI. NUpE would be an equivalent to WU
divided by the quantity of water available to a plant. The
approach could be taken further by simply targeting nitrogen use
(NU) as kg N absorbed by the plant instead of NUpE; in much
the same way that WU is seen as (arguably) the most important
target in improving water response (Blum 2009). This would
also avoid dividing an already rather imprecise variable (NU) by
an even more imprecise one (available N). Yet, environmental
and economic issues are different in NUE where minimizing the
loss of fertilizer applied (e.g. by leaching) and maximizing N
uptake for increasing grain protein concentration lead to a focus
also on NUpE. Moreover, not to account for N available to the
crop would imply using genotype-dependent methods (e.g.
repeated controls) to compare varietal behaviour between differ-
ent stress intensities or to characterize genotype 9 stress interac-
tions, if confounding effects need to be eliminated.
Criticisms of the initial WUE equation have heavily con-

tributed to the identification and to the prioritization of
approaches and traits. The first has been to recognize that the
three terms of the equation are clearly not independent (Blum
2009, Tardieu 2013). Typically, as WU increases, WUE
decreases because WU scales to biomass (Blum 2009), as does
N absorption (Lemaire et al. 2007, Sadras and Lemaire 2014).
Consequently, an excessively narrow focus on WUE may be
counterproductive (Blum 2009). Although the underlying physio-
logical reasons for this are very different between nitrogen and
water, framing the nitrogen community in much the same way
as the water community could help in placing the focus on NU
and on systematically accounting for the total biomass when
evaluating NU, as advocated by Sadras and Lemaire (2014).
As in water and ecologist communities, research on NUE

could also be disconnected from the NUE definition of Moll
et al. (1982) and focus on a dynamic approach. Indeed, NUpE
and NUtE are calculated at the end of the crop cycle. However,
total N in the plant varies during the cropping season and has a
critical interaction with HI: once grains are growing, they
become an N sink, and growers, breeders and the wheat industry
have to manage the contradictory objectives of high yields and
high protein contents (Feil 1997, Jeuffroy et al. 2002, Oury and
Godin 2007). First of all, pre-anthesis and postanthesis phases
should be clearly separated. Regarding the postanthesis phase,
the grain protein deviation (GPD; deviation from the yield-pro-
tein linear regression) criterion suggested by Monaghan et al.
(2001) and Oury and Godin (2007) allows breeders specifically
to select for high protein content without the associated yield
penalty. Bogard et al.’s (2010) analysis of GPD showed that this
metric was tightly related to the deviation between pre-anthesis
N uptake and postanthesis N uptake, meaning the obvious: crops
that are both high yielding and high in protein content absorb
large quantities of nitrogen. In other words, the analysis of Bog-
ard et al. (2010) places NU as a key factor without focusing on
NUpE. Looking at the pre-anthesis phase has the advantage of
not having to deal with the yield-protein trade-off. Studying N
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impacts on yield, grain number per area can become the criterion
to target instead of yield. Indeed, it removes the grain weight
elaboration, which occurs postanthesis. And as suggested by
Meynard (1987), at least in western European situations, N will
essentially have an impact on grain number per area, and kernel
weight will often add noise due to other stresses. This would
also mean that HI would essentially be replaced by a fertility
index, implying complex phenotyping although it may allow for
a better characterization of N response regarding the phenologic
stage.

Traits Influencing N-Uptake Efficiency
Root size and morphology

Nitrate is readily leached through the soil profile. Consequently,
the primary root traits to improve for enhanced N capture
include rooting depth and rooting density, especially for postan-
thesis N uptake (Foulkes et al. 2009). A deeper relative distribu-
tion of roots could comprise part of an ideotype to maximize N
capture, and further improvements in root architecture could
focus on root proliferation at depth in wheat (Carvalho and
Foulkes 2011). Indeed, root length density (root length per unit
volume of soil) is often below a critical threshold of 1 cm/cm3

(Barraclough et al. 1989, Gregory and Brown 1989) for potential
nitrate capture at lower depths in the rooting profile (Ford et al.
2006, Reynolds et al. 2007).
Genetic variation in root system size has been widely reported

in wheat (e.g. O’Toole and Bland 1987, Hoad et al. 2001,
Ehdaie and Waines 2003, Ford et al. 2006), but root distribution
varies strongly with soil characteristics, nutrient availability and
mechanical impedance. In wheat, the use of synthetic wheat
derivatives, incorporating genes from the diploid wild species
Triticum tauschii (D genome) with deeper rooting systems (Rey-
nolds et al. 2007), may help in the development of cultivars with
relatively deeper rooting systems. In addition, the wheat–rye
translocation in ‘Kavkaz’ for the short arm of chromosome 1
(1RS) has been observed to have increased root biomass at depth
(Ehdaie et al. 2003). And tall landraces from China and Iran
have larger root biomass than semi-dwarf cultivars descended
from CIMMYT breeding material (Ehdaie et al. 1991, Ehdaie
and Waines 1993, 1997, Ehdaie 1995). It may also be possible
to increase root length density at depth without extra carbon
input by modifying specific root length (root length per root bio-
mass; Carvalho et al. 2014). Although it is well established that
plants respond to N deficiency by increasing the ratio of root
biomass to total plant biomass (root dry weight ratio; RDWR)
due to the functional equilibrium between the growth of the root
and shoot (Barraclough et al. 1989, Dreccer et al. 2000,
Robinson 2001), there are to date no reports of genetic variation in
the dynamic responses of RDWR to N supply.
Direct selection for root system architecture traits (length, bio-

mass, density, lateral root dispersion) has been associated with
improved water and/or nutrient uptake in wheat (Hurd 1964),
upland rice (Price et al. 2002) and maize (Lynch 2007). Indirect
selection for lower canopy temperatures might also be taken as
an indication of a greater root uptake capacity, but higher stom-
atal conductance would produce a similar signal (Reynolds et al.
2009). Root hairs provide another potential mechanism to maxi-
mize N capture, and two genes for root hair elongation, RTH1
and RTH3, have been identified in maize (Hochholdinger and
Tuberosa 2009). Root architecture and root function are likely
to be multigenic and hence much more difficult to select for
(Hall and Richards 2013). Therefore, breeding for root charac-

teristics has seldom been implemented to date, principally
because of the difficulties of scoring root phenotypes directly
and the absence of suitable proxy measurements. Nevertheless,
marker-assisted selection may be especially useful to pyramid
multiple traits, such as root angle, root length, root weight and
root-to-shoot ratio, which are associated with main effect of
quantitative trait loci (QTL) in wheat (Sharma et al. 2011,
Hamada et al. 2012, Bai et al. 2013, Atkinson et al. 2015), even
if a better understanding of the biology of these traits and the
potential synergies and trade-offs between traits is required
(Lynch 2007). For example, the expression of length and den-
sity of root hairs may be synergistic (Ma et al. 2001), and there
may be antagonistic interactions between biomass allocation to
different root classes due to competition for assimilates (Walk
et al. 2006).

Root N transporter systems

In most countries, the commercial mineral forms of N commonly
applied to crops are anhydrous ammonia, urea, ammonium sul-
phate and ammonium nitrate (Robertson and Vitousek 2009,
Andrews et al. 2013). In addition, farmyard manure is also able
to supply a considerable amount of N fertilization (Hooda et al.
2000, K€orschens et al. 2013). Mineral N fertilizers are particu-
larly soluble for easy assimilation by crops. Both urea and
ammonia are converted to nitrate (NO3

�) at different rates
depending on the nature of the soil and of the climatic condi-
tions (Jarvis et al. 2011). Thus, NO3

� is the main source of N
for most crop species, whether inorganic or organic N is pro-
vided to the plant (Nasholm et al. 2009, Gioseffi et al. 2012).
Ammonium (NH4

+) is the ultimate form of inorganic N avail-
able to the plant. Most of the NH4

+ incorporated by the plant into
organic molecules originates from NO3

� reduction, although
metabolic pathways such as photorespiration, phenylpropanoid
metabolism, utilization of N transport compounds and amino acid
catabolism can generate NH4

+ (Lea and Miflin 2011). In cultivated
soil, NH4

+ concentration is generally ten times lower than NO3
�

concentration (Nieder et al. 2011), but substantial amounts of
ammonium (NH4

+) can remain despite active nitrification by soil
microorganisms. Both NO3

- and NH4
+ enter the root apoplast

mostly by diffusion or mass flow, respectively (Crawford and
Glass 1998). Then, there are taken up via an active transport sys-
tem by means of proteins termed high- and low-affinity trans-
porters and located in the root cell plasma membrane (Loqu�e and
von Wir�en 2004, Glass 2009, Dechorgnat et al. 2011).
In higher plants, there are basically three different NO3

� trans-
port systems that operate depending on the NO3

� concentration
in the surrounding root environment. The first one is an induci-
ble high-affinity transport system (iHATS) that is induced in the
presence of low concentration of NO3

� in the range of 1 to
200 lM depending on the plant species (Pace and McClure
1986, Siddiqi et al. 1990). In wheat, it was reported that the
iHATS has a Michaelis constant (Km) value of approximately
27 lM and requires 10 h for full induction by NO3

� (Goyal and
Huffaker 1986). The second one is a constitutively expressed
high-affinity transport system (cHATS) that is present even in
the absence of NO3

�. Both systems exhibit a typical Michaelis–
Menten saturation profile when the external NO3

� concentration
reaches a certain threshold. The third one is represented by a
non-saturable low-affinity transport system (LATS) that domi-
nates when NO3

� in the external medium exceeds 250 lM,
operating in the 0.5–1 mM concentration range (Siddiqi et al.
1990, Von Wir�en et al. 1997).
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Recent studies showed that NO3
� transport systems can also

play versatile roles in sensing NO3
� in plant development,

pathogen defence and stress response (Wang et al. 2012a).
Although NH4

+ ions can be passively taken up by plant roots,
different root NH4

+ transporter systems (Ludewig et al. 2007)
allow the direct uptake of NH4

+ ions and operate across a wide
range of NH4

+ concentrations (Loqu�e and von Wir�en 2004).
However, it is likely that in agricultural soils, NH4

+ uptake oper-
ates mainly through the low-affinity transport system (LATS),
which is part of the NH4

+ permeases in the ammonium trans-
porter/methylammonium permeases/Rhesus (AMT/MEP/Rh)
family (Von Wir�en and Merrick 2004). The Km values for NH4

+

influx in different species range between 1 and 200 lM (Bradley
and Morris 1991, Wang et al. 1993), fitting with the average
NH4

+ soil concentration, which rarely rises beyond 50 lM
(Marshner 1995). In wheat, it was reported that the iHATS has a
Km value of approximately 50 lM and requires 6 h for full
induction by NH4

