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Soil nitrogen mineralisation simulated by crop models across different 
environments and the consequences for model improvement 
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Introduction 

Crop models are the state-of-the-art tool to predict crop yields in the context of 
climate change and food security. The uncertainty associated with their use can be 
partly overcome by using multi-model ensembles (mme), though model improvement 
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is still an important consideration (Rötter et al., 2011). Model intercomparison 
identifies processes that are well represented by some models, but insufficiently 
simulated by others. The initial concept relies on testing against high-quality field data 
under the assumption that the observed crop was grown without limitations. In the 
case of nitrogen (N) supply to the crop, unlimited growth of the simulated crop can be 
easily assured if sufficient mineral N fertiliser is applied. However, in low-N systems, N 
supply to the virtual crop highly depends on how the model simulates soil organic 
matter turnover and subsequent N release.  

Materials and Methods 

We revisited the crop growth simulations of mmes for wheat (Asseng et al., 2013) and 
maize (Bassu et al., 2014) and analysed the simulated N mineralisation dynamics for 
eight different sites. The simulated N supply is discussed in the context of existing 
observations for N mineralisation from soils of different environments and of the 
consequences for model improvement. 

Results and Discussion 

Analysis reveals that within the mmes the simulated N mineralisation courses produce 
a range of N supply levels from 24 to 160 kg N ha

–1
 at a site in Argentina. Here, 120 kg 

N ha
–1

 additional fertiliser was given, but a considerable number of models still 
simulated N stress of the grown wheat crop. A subsequent crop parameter adjustment 
under the assumption of unlimited N supply may have failed in some of these cases 
due to violation of the precondition (Table 1). The simulation of N stress, when none 
occurred, would have contributed to the variability between models. Investigating the 
N-related processes seems promising to further improve the models, leading to 
reduced uncertainty in mmes. 

Table 1. Preconditions for crop parameter optimisation arising from observed vs simulated soil conditions. 

 Observed crop 

  N limited Not N limited 

N stress simulated Simulation reflects the site 
conditions well. However, basic 
assumption for the simulation 
study violated (non-optimal 
conditions for plant growth). 

N supply underestimated. Crop 
parameter adjustment probably 
the wrong handle. Site conditions 
match the basic assumption of 
optimal growth. 

N stress not simulated N supply overestimated. Model 
assumes optimal growth, which is 
not the case. Crop parameter 
adjustment may go astray. 

Site conditions match the basic 
assumption (optimal growth). Crop 
parameter adjustment feasible 
according to the study’s objective. 
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