+ (Goyal and Huffaker 1986).
NO3

� transporters in higher plants are represented by two
main gene families, namely the NRT1 PTR (nitrate transporter,
peptide transporter) family (NPF), which now regroups the pre-
vious NRT1/PTR genes, and the NRT2 family also called the
major facilitator superfamily (MFS; L�eran et al. 2014). An excel-
lent review describing the different members of the NO3

� and
NH4

+ transporters and the regulatory mechanisms affecting root
N-uptake systems, especially on the model species Arabidopsis,
has recently been published by Nacry et al. (2013). This review
emphasizes that expression and activity of most N-uptake sys-
tems are regulated both by the concentration of their substrate
and by a systemic feedback control of metabolites representative
of the whole-plant N status. In cereals in general and wheat in
particular, there is far less information on root NO3

� and NH4
+

transport systems and their regulations. This is mainly because
most of the pioneer work was conducted using the model plant
Arabidopsis, due to the ease of obtaining mutants and transgenic
plants altered in the expression of the different NO3

� and NH4
+

transporters (Miller and Smith 1996, Von Wir�en and Merrick
2004, Miller et al. 2007, Garnett et al. 2009, Xu et al. 2012).
Nevertheless, gene structure and phylogeny of high- or low-
affinity transport systems have been studied in a number of grasses
including rice, maize, sorghum, Brachypodium and wheat (Yin
et al. 2007, Plett et al. 2010, Girin et al. 2014). Moreover, a com-
prehensive overview of the complex phylogeny and gene expres-
sion patterns of 16 members of the NPF family in wheat has been
recently published (Buchner and Hawkesford 2014). This study
highlighted the complex pattern of expression of the nitrate trans-
porters, mainly due to the presence of multiple co-orthologous
genes that are differentially expressed according to the plant tissue,
NO3

� availability and leaf senescence during the N assimilation
and N remobilization processes. In the wheat NO3

� HATS system,
earlier studies have also demonstrated that five genes (TaNRT2.1,
TaNRT2.2, TaNRT2.3, TaNAR2.1 and TaNAR2.2) are induced by
abscisic acid when NO3

� is not present (Cai et al. 2007). In con-
trast to the inhibitory effect of glutamine generally observed in
other species, glutamine was able to induce the expression of NRT2
genes in the absence of NO3

� (Cai et al. 2007).
In addition, it has also to be considered that under agronomic

conditions, both efficiency and the regulation of NO3
�-uptake

systems may be enhanced by the presence of mycorrhizal associ-
ations (Hawkins and George 2001), humic substances (Cacco
et al. 2000), allelopathic compounds such as coumarin (Abe-
navoli et al. 2001) and plant root growth-promoting bacteria
(Mantelin and Touraine 2004) or inhibited when the CO2 con-

centration is rising in the atmosphere (Bloom et al. 2014).
Therefore, when studying the genetic basic of inorganic N
uptake, environmental interactions must be taken into account
together with the capacity of the plant to capture and transport
NO3

� or NH4
+. This implies that in combination with modelling

approaches (Bertheloot et al. 2011), further research is required
to obtain an understanding of the regulation of the NO3

� and
NH4

+ HATS and LATS throughout the entire plant developmen-
tal process (Kong et al. 2013). It will also be necessary to evalu-
ate the contribution of direct NH4

+ uptake to the wheat N
economy, as the available information on the NH4

+ transport
systems at both the molecular and physiological levels remains
fragmentary in wheat (Causin and Barneix 1993, Søgaard et al.
2009) and in other cereals such as maize (Gu et al. 2013) and
rice (Gaur et al. 2012). However, for wheat that preferentially
uses NO3

� instead of NH4
+ as the main N source, an increase in

NH4
+ uptake may not be beneficial to the plant when the ion is

applied to the soil (Angus et al. 2014).
Another field of investigation is the use of urea as a synthetic

fertilizer in conventional agriculture (Andrews et al. 2013, Kara-
mos et al. 2014). Indeed, to date, urea is mainly used as a source
of N fertilizer (as converted forms through soil mineralization
after application) and the contribution of plant urea uptake and
metabolism as an intact molecule in a physiological and agricul-
tural context has not been thoroughly investigated. Nevertheless,
it is well known that plants possess leaf and root transporters to
absorb urea and can hydrolyse and use it very efficiently (Witte
2011). Two distinct transport processes for urea have been iden-
tified in rice exhibiting a linear or a Michaelis–Menten kinetics
(Wang et al. 2012b). Moreover, it is encouraging to note that
when a rice urea transporter was overexpressed in Arabidopsis, a
positive effect was observed both on urea uptake at low concen-
tration and on plant growth (Wang et al. 2012b). In wheat, com-
pared to other inorganic N sources, urea uptake was very low.
Moreover, its kinetics of uptake was difficult to measure (Crid-
dle et al. 1988). However, in some cases when applied at an
optimum timing after anthesis, an increase in grain protein con-
tent or yield has been observed (Gooding and Davies 1992,
Rawluk et al. 2000). More recently, in spring wheat, it has been
shown that seed yield and N uptake were generally greater with
polymer-coated urea than with urea alone (Malhi and Lemke
2013). Even if the efficiency of foliar application of urea in
wheat and other cereals remains questionable, it is attractive in
terms of environmental benefit. Thus, more research is required
both at physiological and at the molecular levels.

Interaction with micro-organisms

Plant roots, including those of wheat, release a variety of organic
substrates (e.g. organic acids and sugars), exudates and other rhi-
zodeposits (Nguyen 2003). This creates a particular fraction of
soil in contact with roots named rhizosphere and favourable to
the development of microorganisms. Plant rhizosphere is largely
colonized by soil microorganisms, at levels of typically 108 to
109 bacteria per gram of rhizosphere soil and 1 to 1.5 m of fun-
gal filaments per cm2 of root surface (Mo€enne-Loccoz et al.
2014). This microbial community contains a broad range of taxa
differing from bulk soil community due to the selective effects
of roots (Bu�ee et al. 2009). Some of them, including pathogens
as well as non-pathogenic microorganisms, may enter roots and
reside within intercellular space or even within plant cells (Behl
et al. 2012, Mo€enne-Loccoz et al. 2014). This also occurs in
wheat (Germida and Siciliano 2001).
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The composition and physiological activities of root-associated
microbial communities are influenced by many factors, such as
soil characteristics, farming practices, climatic conditions and
wheat genotypes (Mazzola et al. 2004). Indeed, rhizodeposition
can differ between wheat cultivars (Wu et al. 2001) leading to
differences in various aspects of the rhizosphere microbial ecol-
ogy (Germida and Siciliano 2001). Therefore, it would be of
prime interest to develop breeding strategies tailored both to sup-
press root pathogens and to promote root colonization by plant–
beneficial microbial partners (Hetrick et al. 1995, Lammerts van
Bueren et al. 2011), especially those with the potential to
enhance (i) N availability in the rhizosphere, (ii) root system and
architecture, (iii) systemic plant metabolism and (iv) microbial
phytoprotection (Fig. 1). This is all the more relevant because
breeding is typically carried out under optimal conditions. Thus,
phenotypic traits involved in interaction between plant and
growth-promoting rhizobacteria may have been neglected (Den
Herder et al. 2010).
Soil microorganisms in the rhizosphere are major players in

the availability of N for plant roots (Richardson et al. 2009). On
the one hand, N availability for roots may be reduced by micro-
bial competition as various soil bacteria and fungi use ammo-
nium and nitrate as N sources (Nelson and Mele 2006) and/or
transform nitrate to gaseous N by denitrification (Herold et al.
2012). Nevertheless, plants can limit denitrification by releasing
inhibitory secondary metabolites (Bardon et al. 2014), but so far
this property is not documented in cultivated cereals. Attempts
are currently made to introduce into wheat a chromosome of
Leymus racemosus, a wild relative of wheat, containing the abil-
ity for biological nitrification inhibition (Subbarao et al. 2007,
Ortiz et al. 2008). On the other hand, N availability is enhanced
by microbial mineralization of organic N yielding ammonium in
the rhizosphere. This entails the proliferation of bacterial and
fungal decomposers, as well as protozoan predators (Bonkowski
2004) and mycorrhizal fungi (Atul-Nayyar et al. 2009). In
wheat, this priming effect reaches higher levels at the flowering

stage (Cheng et al. 2003), and root colonization by mycorrhizal
fungi as well as positive mycorrhizal effects on plant nutrition
and yield is genotype dependent (reviewed in Behl et al. 2012).
N availability for roots is also improved by N fixation. Thus, the
community of N fixers (functional group) plays a key role for
plant N nutrition (Hsu and Buckley 2009). Unlike in legumes, in
wheat and in other cereals, conversion of N2 into NH3 does not
entail root-nodulating rhizobia, but it can be performed by other
non-nodulating N-fixing bacteria and part of the N fixed may be
acquired by the plant (Behl et al. 2012). N-fixing bacteria occur
naturally in soils including in the wheat rhizosphere (Nelson and
Mele 2006, Venieraki et al. 2011), and inoculation with N fixers
may enhance wheat yield (Kapulnik et al. 1987, Hungria et al.
2010, Behl et al. 2012, Neiverth et al. 2014). Their diversity and
activity fluctuate with both plant species (Perin et al. 2006, Rear-
don et al. 2014) and cultivar (Coelho et al. 2009) including in
wheat (Christiansen-Weniger et al. 1992, Manske et al. 2000,
Venieraki et al. 2011). For example, the N-fixing bacterium
Klebsiella pneumonia strain 342 can relieve N deficiency and
enhance plant N levels (Iniguez et al. 2004) depending on culti-
var (Manske et al. 2000).
Enhanced acquisition of water and mineral nutrients can be

expected if the root system colonizes soil more extensively.
Under in vitro conditions, wheat inoculation with rhizosphere
bacteria may enhance root number and/or length, as well as root
hair elongation (Dobbelaere et al. 1999, Combes-Meynet et al.
2011). These inoculation effects on root system architecture and
biomass have been also evidenced in soil-grown wheat (Baldani
and Baldani 2005, Veresoglou and Menexes 2010). Indeed,
many bacteria and fungi modify root system architecture by
manipulating plant hormonal balance, in particular by producing
phytohormones such as auxins (Ort�ız-Castro et al. 2009), cytoki-
nins (Cass�an et al. 2009, Moubayidin et al. 2009) or gib-
berellins. Gibberellins are produced by several rhizosphere
bacteria and fungi (Bottini et al. 2004), including wheat strains
(Upadhyay et al. 2009), thereby promoting primary root elonga-
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tion and lateral root extension. For example, the wheat bacterium
Azospirillum brasilense Sp245 synthesizes abscisic acid, which
modifies lateral root development, and inoculation resulted in
higher abscisic acid concentration in Arabidopsis (Cohen et al.
2008). Other root-branching signals especially 2,4-diacetylphlor-
oglucinol (Brazelton et al. 2008) and nitric oxide (Creus et al.
2005) may also be implicated, including in wheat (Pothier et al.
2008, Couillerot et al. 2011). Their effects appear to take place
via an auxin signal transduction pathway (Brazelton et al. 2008,
Molina-Favero et al. 2008). Microbial interference with ethylene
metabolism in roots may also be responsible for modifying
wheat root system architecture (Upadhyay et al. 2009) by a
direct microbial production of ethylene (Graham and Linderman
1980), or a reduction in ethylene concentration in plant roots by
the deamination of ethylene precursor 1-aminocyclopropane car-
boxylic acid (Prigent-Combaret et al. 2008), thereby diminishing
ethylene-mediated root growth repression (Glick 2005).
Microorganisms can induce systemic changes in plant physiol-

ogy. For instance, a wide range of Arabidopsis genes displayed
different expression levels upon inoculation with the plant-bene-
ficial bacterium Pseudomonas putida (Srivastava et al. 2012).
Microbial inoculation may also modify plant proteomic profiles
(Mathesius 2009) and metabolomics profiles, both for primary
metabolites (including rice shoot contents in amino acids; Curzi
et al. 2008) and for secondary metabolites in maize (Walker
et al. 2012) and wheat (Fester et al. 1999). There are also indica-
tions that some rhizosphere bacteria may directly affect N meta-
bolism in plants. Oil seed rape (Brassica napus L.) roots
inoculated with Achromobacter strain U80417 displayed
enhanced net influx rates of NO3

� (Bertrand et al. 2000). Added
to that, genes coding for two nitrate transporters (NRT2.5 and
NRT2.6) were expressed at higher levels in Arabidopsis upon
inoculation with Phyllobacterium brassicacearum STM196
(Mantelin et al. 2006). Tomato exposure to the bacterial metabo-
lite 2,4-diacetylphloroglucinol increased the net root efflux of
amino acids (Phillips et al. 2004). In wheat, nitrate reductase
activity of Azospirillum brasilense Sp245 inside roots is thought
to contribute to N assimilation (Baldani and Baldani 2005).
However, information is scarce, and relevance for wheat remains
to be further investigated.
A range of root-associated microorganisms promote plant

health, by inhibiting root pathogens and/or triggering systemic
induction of plant defence mechanisms (Couillerot et al. 2011,
Almario et al. 2013). For instance, wheat inoculation with the
bacterium Pseudomonas fluorescens Q8r1-96 resulted in culti-
var-dependent, defence-related transcript accumulation in roots
(Maketon et al. 2012). Thus, microbial phytoprotection effects
are also important to consider and investigate.

Traits Influencing N Utilization Efficiency
Nitrate assimilation

After being taken up by the roots, nitrate [NO3
�] is then reduced

to nitrite [NO2
�] in the cytosol through the reaction catalysed by

the enzyme nitrate reductase (NR; EC 1.7.1.1) using NAD(P)H
as electron donors. The NR enzyme represents the first step in
the pathway of NO3

� assimilation. The NR enzyme is positively
regulated by NO3

� and light at the transcriptional level and is
down-regulated at the post-transcriptional level by reversible
phosphorylation during the dark period (Kaiser et al. 2011). In
hexaploid wheat, two genes encoding NADH-NR have been
identified (Boisson et al. 2005). NO3

� reduction is followed by
the reduction of NO2

� to NH4
+ catalysed by the enzyme nitrite

reductase located in the plastids (NiR; EC 1.7.7.1; S�etif et al.
2009). NiR forms a complex with ferredoxin that provides elec-
trons for the reduction of NO3

� to NH4
+ (Sakakibara et al.

2012). NH4
+ is then incorporated into the amino acid glutamate

through the action of two enzymes. The first reaction catalysed
by the glutamine synthetase (GS; EC 6.3.1.2; Lea and Miflin
2011) is considered as the major route facilitating the incorpora-
tion of inorganic N into organic molecules in conjunction with
the second enzyme glutamate synthase (GOGAT; EC 1.4.7.1;
Suzuki and Knaff 2005), which recycles glutamate and incorpo-
rates C skeletons in the form of 2-oxoglutarate into the cycle.
Then, the amino acids glutamine and glutamate are used as
amino group donors to all the other N-containing molecules,
notably other amino acids used for storage, transport and protein
synthesis and to nucleotides used as basic molecules for RNA
and DNA synthesis (Lea and Miflin 2011, Fig. 2).
In higher plants, including wheat, several isoenzymic forms of

GS and GOGAT exist which are located in different cellular
compartments and differentially expressed in organs or cell types
according to the developmental stage. Indeed, the GS exists as a
cytosolic form (GS1) present in a variety of organs and tissues
such as roots, leaves, phloem cells, and a plastidic form (GS2) is
located in chloroplasts and in plastids of roots and etiolated tis-
sues. The relative proportions of GS1 and GS2 at protein level
vary within the organs of the same plant and between plant spe-
cies, each GS isoform playing a specific role in a given meta-
bolic process, such as photorespiratory ammonia assimilation,
nitrate reduction, N translocation and recycling (Lea and Miflin
2011). In wheat and other C3 cereals, both at the transcriptional
and at enzyme activity levels, GS2 predominates throughout the
entire plant developmental cycle, although its activity can
decrease by half after the flowering period. One GS1 isoenzyme
is constitutively expressed in the phloem, while others are gener-
ally induced in the cytosol of senescing leaves (Kichey et al.
2005, Christiansen and Gregersen 2014, Yamaya and Kusano
2014). Detailed analyses of gene expression and cellular local-
ization of the different wheat GS isoenzymes were performed in
developing and senescing leaves as well as in a number of repro-
ductive tissues (Kichey et al. 2005, Bernard et al. 2008). These
studies highlighted that the complex GS isoenzyme pattern of
expression was not only due to the hexaploid nature of the
wheat genome, but also to the morphological complexity of
leaves. In order to clarify the function of the different GS isoen-
zymes, a phylogenetic approach was taken, due to the lack of
mutants or transgenic plants. This allowed for the clustering of
the different genes encoding GS into different classes of biologi-
cal functions, which were not necessarily conserved between C3
and C4 cereals (Thomsen et al. 2014). In the same way,
GOGAT also exists in two forms that have specific roles during
primary N assimilation or N recycling. A ferredoxin-dependent
isoenzyme (Fd-GOGAT) is mainly involved, in conjunction with
GS2, in the reassimilation of photorespiratory ammonia. A pyri-
dine nucleotide-dependent isoenzyme (NADH-GOGAT; EC
1.4.1.14) is involved in the synthesis of glutamate in photosyn-
thetic and non-photosynthetic organs or tissues, to sustain plant
growth and development (Lea and Miflin 2011).
Glutamate can also be generated by the incorporation of

ammonia into 2-oxoglutarate by the glutamate dehydrogenase
(GDH; EC 1.4.1.2; Lea and Miflin 2011). However, a number
of experiments using 15N-labelling techniques and mutants defi-
cient in GS and GOGAT have demonstrated that over 95% of
the ammonia available to the plant is assimilated via the GS/
GOGAT pathway (Lea and Miflin 2011). Subsequently, it was

260 F. CORMIER , J . FOULKES , B. HIREL e t a l .



clearly shown that GDH operates in the direction of glutamate
deamination to provide organic acids, notably when the root and
leaf cells are carbon limited (Labboun et al. 2009, Fontaine et al.
2012). Recently, the hypothesis that GDH could play an impor-
tant role in controlling not only glutamate homeostasis (Forde
and Lea 2007, Labboun et al. 2009), but also the level of down-
stream and upstream carbon and N metabolites through the
changes in its hetero-hexameric structure, has been put forward
(Terc�e-Laforgue et al. 2013). This function, which may also
have a signalling role at the interface between C and N metabo-
lism, may be of importance when there is a shortage of C under
stress conditions or during several phases of plant growth and
development. Moreover, transgenic studies performed on a num-
ber of model and crop species (Terc�e-Laforgue et al. 2013) as
well as quantitative genetic approaches performed on maize
(Dubois et al. 2003) and wheat (Fontaine et al. 2009) strongly
suggest that the reaction catalysed by NAD(H)-GDH is involved
in the control of plant growth and productivity. Thus, further
research is required to validate the function of GDH in crops
such as wheat.
Over the last two decades, our knowledge of the various

pathways involved in the synthesis of amino acids, particularly
those derived from glutamate and glutamine, has been increased
through the use of mutant and transgenic plants in which amino
acid biosynthesis was altered. Amino acid biosynthesis is also
of major importance for cereal growth and productivity
(Howarth et al. 2008), and there are excellent reviews that
extensively describe the current knowledge of this complex
pathway and its regulation (e.g. Lea and Azevedo 2007,
McAllister et al. 2012).

Leaf and canopy photosynthesis per unit N

Up to 75% of N in wheat leaves is located in mesophyll cells
and is involved in photosynthetic processes, mainly as the
chloroplastidic enzyme Rubisco (Evans 1983). Thus, responses
in N-limited crops often include reductions in total leaf area, leaf
expansion and duration, leaf N and chlorophyll content, leaf
stomatal conductance and photosynthesis per unit of leaf area
(Sylvester-Bradley et al. 1990, Monneveux et al. 2005). These
responses reduce radiation interception and radiation-use effi-
ciency (above-ground biomass per unit radiation interception;
RUE) and hence biomass (Foulkes et al. 2009) and yield.
Canopy and leaf processes affecting photosynthesis per unit of N
uptake include (i) radiation interception per unit of N uptake, (ii)
optimizing vertical N distribution in relation to light in the
canopy and (iii) leaf photosynthesis per unit of leaf N.
For a radiation interception of 95%, assuming a light extinc-

tion coefficient (K) value of 0.5, a green area index (green
canopy area per unit of ground area; GAI) of 6 is required.
Indeed,

K ¼ � lnðI=IoÞ=L;

where Io is the incident radiation and I is the amount of radia-
tion not intercepted by a canopy having a GAI = L.
At anthesis, modern wheat cultivars produce canopies with

GAI values around 6 and hence achieve full interception at this
stage (e.g. Moreau et al. 2012, Gaju et al. 2014). The only real-
istic way to increase fractional interception in the pre-anthesis
phase is to increase fractional interception at the start of the stem
elongation phase. However, in wheat, it is already around 60–
70% (Shearman et al. 2005, Moreau et al. 2012). Thus, only
marginal improvement seems possible. Physiological avenues for
increasing fractional interception specifically under low N supply
may be possible through an increased specific leaf N area (leaf
area per unit leaf N; SLN) and/or a higher light extinction coeffi-
cient. Genetic variation in SLN has been associated with embryo
size (L�opez-Casta~neda et al. 1996) and earlier canopy closure
(Rebetzke and Richards 1999). The light extinction coefficient is
mainly influenced by leaf angle. For modern wheat cultivars,
light extinction is approximately 0.55 for photosynthetically
active radiation (Thorne et al. 1988, Abbate et al. 1998, Moreau
et al. 2012). These values are associated with semi-erect to erect
leaf angles, which help to reduce light saturation in the upper
canopy leaves boosting RUE. A higher value of K seems unli-
kely to be desirable due to the trade-off with RUE. Although
desirable, more prostrate leaves during early vegetative growth
and more upright leaves during later vegetative growth may be
difficult to achieve in practice. In summary, although genetic
gains in radiation interception per unit of N uptake may be pos-
sible during stem elongation, these gains seem likely to be
small.
N distribution in canopies in relation to light attenuation also

affects photosynthesis per unit of N uptake. Considering that the
leaf N gradient is ‘optimal’ in accordance with the ‘optimization
theory’ (Field 1983, Hirose and Werger 1987, Anten et al. 1995,
Moreau et al. 2012), theoretical studies indicated that leaf N
maximizes canopy photosynthesis when it parallels the light gra-
dient, that is when the light (KL) and N (KN) extinction coeffi-
cients are equal. In wheat, observed N gradients are generally
less steep than predicted with the ‘optimization theory’; how-
ever, they do demonstrate that SLN follows an exponential gra-
dient with vertical depth in the canopy (Critchley 2001, Pask
2009, Moreau et al. 2012). Possible reasons for this discrepancy
have been discussed in detail by Kull (2002). There is relatively
little information on genetic diversity in the vertical distribution
of N in relation to light in the canopy. Nevertheless, Bertheloot
et al. (2008) demonstrated with two French winter wheat culti-
vars (Apache and Isengrain) that the vertical distribution of N
at anthesis was close to the optimum, as defined in the
‘optimization theory’, and only differed significantly at the end
of grain filling. Similarly, genetic differences were not found for
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five spring wheat genotypes grown in the Netherlands (Bindra-
ban 1999). Moreau et al. (2012) analysed the vertical distribution
of leaf N and light at anthesis for 16 wheat cultivars experi-
mented in field trials in France and the United Kingdom (UK) in
two seasons under two N levels. The N extinction coefficient
with respect to light (KN: KL) varied with N supply and cultivar.
A scaling relationship was observed between (KN: KL) and the
size of the canopy for all the cultivars in the different environ-
mental conditions. Interestingly, the scaling coefficient of the
(KN: KL – green area) index relationship differed among culti-
vars, suggesting that cultivars could be more or less adapted to
low N environments.
Photosynthesis rate per unit of N affects NUtE. In C3 cereals

such as wheat, the net light-saturated rate of leaf photosynthesis
(Amax) typically increases to 20–30 lmol CO2/m

2/s at leaf N con-
centrations of 2 g N/m2. Assuming an asymptotic relationship
between Amax and leaf N concentration (Evans 1983, Sinclair and
Horie 1989), there may be scope to decrease SLN while maintain-
ing Amax. Indeed, because leaves of modern wheat genotypes typ-
ically accumulate more than 2.0 g N/m2 under favourable
conditions (Critchley 2001, Pask et al. 2012), NUtE could be
increased by selecting for lower specific leaf N (leaf N content per
unit leaf area; SLN) to decrease the transient ‘storage’ N compo-
nents of leaves. A sensitivity analysis using the wheat Sirius crop
model predicted that decreasing SLN in the range of 1–2 g/m2

increased NUE by 10–15% when N was limiting (Semenov et al.
2007). However, under well-fertilized conditions, decreasing SLN
below 2 g/m2 may not be beneficial because the SLN required for
maximal RUE in field-grown winter wheat in the UK and New
Zealand was estimated to be 2.1 g/m2 (Pask et al. 2012). Alterna-
tively, increasing SLN above current values of 2–3 g/m2 seems
unlikely to be advantageous overall for NUtE as leaves may oper-
ate well below light saturation in the canopy (Reynolds et al.
2000), mesophyll cell size, leaf size and light interception may be
reduced (Austin et al. 1982) and many chloroplasts may end up in
a light-limited state due to intraleaf shading in thick leaves.
Genetic variability in SLN amounts to 1.4–2.6 g/m2 for 144
durum wheat genotypes (Araus et al. 1997), 2.1–2.4 g/m2 for 17
durum wheat cultivars (Giunta et al. 2002) and 1.4–2.2 g/m2 for
16 bread wheat cultivars (mean over a high and low N treatment,
Moreau et al. 2012). SLN heritability in wheat is largely unknown.
However, it is encouraging that the heritability for straw (leaf lam-
ina, leaf sheath and stem) N at anthesis for winter wheat was
>0.60 under low N (Laperche et al. 2006b), indicating that selec-
tion should be possible.
Rubisco catalyses a wasteful reaction with oxygen that leads

to the release of previously fixed CO2 and NH3 and the con-
sumption of energy during photorespiration. Consequently, at the
metabolic level, there are several avenues to increase photosyn-
thetic efficiency. These include (i) relaxing the photo-protected
state more rapidly, (ii) reducing photorespiration through ribu-
lose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) with
decreased oxygenase activity, (iii) improving Rubisco activity,
(iv) faster regeneration of ribulose-1,5-bisphosphate (RuBP) and
(v) introducing carbon-concentrating mechanisms associated with
C4 photochemistry into C3 plants (see recent reviews by Rey-
nolds et al. 2000, Parry et al. 2003, 2011, Long et al. 2006,
Murchie et al. 2009, Zhu et al. 2010). These strategies all
require modification of the photosynthetic components, which
can only be achieved through genetic manipulation. Potential
improvements in C3 cereals available from reduced photorespira-
tion were estimated around 30% and those from other mecha-
nisms in the 15–22% range (Long et al. 2006).

Alternatively, it may be possible to increase Amax by decreas-
ing respiration in crops, although this has received less attention
than photosynthesis partly due to difficulties in measurement.
Respiration may consume 30% to 80% of the carbon fixed
(Atkin et al. 2005) and is commonly divided into growth and
maintenance components, each exerting differing effects. Respi-
ration, increasing with temperature and depending on phenologi-
cal stage (McCullough and Hunt 1993, Foulkes and Murchie
2011), may be positively but nonlinearly related to photosynthe-
sis. High respiration rates (especially at night) can increase reac-
tive oxygen species, leading to cell damage and affecting pollen
viability (Prasad et al. 1999). Recent work highlighting the
importance of increased night-time temperature with climate
change on productivity in wheat (Tester and Langridge 2010,
Lizana and Calderini 2013) and the high sensitivity of respiration
to temperature in general suggests that the environmental
responses of crop respiration to temperature changes is an impor-
tant area on which to focus.

Post-anthesis N remobilization and senescence dynamics

In wheat, 35–42% of the N in the above-ground crop at anthesis
is in the leaf lamina, 14–20% in the leaf sheath, 20–31% in the
true stem and 16–23% in the ear under optimal N supply (Pask
et al. 2012, Barraclough et al. 2014, Gaju et al. 2014). Under
low N conditions, the proportion of the N in the ear increases
relative to that in the other plant components (Barraclough et al.
2014, Gaju et al. 2014). In field experiments in the UK and
New Zealand, on winter wheat, the accumulation and remobiliza-
tion of structural, photosynthetic and reserve N was estimated in
crop components under high N and low N conditions (Pask et al.
2012). At anthesis, reserve N accounted for 44% of above-
ground N in optimally fertilized crops and was principally
located in the true stem, but was observed in all crop compo-
nents in non-limiting fertilizer N treatments. The efficiency of
postanthesis N remobilization of true stem reserve N in the true
stem was low (48%) compared to the leaf sheath (61%) and leaf
lamina (76%), and in well-fertilized crops, significant quantities
of non-remobilized reserve N remained in true stem at harvest.
A high capacity to absorb N in the true stem before flowering

could theoretically favour a high maximum rate of N uptake and
hence higher NUpE (Foulkes et al. 2009). In addition, favouring
a greater capacity to store N in non-photosynthetic organs (i.e.
stem internodes) may enable the translocation of a larger amount
of N to grains without reducing plant photosynthetic capacity
(Bertheloot et al. 2008), although the respiratory cost of main-
taining a large non-photosynthetic pool of storage N is unclear.
In wheat, genetic variation in stem N content at anthesis is
reported (Tribo€ı and Ollier 1991, Critchley 2001, Pask 2009,
Barraclough et al. 2014, Gaju et al. 2014), as well as in postan-
thesis N remobilization efficiency from the stem (Kichey et al.
2007, Pask 2009, Gaju et al. 2014). In maize, studies reported
an early remobilization of N from the stem before the leaf lam-
ina (Beauchamp et al. 1976, Friedrich and Schrader 1979). Thus,
high stem N remobilization efficiency would potentially favour
high NUtE through delayed senescence of the leaf lamina.
‘Stay-green’ phenotype refers to the capacity of a genotype

to retain green leaf area for longer than a standard genotype
during grain filling (Thomas and Smart 1993). Although under
optimal conditions, wheat crops are, in general, little limited by
the assimilate supply during grain filling (Dreccer et al. 2000,
Borras et al. 2004, Calderini et al. 2006); under low to moder-
ate N fertilizer levels, there is evidence that yields can be
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limited by postanthesis assimilate supply (Bogard et al. 2011,
Gaju et al. 2011). ‘Stay-green’ phenotypes and broader genetic
variation in senescence have been reported in hexaploid wheat
(Silva et al. 2000, Verma et al. 2004, Joshi et al. 2007, Christo-
pher et al. 2008, Chen et al. 2010, 2011, Bogard et al. 2011,
Gaju et al. 2011, Derkx et al. 2012, Naruoka et al. 2012). N
dynamics are an important factor in the maintenance of green
leaf area in sorghum, with ‘stay-green’ in sorghum hybrids
linked to changes in the balance between N demand and supply
during grain filling resulting in a slower rate of N translocation
from the leaves to the grain (Borrell and Hammer 2000, Van
Oosterom et al. 2010a,b). The latter study showed that the
onset and rate of leaf senescence were explained by a supply–
demand framework for N dynamics, in which individual grain
N demand was sink-determined and was initially met through
N translocation from the stem and rachis, and then if these N
pools were insufficient, from leaf N translocation. A correlation
between postanthesis N remobilization efficiency and the onset
of the rapid phase of canopy senescence was reported under
low N conditions among 16 wheat varieties grown at sites in
the UK and France (Gaju et al. 2014). A transcription factor
(NAM-B1) accelerates senescence and increases N remobiliza-
tion from leaves to grains in wheat (Uauy et al. 2006). Candi-
date regulatory genes that were members of the WRKY and
NAC transcription factor families were related to senescence in
controlled environment conditions (Derkx et al. 2012). In a
winter wheat doubled-haploid mapping population, QTLs affect-
ing leaf senescence and grain yield and/or grain protein concen-
tration were identified associated with QTLs for anthesis date,
showing that the phenotypic correlations with leaf senescence
were mainly explained by flowering time influencing postanthe-
sis N availability (Bogard et al. 2011).
These results suggested that a better understanding of the

mechanisms determining postanthesis N remobilization and
senescence associated with environmental characterization, par-
ticularly on their N availability during the postanthesis period,
would offer scope to raise grain yield and/or grain protein con-
tent in wheat cultivars.

Optimizing grain protein concentration and composition

Structural and metabolic proteins are present in the starchy endo-
sperm cells of the grain, and the predominant protein fraction in
this tissue is the gluten storage proteins, comprising a mixture of
monomeric gliadins and polymeric glutenins. These groups of
proteins are present in approximately equal amounts and together
account for about 60–70% of the total N in the endosperm tis-
sue. The gluten proteins confer viscoelastic properties to dough
crucial for processing wheat into baked food such as bread, pasta
and noodles. A precise balance between gliadin and glutenin
proteins is also required, as glutenins are predominantly respon-
sible for dough elasticity (strength) required for bread making
and gliadins for dough viscosity and extensibility required for
making biscuits and cakes. The qualitative composition of the
grain protein is a genetic characteristic, caused in part by differ-
ences in protein synthetic capacity (Shewry and Halford 2002,
Ravel et al. 2009), while the rate, duration and grain protein
quantitative composition (i.e. the ratio between the different pro-
tein fractions; Martre et al. 2003) can be modified by environ-
mental conditions.
An inverse relationship exists between the grain protein con-

centration and grain yield (e.g. Kibite and Evans 1984, Sim-
monds 1995, Oury et al. 2003, Oury and Godin 2007, Bogard

et al. 2010), making the simultaneous genetic improvement of
yield quantity and bread-making quality a difficult task. The
physiological basis of this inverse relationship relates to compe-
tition between carbon and N for energy (Munier-Jolain and
Salon 2005) and an N dilution effect by carbon-based com-
pounds (Acreche and Slafer 2009). The grain protein deviation
(GPD) is the deviation from the regression between grain yield
and grain protein concentration (GPC). GPD can be used to
identify genotypes having higher GPC than expected from their
GY (Monaghan et al. 2001) and wheat lines that have a positive
GPD among groups of wheat lines (Oury et al. 2003, Bogard
et al. 2010, 2011). Genetic variability in GPD has been related
to postanthesis N uptake (Monaghan et al. 2001, Bogard et al.
2010, 2011), which is in part associated with anthesis date
(Bogard et al. 2011). Because the majority of grain N originates
from remobilization (Pask et al. 2012, Gaju et al. 2014), rather
than from postanthesis uptake, mechanisms to enhance reserve
N accumulation in the canopy and efficiency of N remobiliza-
tion should also be addressed in the genetic improvement of
GPD (Hakwesford 2014). This may be the case using the
already mentioned NAM-B1 allele (Uauy et al. 2006) that
increases N remobilization efficiency. An alternative to develop
high-quality and N-efficient wheat lines is to modify grain pro-
tein composition to maintain dough strength and elasticity
parameters with a lower GPC. In this sense, Guarda et al.
(2004) observed that grain quality of cultivars introduced in
Italy from 1900 to 1994 was increased although GPC was
decrease.
For wheat grown for feed, distilling and biofuel markets (high

ratio of starch to protein required), a higher NUtE will be associ-
ated with a lower GPC. The minimum GPC reported is in the
range 6.8–7.2% (Martre et al. 2006, Kindred et al. 2008, Bogard
et al. 2011), equivalent (assuming a conversion ratio of 5.7
between GPC and grain N %) to 1.2–1.3% grain N %. It is not
certain whether it is possible to decrease the % of N below as
there may be a minimum obligatory (approximately 1.5%; Sin-
clair and Amir 1992) for the synthesis of essential amino acids
and structural and metabolic proteins.

Phenotyping for NUE
Root phenotyping methods

The lack of high-throughput and large-scale phenotyping meth-
ods for root traits remains a bottleneck to gene discovery and
selection for such traits in breeding programmes (Fiorani and
Schurr 2013). Progress in root measurement methodology has
enhanced our ability to visualize, quantify and conceptualize root
system architecture traits and their relationship to plant produc-
tivity (Lynch 1995). However, laboratory screens have focused
mainly on seedlings, with seedlings growing on germination
paper or in growth pouches (e.g. Hund et al. 2009, Bai et al.
2013, Atkinson et al. 2015). Thus, although several screening
tests have been designed to generate accurate and robust data
from seedlings grown under artificial conditions, these pheno-
types have only rarely been extrapolated to field conditions,
partly because of the pronounced plasticity of root growth and
development processes. Laboratory-based methods can be limited
in their ability to reproduce field-like conditions (Passioura
2006, 2010, Poorter et al. 2012). For example, soil environment
9 genotype interactions significantly affect the root length of
wheat cultivars grown in sandy soil compared to agar plates
(Wojciechowski et al. 2009). Encouragingly, seedling root traits
based on paper-based germination screens were shown to be
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linked to mature plant traits such as height and yield in recent
studies on a Savannah 9 Rialto DH winter wheat population
(Atkinson et al. 2015); seedling root traits were associated with
plant height in a winter wheat Avalon 9 Cadenza DH popula-
tion (Bai et al. 2013). At an intermediate scale, the use of soil-
filled root observation chambers (rhizotrons or clear-pot) (e.g.
Lobet et al. 2011, Nagel et al. 2012, Richard et al. 2015) and
non-destructive digital imaging techniques offers some promises
(Manschadi et al. 2006, 2010), as X-ray computed tomography
(Gregory et al. 2003, Lontoc-Roy et al. 2006, Hargreaves et al.
2009, Mooney et al. 2012, Mairhofer et al. 2013), magnetic res-
onance imaging (Metzner et al. 2015) and mini-rhizotrons (Lon-
toc-Roy et al. 2006, MacFall and Johnson 2012, Poorter et al.
2012, Vamerali et al. 2012).
Field phenotyping methods for roots in cereals were reviewed

by Manske and Vlek (2002) and Polomski and Kuhn (2002),
including the use of rhizotrons, mini-rhizotrons and assessments
of root parameters from soil cores (root washing and root
counts/image analysis). There are two relatively high-throughput
field phenotyping techniques: the core break method (K€opke
1979) and shovelomics (Trachsel et al. 2011). In the core break
method, a root auger is used to take soil root cores from the
field, the cores are then broken transversely and the roots on
the exposed cross-sections counted (Manske et al. 2001). The
number of roots visible is then used to estimate root length
density and mass from established calibrations. A field study in
Australia on a range of genotypes (cultivars, near-isogenic lines
and recombinant inbred lines) by Wasson et al. (2014) indi-
cated that the core break method can directly identify the varia-
tion in deep root traits to speed up selection. Shovelomics
involves the excavation and visual scoring of crown roots
extracted from the field. Results in maize have been shown to
be well correlated with total plant depth and root system total
length (Trachsel et al. 2011). Finally, soil coring, root washing
and scanning have been successful in describing root system
architecture traits of adult plants in the field and in controlled
environment conditions and have been widely used as a stan-
dard technique to compare new methods against (Metzner et al.
2015). The measurement of the root system architecture traits
from images is carried out using appropriate software. The
most commonly used are the commercial WinRHIZO (Regent
Instruments, Quebec, Canada) and the public domain IMAGEJ

(Schneider et al. 2012).
The development of methods that measure changes in the root

DNA concentration in soil could eliminate the need for separa-
tion of roots from soil and permit large-scale phenotyping of
root genotypes and responses to environmental stresses in the
field (Huang et al. 2013).

Canopy phenotyping methods

A major limitation to improving yield and N stress tolerance
in wheat is obtaining high-throughput accurate phenotypes on
thousands of breeding lines. Promising technologies for high-
throughput field phenotyping include spectral reflectance to
estimate biomass, canopy size and N content. Spectral reflec-
tance indices (SRI) are based on the capacity of canopies to
absorb and reflect specific wavelengths of solar radiation
according to their structural and physiological characteristics.
Currently, the most widely applied SRI are based on the rela-
tive reflectance in the visible (400–700 nm) and in the near
infrared (700–1100 nm) due to the absorption of light by

chlorophyll and associated pigments [e.g. the normalized dif-
ference vegetation index (NDVI) (Araus et al. 2001)]. Using
ground-based spectroradiometers, SRI have been developed to
estimate crop biomass (Babar et al. 2006), green canopy area
(Aparicio et al. 2002), leaf chlorophyll (Babar et al. 2006),
‘stay-green’ (Lopes and Reynolds 2012), grain yield (Gutier-
rez-Rodriguez et al. 2004, Gutierrez et al. 2010a,b) and grain
protein content (Apan et al. 2006, Freeman et al. 2007). The
recent development of field-portable spectroradiometers measur-
ing wavelengths up to 2500 nm increases the capacity to phe-
notype wheat performance under N stress environments. In
this sense, associations have been established between SRI
measured during grain filling and grain yield and C isotope
discrimination of the grain (Lobos et al. 2014). The challenge
in the development of such techniques is to reach high-
throughput both for data acquisition and for processing as well
as to derive metrics that are meaningful with regard to canopy
structure and function.
Alongside spectral reflectance, promising remote-sensing tech-

nologies for field-based phenotyping include chlorophyll fluo-
rescence imaging to measure photosynthesis (Romer et al. 2011,
Murchie and Lawson 2013) and infrared thermometry as a
proxy for canopy photosynthesis (Olivares-Villegas et al. 2007,
Saint Pierre et al. 2010). To date, the latter has been mainly
applied under heat-stressed or water-stressed environments.
Another remote-sensing technique that is now being adopted for
field-based phenotyping in cereals to survey directly the 3D dis-
tribution of canopies is laser imaging detection and ranging
(Lidar). This technology provides accurate estimates of crop
height, cover, canopy structural properties (Lefsky et al. 2002,
Omasa et al. 2007, Hosoi and Omasa 2009), crop biomass and
N content (Eitel et al. 2014). Furthermore, laser scanning cou-
pled with fluorescence has potential to evaluate photosynthetic
performance (Romer et al. 2011). Additional techniques relevant
to NUE field-based phenotyping are stereo- and colour imaging
to determine canopy structure and ear density (Berger et al.
2010) and near infrared spectroscopy to measure protein and N
content using calibrations derived from N combustion analyses
(White et al. 2012). A full review of the above phenomics tech-
nologies is beyond the scope of this article. Fortunately, recent
reviews of such phenomics methodologies are available (Fur-
bank and Tester 2011, White et al. 2012, Araus and Cairns
2014).
Challenges that can limit the potential of ground-based sensor

platforms (e.g. tractor-mounted sensors, phenomobiles) include
the non-simultaneous measurement of different plots and vibra-
tions resulting from uneven field surfaces. Some of these limita-
tions can be addressed using high-resolution and low-altitude
aerial platforms such as small unmanned aerial vehicles. The
availability of unmanned aerial vehicles has rapidly increased in
recent years, and several types, ranging from multicopters and
helicopters to fixed wing, are now available (Lelong et al. 2008,
Zhang and Kovacs 2012, Araus and Cairns 2014). These aerial
platforms have an advantage over ground-based sensing plat-
forms in generating surface maps in real time and measuring
plant parameters from several plots at a time. However, high-
quality camera systems often still exceed the payload of avail-
able drones. Automation of data processing and difficulties in
the extraction of meaningful parameters are other reasons that
presently restrict fast methodological advances. Satellites plat-
forms, on the other hand, are currently limited by the frequency
of measurements and spatial resolution.
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Breeding for NUE
Estimation of genetic progress

Grain yield and the N demand to maximize yield evolved simul-
taneously (Guarda et al. 2004, Sylvester-Bradley and Kindred
2009), leading to an equal NUE of old and recent cultivars at
their respective N optimum (Sylvester-Bradley and Kindred
2009). But when old and recent varieties are compared in the
same N conditions, a significant genetic improvement of NUE
was measured in various studies at different N levels (Table 1).
Ortiz-Monasterio et al. (1997) reported an NUE genetic pro-

gress of +0.4–1.1% per year depending on the N levels in spring
CIMMYT varieties cultivated between 1962 and 1985. Sylve-
ster-Bradley and Kindred (2009) also reported a significant trend
between +0.35–0.58% per year comparing an old group of vari-
eties (1977–1987) to a recent one (2001–2007) at two N levels
(without N applied and with 200 kg/ha N applied). In the same
way, Cormier et al. (2013) estimated genetic progress at +0.30–
0.37% per year between 1985 and 2010 using 195 European
elite winter varieties at optimal and suboptimal N levels. Only
Muurinen et al. (2006), studying 17 spring wheat cultivars
released between 1901 and 2000, observed a poorly significant
genetic improvement of NUE (P = 0.055).
NUE is an integrative trait, and thus, its improvement could

be the result of modification on several components. An increase
in N harvest index (NHI) was assessed at +0.15% per year by
Brancourt-Hulmel et al. (2003) and at +0.12% per year by
Cormier et al. (2013). This improvement is independent of the
semi-dwarf allele introgressions (Gooding et al. 2012) and is
associated with a decrease in N content in straw at maturity
(Cormier et al. 2013). It may result from a better translocation
(portion of N absorbed after anthesis and allocated to the grain)
and/or a better N remobilization. In summary, these results high-
lighted a breeding impact on N utilization. An increase in N
uptake was also observed (Ortiz-Monasterio et al. 1997, Guarda
et al. 2004, Sylvester-Bradley and Kindred 2009). Nevertheless,
this conclusion has to be balanced as Foulkes et al. (1998) who
studied in UK 27 cultivars released from 1969 to 1988 con-
cluded that at zero N input, N offtake in grain decreased. More-
over, Cormier et al. (2013) could not conclude on this point due
to a genetic variance for N uptake that was too low in a variety
panel of 214 recent European elites.
To conclude, both N uptake and N utilization may have been

increased by breeding with a relative efficiency affected by the
N levels (Ortiz-Monasterio et al. 1997, Le Gouis et al. 2000).
We should point out that this improvement is an indirect effect
of breeding for grain yield at a constant N level as no specific
targeted selection for NUE has been conducted.

Impact of G 3 N interactions on direct/indirect selection
efficiency

In wheat, varieties are commonly selected and registered under
high N conditions. Thus, genetic progresses in low N condition
result from an indirect selection. Numerous studies detected sig-
nificant G 9 N interactions for agronomic traits (e.g. Ortiz-Mon-
asterio et al. 1997, Le Gouis et al. 2000, Laperche et al. 2006a,
Barraclough et al. 2010, Cormier et al. 2013), meaning that the
genetic values of varieties differ between N levels. Significance
of G 9 N interactions directly affects the correlations of genetic
values between N levels, and hence, the best varieties at high N
may not be the best at low N. In other words, when G 9 N
interactions are significant, indirect selection efficiency (ISE) is
reduced. Nevertheless, selecting at high N for low N can be effi-
cient when heritabilities in high N are higher than in low N.
Indeed, a balance between the ability to select (heritabilities) and
the genetic correlation between the environment used to select
and the one where varieties will be tested is required. This bal-
ance is easy to understand when looking at the ISE formula (Fal-
coner and Mackay 1996):

ISE ¼ rG12 � h2=h1;

where varieties are tested in condition 1, but selected in condi-
tion 2; h1 and h2 are the respective square roots of the heritabil-
ity in the two conditions; and rG12 is the genetic correlation
between conditions, considering an equal selection intensity in
both conditions.
In wheat, studies reported both genetic variance decrease and

environmental variance increase at low N compared to HN.
Thus, heritabilities are usually lower under low N conditions
(Brancourt-Hulmel et al. 2005, Laperche et al. 2006a), and indi-
rect selection at high N can be an effective strategy to breed for
low N conditions. However, few studies directly quantified this
indirect selection efficiency (Brancourt-Hulmel et al. 2005,
Przystalski et al. 2008, Annicchiarico et al. 2010, Cormier et al.
2013, Sarcevic et al. 2014). These studies have to be compared
regarding N stresses and the number of genotypes used
(Table 2). Using 270 breeding lines tested during 2 years in the
same environment (northern France), Brancourt-Hulmel et al.
(2005) assessed an ISE of 0.65–0.99 for grain yield with an N
stress, which implied a mean yield reduction of 35% and genetic
correlations between 0.83 and 0.89. Cormier et al. (2013) tested
225 commercial varieties. Comparing high N and low N, the
mean yield reduction was 20% and traits heritabilities were stable.
Thus, ISE was mainly dependent on genetic correlation. For grain
yield, it was estimated at 0.78. For the other investigated
agronomic traits, ISE was between 0.25 and 0.99. The other stud-
ies used fewer genotypes. In Sarcevic et al. (2014), 19 varieties
were tested and yield reduction was only 10%, promoting high
genetic correlations. Moreover, genetic correlations were allowed

Table 1: Assessment of yearly percentage genetic gain in nitrogen-use
efficiency (NUE) from direct comparison of old and modern cultivars

Period Genotypes
N level
(kg N/ha)

NUE
(% per year) References

1962–1985 8 0 1.2 Ortiz-Monasterio
et al. (1997)75 0.4

150 0.6
300 0.9

1977–2007 24 0 0.35 Sylvester-Bradley
and Kindred
(2009)

200 0.58

1985–2010 195 150 0.37 Cormier
et al. (2013)250 0.30

Table 2: Efficiency of selection in high N environment for low N envi-
ronment (indirect selection efficiency – ISE) regarding yield reduction
between high and low N trials

Genotypes Yield reduction (%) ISE References

270 35 0.65–0.99 Brancourt-Hulmel
et al. (2005)

12-188 27 0.86–1.02 Przystalski et al. (2008)
225 20 0.78 Cormier et al. (2013)
19 10 1.04 Sarcevic et al. (2014)
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to exceed 1. In result, ISE for grain yield was high (1.04), as
for grain N yield (1.34) and most grain quality rheological
parameters (0.81–1.00). Using data sets from seven European
countries comparing organic and non-organic cropping systems,
Przystalski et al. (2008) found an ISE ranging from 0.86 to
1.02 for grain yield (calculated from the published results)
under a N stress inducing a mean yield reduction of 27%.
However, this result seems overestimated regarding the unbal-
anced data set and the number of varieties used. Annicchiarico
et al. (2010) studied three data sets containing 7, 11, and 13
genotypes under two production systems (organic and conven-
tional). Yield reduction ranged from 14% to 28% and ISE
ranged from 0.89 to 1.20 for grain yield, but there were no
consistent genotype 9 production system interactions, and/or
heritabilities in organic system were lower than in conventional
systems mostly due to higher experimental error.
When data set size is sufficient to properly estimate genetic

correlation and N stress is substantial, ISE for grain yield is
high, but may not exceed one. Consequently, regarding breeder
financial issues, indirect selection is efficient in moderate N
stresses, but it does not overpass direct selection in low N condi-
tions. This was already observed in maize (Zea mays), for which
selection under high N for performance under low N was pre-
dicted significantly less efficient than direct selection under low
N when the relative yield reduction due to N stress exceeded
43% (B€anziger et al. 1997). Concerning varieties recommenda-
tion, the approach is different as the goal is not to increase a trait
mean value but to advise wheat growers, and hence to predict
the top ranking varieties, meaning that we should focus on vari-
ety rankings between high N and low N conditions. Here again,
to apply results from high N to low N experiments is not an
easy task. Indeed, even with a high genetic correlation between
high N and low N conditions, the probability to predict the top
varieties in low N from high N ranking is low (0.55 for a
genetic correlation of 0.8 in the simulation study of Przystalski
et al. (2008)).

Molecular breeding

Molecular breeding can be defined as the use of molecular
information to develop new genotypes. This molecular informa-
tion can arise at different levels of the metabolic process: from
genes through proteins to metabolites. In complex traits such as
NUE, several regulation pathways occur at different levels (e.g.
transcription factor, post-transcriptional modification, allosteric
regulation). These pathways depend on N levels (Howarth et al.
2008, Ruuska et al. 2008, Wan et al. 2013), organs (Ruuska
et al. 2008), genotypes (Mcintyre et al. 2011, Tenea et al.
2012) and developmental stage (Ruuska et al. 2008, Wan et al.
2013). In the development of genetically modified crop, this
complexity makes promoter choice critical. Reviews of trans-
genic efforts to improve NUE in plant were published by
Pathak et al. (2011) and McAllister et al. (2012). Using the
example of research on alanine aminotransferase (AlaAT), a
successful transgenic approach to increase NUE in oil seed rape
(Good et al. 2007), in rice (Shrawat et al. 2008) and currently
tested in wheat, the authors concluded that enzymes and pro-
teins other than those involved in primary N uptake and
assimilation may be good targets, potentially due to less post-
transcriptional controls.
Indeed, it has been believed for a long time that due to their

strategic position along the N assimilatory pathway, NR, NiR,
GS and GOGAT enzymes were major checkpoints controlling

plant NUE. But, the first results of modifications of these genes
have not produced completely relevant NUE phenotypes. How-
ever, there is some evidence that increasing NR activity
improves NO2

� assimilation in Arabidopsis (Takahashi et al.
2001). Moreover, it seems that wheat genotypes exhibiting a
higher NR activity have a greater potential for N utilization
under non-limiting N supply with a well-coordinated system of
N uptake and assimilation (Vouillot et al. 1996, Anjana et al.
2011). Recently, it was reported that overexpression of a tobacco
NR gene in wheat increased the seed protein content, without
the need for increased N fertilization (Zhao et al. 2013). Such an
interesting finding could rekindle the possibility of using NR as
a breeding target to improve wheat NUE, yield and grain
quality.
Indirect evidence of the role of the GS enzyme in the control

of NUE was also provided in wheat through correlation studies
that suggested that the leaf enzyme activity could be used as a
marker to monitor plant N status (Kichey et al. 2007). In addi-
tion, a number of quantitative trait loci (QTL) related to grain
yield and grain protein content colocalizing with structural genes
encoding either cytosolic GS1 (Habash et al. 2007, Fontaine
et al. 2009, Guo et al. 2012, Gadaleta et al. 2014) or plastidic
GS2 (Gadaleta et al. 2011, Bordes et al. 2013) were identified.
However, functional validation of these candidate genes will be
necessary to demonstrate their impact on wheat productivity
(Swarbeck et al. 2011).
Following the discovery that in rice mutants deficient in one

of the two forms of NADH-GOGAT there was a considerable
reduction in spikelet number (see Yamaya and Kusano 2014 for
a review), studies on the wheat enzyme were also undertaken.
Based on a quantitative genetic study in which colocalization
between QTL for NUE and NADH-GOGAT was observed (Qur-
aishi et al. 2011), it was proposed that in wheat and in other
cereals, this gene could be used to improve grain filling either
using genetic manipulation or by selecting the best alleles (Salse
et al. 2013). In durum wheat, it was also found that there is a
strong correlation between NADH-GOGAT gene expression and
grain protein content (Nigro et al. 2013), thus indicating that
unlike in a C4 plant such as maize (Martin et al. 2006), it is not
cytosolic GS1, but NADH-GOGAT that is one of the major
checkpoints controlling NUE in C3 cereals. Such a finding rein-
forces the current concept that NUE control may be specific,
depending not only on the species examined but also on the
genetic variability within the species (Hirel et al. 2007, Simons
et al. 2014).
Regarding marker-assisted selection, to deal with N pathway

complexity of regulation, the easiest screening might be based
on protein or metabolite. Kusano et al. (2011) wrote a good
review on metabolic approaches focusing on N metabolism. In
wheat, Howarth et al. (2008) assessed the impact of N supply on
amino acid content during senescence. Moreover, various pro-
teomic studies were performed at different growing stages and
organs (Bahrman et al. 2004a,b, 2005, Altenbach et al. 2011,
T�etard-Jones et al. 2013). Nevertheless, these approaches are
limited to the exploration of a narrow genetic diversity
(Table 3). In fact, due to affordable cost (time and price), most
molecular information available is at the genome level as genetic
molecular markers. This information was used in association
mapping studies on NUE-related traits (Table 4) mostly using
biparental design such as doubled haploids (DH) populations
(An et al. 2006, Laperche et al. 2006a,b, 2007, 2008, Habash
et al. 2007, Fontaine et al. 2009, Li et al. 2010, Zheng et al.
2010, Bogard et al. 2011, 2013) or recombinant inbred line
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(RIL) populations (Garcia-Suarez et al. 2010, Li et al. 2010,
Guo et al. 2012, Sun et al. 2013, Xu et al. 2013). Three studies
covered a broader genetic diversity (Li et al. 2010, Bordes et al.
2013, Cormier et al. 2014) using large association panels. Dis-
covering QTL colocalizing with known N uptake or assimilation
enzymes and new QTL, these studies provided novel insights on
NUE genetic determinism.
Nevertheless, several difficulties persist in order to implement

this knowledge in breeding, as NUE and its related traits
appeared highly polygenic and genetic background specific.
Thus, several loci with small effects should be pyramided. As
the volume of genotyping information is increasing with the
recent development of several wheat SNP arrays (90K, Wang
et al. 2014; 420K, 670K, and 820K), genomic prediction meth-
ods may overpass these limitations and facilitate breeding. How-
ever, until now, these methods are still at a developmental stage.
Indeed, G 9 N interactions and more generally G 9 E interac-
tions remain major trade-offs in marker-assisted selection aiming
to develop new genotypes adapted to a broad range of environ-
ments and N levels.

Exploiting heterosis

F1 hybrid wheat cultivars have been regularly registered in Cen-
tral Europe, which represents more than half of the world’s
hybrid wheat production (Longin et al. 2012). Commercial
hybrids may be produced with chemical hybridizing agents,
which induce male sterility when applied at the right stage, but
also based on photoperiod sensitivity or on cytoplasmic male
sterility. Limits to the use of F1 hybrids are the cost of the seed,
related to the difficulty to produce them on a regular basis, cou-
pled with the absence of high heterosis for yield.
However, hybrids may show particular characteristics for abi-

otic stress tolerance and NUE. Limited but consistent best parent
heterosis has been reported for grain yield under high yielding
conditions, for example +4.3% for 10 hybrids (Borghi et al.
1988), +7.3% for 17 hybrids (Brears et al. 1988), +3.6% for 430
hybrids (Morgan et al. 1989) in experiments conducted in field
plots. On average, in Europe, in five studies, Longin et al.
(2012) reported mid-parent heterosis around 10%, ranging from
3.5% to 15.0%. It was also reported that the hybrids are more
stable than pure lines (M€uhleisen et al. 2014), indicating a
higher tolerance to abiotic stresses.
Perezin et al. (1998) and Oury et al. (1994, 1995) reported

either a higher grain protein content of the hybrids for the
same yield or the same protein content despite a higher grain
yield. These results suggest a higher NUE and N uptake for
hybrids compared to pure lines. Some studies also showed
that best parent heterosis was higher at low N level than at
high N level (Le Gouis and Pluchard 1996, Le Gouis et al.
2002). This was, however, not confirmed by Kindred and
Gooding (2005) who used four commercial hybrids and
observed a significant heterosis only at high N level. Le
Gouis et al. (2002) observed a best parent heterosis for total
N at anthesis and harvest, meaning a better N uptake, while
Kindred and Gooding (2004) reported only little heterosis for
total above-ground N, but an increased N utilization effi-
ciency. Mid-parent heterosis for N uptake at flowering and
maturity could be related to a more efficient root system.
Indeed, heterosis was shown for different root characteristics
such as root length, root dry matter and root surface area
(Kraljevic-Balalic et al. 1988, Wang et al. 2006).

Conclusion
NUE is complex and is determined by a wide diversity of physi-
ological traits. Consequently, breeding for enhanced NUE can be
achieved through selection on several components. However,
compensations and regulations are numerous and dependent on
the N regimes, genotypes and developmental stage, leading to
difficulties to create efficient NUE phenotypes. Nevertheless,
‘omics and association studies’ provided interesting results
allowing to prioritize routes for improvement. Moreover, high-
throughput genotyping combined with the development of high-
throughput phenotyping methods will accelerate research in a
wide diversity of environments and genotypes.
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B€anziger, M., F. J. Betran, and H. R. Lafite, 1997: Efficiency of high-
nitrogen selection environments for improving maize for low-nitrogen
target environments. Crop Sci. 37, 1103—1109.

Bardon, C., F. Piola, F. Bellvert, F. Z. Haichar, G. Comte, G. Meiffren,
T. Pommier, S. Puijalon, N. Tsafack, and F. Poly, 2014: Evidence for
biological denitrification inhibition (BDI) by plant secondary metabo-
lites. New Phytol. 204, 62—630.

Barraclough, P. B., H. Kuhlmann, and A. H. Weir, 1989: The effects of
prolonged drought and nitrogen fertiliser on root and shoot growth and
water uptake by winter wheat. J. Agron. Crop Sci. 163, 352—360.

Barraclough, P. B., J. R. Howarth, J. Jones, R. Lopez-Bellido, S. Parmar,
C. E. Shepherd, and M. J. Hawkesford, 2010: Nitrogen efficiency of
wheat: genotypic and environmental variation and prospects for
improvement. Eur. J. Agron. 33, 1—11.

Barraclough, P. B., R. Lopez-Bellido, and M. J. Hawkesford, 2014: Geno-
typic variation in the uptake, partitioning and remobilisation of nitrogen
during grain-filling in wheat. Field Crops Res. 156, 242—248.

Beauchamp, E. G., L. W. Kannenberg, and R. B. Hunter, 1976: Nitrogen
accumulation and translocation in corn genotypes following silking.
Agron. J. 68, 418—422.

Behl, R. K., S. Ruppel, E. Kothe, and N. Narula, 2012: Wheat 9 Azoto-
bacter 9 VA Mycorrhiza interactions towards plant nutrition and
growth – a review. J. Appl. Bot. Food Qual. 81, 95—109.

Berendse, F., and R. Aerts, 1987: Nitrogen use efficiency: a biologically
meaningful definition? Funct. Ecol. 1, 293—296.

Berger, B., B. Parent, and M. Tester, 2010: High-throughput shoot imag-
ing to study drought responses. J. Exp. Bot. 61, 3519—3528.

Bernard, S. M., A. L. Møller, G. Dionisio, T. Kichey, T. P. Jahn, F.
Dubois, M. Baudo, M. S. Lopes, T. Terc�e-Laforgue, C. H. Foyer, M.
A. Parry, B. G. Forde, J. L. Araus, B. Hirel, J. K. Schjoerring, and D.
Z. Habash, 2008: Gene expression, cellular localisation and function
of glutamine synthetase isozymes in wheat (Triticum aestivum L.).
Plant Mol. Biol. 67, 89—105.

Bertheloot, J., P. Martre, and B. Andrieu, 2008: Dynamics 1 of light and
nitrogen distribution during grain filling within wheat canopy. Plant
Physiol. 148, 1707—1720.

Bertheloot, J., P. H. Courn�ede, and B. Andrieu, 2011: NEMA, a func-
tional–structural model of nitrogen economy within wheat culms after
flowering. I. Model description. Ann. Bot. 108, 1085—1096.

Bertrand, H., C. Plassard, X. Pinochet, B. Touraine, P. Normand, and J.
C. Cleyet-Marel, 2000: Stimulation of the ionic transport system in
Brassica napus by a plant growth-promoting rhizobacterium (Achro-
mobacter sp.). Can. J. Microbiol. 46, 229—236.

Bindraban, P. S., 1999: Impact of canopy nitrogen profile in wheat on
growth. Field Crops Res. 63, 63—77.

Bingham, I., A. Karley, P. White, W. Thomas, and J. Russell, 2012:
Analysis of improvements in nitrogen use efficiency associated with
75 years of spring barley breeding. Eur. J. Agron. 42, 49—58.

Bloom, A. J., M. Burger, B. A. Kimball, and P. Pinter Jr, 2014: Nitrate
assimilation is inhibited by elevated CO2 in field grown wheat. Nat.
Clim. Chang. 4, 477—480.

Blum, A., 2009: Effective use of water (EUW) and not water-use effi-
ciency (WUE) is the target of crop yield improvement under drought
stress. Field Crops Res. 112, 119—123.

Bogard, M., V. Allard, M. Brancourt-Hulmel, E. Heumez, J. M. Machet,
M. H. Jeuffroy, P. Gate, P. Martre, and J. Le Gouis, 2010: Deviation
from the grain protein concentration–grain yield negative relationship
is highly correlated to post-anthesis N uptake in winter wheat. J. Exp.
Bot. 61, 4303—4312.

Bogard, M., M. Jourdan, V. Allard, P. Martre, M. R. Perretant, C. Ravel,
E. Heumez, S. Orford, J. Snape, S. Griffiths, O. Gaju, J. Foulkes, and
J. Le Gouis, 2011: Anthesis date mainly explained correlations
between post-anthesis leaf senescence, grain yield, and grain protein
concentration in a winter wheat population segregating for flowering
time QTLs. J. Exp. Bot. 62, 3621—3636.

Bogard, M., V. Allard, P. Martre, E. Heumez, J. W. Snape, S. Griffiths,
O. Gaju, J. Foulkes, and J. Le Gouis, 2013: Identifying wheat genomic
regions for improving grain protein concentration independently of
grain yield using multiple inter-related populations. Mol. Breed. 31,
587—599.

Boisson, M., K. Mondon, V. Torney, N. Nicot, A. L. Laine, N. Bahrman,
A. Gouy, F. Daniel-Vedele, B. Hirel, P. Sourdille, M. Dardevet, C.
Ravel, and J. Le Gouis, 2005: Partial sequences of nitrogen metabolism
genes in hexaploid wheat. Theor. Appl. Genet. 110, 932—940.

Bonkowski, M., 2004: Protozoa and plant growth: the microbial loop in
soil revisited. New Phytol. 162, 617—631.

Bordes, J., C. Ravel, J. P. Jaubertie, B. Duperrier, O. Gardet, E. Heumez,
A. L. Pissavy, G. Charmet, J. Le Gouis, and F. Balfourrier, 2013: Geno-
mic regions associated with the nitrogen limitation response revealed in
a global wheat core collection. Theor. Appl. Genet. 126, 805—822.

Borghi, B., M. Perenzin, and R. J. Nash, 1988: Agronomic and qualita-
tive characteristics of ten bread wheat hybrids produced using a chemi-
cal hybridizing agent. Euphytica 39, 185—194.

A review for increased wheat nitrogen use efficiency 269



Borras, L., G. A. Slafer, and M. E. Otegui, 2004: Seed dry weight
response to source–sink manipulations in wheat, maize and soybean: a
quantitative reappraisal. Field Crops Res. 86, 131—146.

Borrell, A. K., and G. L. Hammer, 2000: Nitrogen dynamics and the
physiological basis of stay-green in sorghum. Crop Sci. 40, 1295—
1307.

Bottini, R., F. Cass�an, and P. Piccoli, 2004: Gibberellin production by
bacteria and its involvement in plant growth promotion and yield
increase. Appl. Microbiol. Biotechnol. 65, 497—503.

Bradley, P. M., and J. T. Morris, 1991: The influence of salinity on the
kinetics of uptake in Spartina alterniflora. Oecologia 85, 375—380.

Brancourt-Hulmel, M., G. Doussinault, C. Lecomte, P. B�erard, B.
LeBuanec, and M. Trottet, 2003: Genetic improvement of agronomic
traits of winter wheat cultivars released in France from 1946 to 1992.
Crop Sci. 43, 37—45.

Brancourt-Hulmel, M., E. Heumez, P. Pluchard, D. Beghin, C. Depa-
tureaux, A. Giraud, and J. Le Gouis, 2005: Indirect versus direct selec-
tion of winter wheat for low input or high input levels. Crop Sci. 45,
1427—1431.

Brazelton, J. N., E. E. Pfeufer, T. A. Sweat, B. B. McSpadden Gardener,
and C. Coenen, 2008: 2,4-diacetylphloroglucinol alters plant root
development. Mol. Plant Microbe Interact. 21, 1349—1358.

Brears, T., A. G. Hydon, and J. Bingham, 1988: An assessment of the
feasibility of producing F1 and F2 hybrids for the UK. Proc 7th Int
Wheat Genet Symp, 1057—1062.

Buchner, P., and M. J. Hawkesford, 2014: Complex phylogeny and gene
expression patterns of members of the NITRATE TRANSPORTER1/
PEPTIDE TRANSPORTER family (NPF) in wheat. J. Exp. Bot. 65,
5697—57101.

Bu�ee, M., W. De Boer, F. Martin, L. van Overbeek, and E. Jurkevitch,
2009: The rhizosphere zoo: an overview of plant-associated commu-
nities of microorganisms, including phages, bacteria, archaea,
and fungi, and of some of their structuring factors. Plant Soil 321,
189—212.

Cacco, G., E. Attin�a, A. Gelsomino, and M. Sidari, 2000: Effect of
nitrate and humic substances of different molecular size on kinetic
parameters of nitrate uptake in wheat seedlings. J. Plant Nutr. Soil Sci.
163, 313—320.

Cai, C., X. Q. Zhao, Y. G. Zhu, B. Li, Y. P. Tong, and Z. S. Li, 2007:
Regulation of the high-affinity nitrate transport system in wheat roots
by exogenous abscisic acid and glutamine. J. Integr. Plant Biol. 49,
1719—1725.

Calderini, D. F., M. P. Reynolds, and G. A. Slafer, 2006: Source–sink
effects on grain weight of bread wheat, durum wheat, and triticale at
different locations. Aust. J. Agric. Res. 57, 227—233.

Carvalho, P., and M. J. Foulkes, 2011: Roots and the uptake of water
and nutrients. In: R. A. Meyers (ed.), Encyclopedia of Sustainability
Science and Technology, 1390—1404. Springer, Heidelberg, Germany,
Chapter 195.

Carvalho, P., S. Azam-Ali, and M. J. Foulkes, 2014: Quantifying rela-
tionships between rooting traits and water uptake under drought in
Mediterranean barley and durum wheat. J. Integr. Plant Biol. 56, 455
—469.

Cass�an, F., D. Perrig, V. Sgroy, O. Masciarelli, C. Penna, and V. Luna,
2009: Azospirillum brasilense Az39 and Bradyrhizobium japonicum
E109, inoculated singly or in combination, promote seed germination
and early seedling growth in corn (Zea mays L.) and soybean (Glycine
max L.). Eur. J. Soil Biol. 45, 28—35.

Causin, H. F., and A. J. Barneix, 1993: Regulation of NH4+, uptake in
wheat plant: effect of root ammonium concentration and amino acids.
Plant Soil 151, 211—218.

Chen, J. B., Y. Liang, X. Y. Hu, X. X. Wang, F. Q. Tan, H. Q. Zhang,
Z. L. Ren, and P. G. Luo, 2010: Physiological characterization of ‘stay
green’ wheat cultivars during the grain filling stage under field grow-
ing conditions. Acta Physiol. Plant 32, 875—882.

Chen, C. C., G. Q. Han, H. Q. He, and M. Westcott, 2011: Yield, pro-
tein, and remobilization of water soluble carbohydrate and nitrogen of
three spring wheat cultivars as influenced by nitrogen input. Agron. J.
103, 786—795.

Cheng, W., D. W. Johnson, and S. Fu, 2003: Rhizosphere effects on
decomposition. Soil Sci. Soc. Am. J. 67, 1418—1427.

Christiansen, M. W., and P. L. Gregersen, 2014: Members of the barley
NAC transcription factor gene family show differential co-regulation
with senescence-associated genes during senescence of flag leaves. J.
Exp. Bot. 65, 4009—4022.

Christiansen-Weniger, C., A. F. Groneman, and J. A. van Veen, 1992:
Associative N2 fixation and root exudation of organic acids
from wheat cultivars of different aluminium tolerance. Plant Soil 139,
167—174.

Christopher, J. T., A. M. Manschadi, G. L. Hammer, and A. K. Borell,
2008: Developmental and physiological traits associated high yield
and stay-green phenotype in wheat. Aust. J. Agric. Res. 59, 354—364.

Coelho, M. R. R., I. E. Marriel, S. N. Jenkins, C. V. Lanyon, L. Seldin,
and A. G. O’Donnell, 2009: Molecular detection and quantification of
nifH gene sequences in the rhizosphere of sorghum (Sorghum bicolor)
sown with two levels of nitrogen fertilizer. Appl. Soil Ecol. 42, 48—
53.

Cohan, J. P., 2009: Prix des engrais azot�es: quels impacts sur les
c�er�eales? Perspectives Agricoles 352, 18—22.

Cohen, A. C., R. Bottini, and P. N. Piccoli, 2008: Azospirillum brasi-
lense Sp 245 produces ABA in chemically-defined culture medium
and increases ABA content in arabidopsis plants. Plant Growth Regul.
54, 97—103.

Combes-Meynet, E., J. F. Pothier, Y. Mo€enne-Loccoz, and C. Prigent-
Combaret, 2011: The Pseudomonas secondary metabolite 2,4-diace-
tylphloroglucinol is a signal inducing rhizoplane expression of
Azospirillum genes involved in plant-growth promotion. Mol. Plant
Microbe Interact. 24, 271—284.

Cormier, F., S. Faure, P. Dubreuil, E. Heumez, K. Beauchêne, S.
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