

Intensification in the context of bioeconomy and circular economy: status and foresight

Jean-François Dhote, Catherine Bastien, Jean-Michel Carnus, Catherine Collet, Barry Gardiner, Myriam Legay, Laurent Saint-André

▶ To cite this version:

Jean-François Dhote, Catherine Bastien, Jean-Michel Carnus, Catherine Collet, Barry Gardiner, et al.. Intensification in the context of bioeconomy and circular economy: status and foresight. Sustainable Intensification of Planted Forests: How far can we go?, International Union of Forest Research Organisations (IUFRO). AUT.; Regional office EFIATLANTIC. FRA., Jun 2016, Biarritz, France. pp.28 slides. hal-01594797

HAL Id: hal-01594797 https://hal.science/hal-01594797

Submitted on 5 Jun2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

IUFRO

Intensification in the context of bioeconomy and circular economy : status and foresight

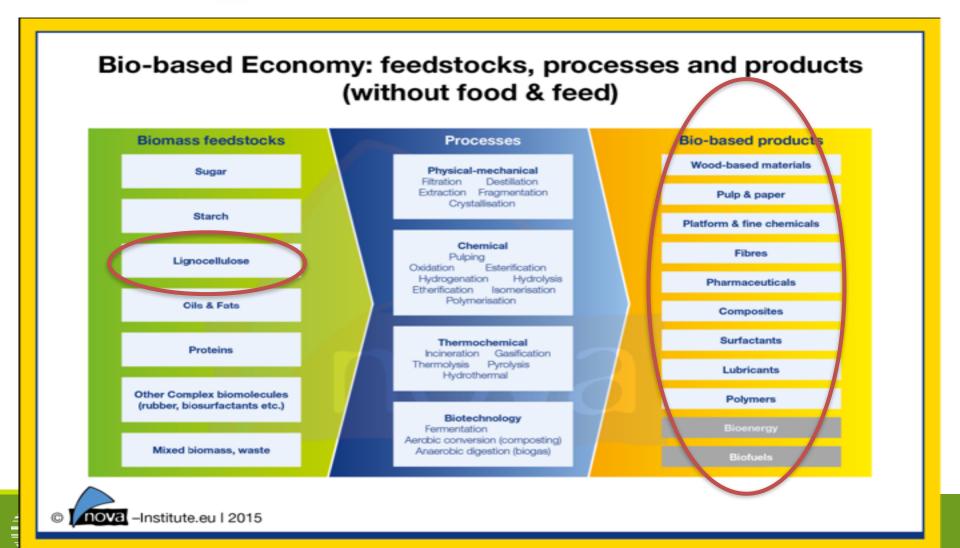
Jean-François Dhôte, Catherine Bastien, Jean-Michel Carnus, Catherine Collet, Barry Gardiner, Myriam Legay, Laurent Saint-André

International Scientific Seminar, **Biarritz, June 13th 2016** « Sustainable intensification of planted forests : how far can we go ? »

Objectives of the talk

Background (trends & perspectives) :

- ♦ world population & développement \rightarrow demand of wood-products
- forests : provide an increasing range of product/services, under stronger constraints, pressure by other land-uses (re-emerging)
- bring an integrated response to climate change : adaptation, mitigation, regulation of ecosystem services, planning
- need to redesign production/management systems
- ♦ imitation of nature (Lorentz & Parade, 1837) → « close-to-nature forestry »


3 focus about nature/silviculture/intensification/ecology :

- ⇒ adaptive potential of close-to-nature forestry
- → options for diversification & planning
- ecological intensification as more efficient use of cycles

Bioeconomy : consider wood in the *big picture,* supply new usages/production chains

Many resources are forcasted to run out within a relatively short period, ...

Nd Pm Sm Eu

Lanthanides* Ce Pr

н	Remaining years until depletion						5-50 y										He
1.00794				n rese		5	0-100	years					6	7	8	9	10
Li	Be	(based on current rate of extraction)					100-500 years						C 12.0107	N 1410674	0	F	Ne 20.1797
11		rate	ore	xtrac	tion)								14	15	16	17	18
Na	Mg											AI	Si	Р	s	CI	Ar
2 966/77		_	111			-	-	1.0.0	14	-			28.0865	28.97376	32.066	35.4527	39:548
19	20	-	22		-		26	20	28	29					м	35	36
к	Ca	Sc	Tì	v	Cr	Mn	Fe	Co	NI	Cu	Zn	Ga	Ge	As	Se	Br	Kr
29-2943	40.078		47.867			54,50804	55.845	56 93320	58.6904	63.546					78.96	79:904	83.80
17			40	41	42	43			45						62		54
Rb		Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd		Sn	Sb	Te		Xe
6.4676			91.224	52.50638	95.54	(96)			106.42						127.60		131.29
6	56	57		73		25					80		82		84	85	86
Cs	Ba	La*	HE	Та	w	Re	Os		Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
32 9054	137.327	138.9855		180.9479		196.207					200.59		276.2		(20%)	(210)	(222)
17	88	89	104	105	106	107	108	109	110	911	112	113	114	115	116	117	118
Fr	Ra	Act	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uug	Uup	Lv	Uus	Uuo
(22%)	226.025	(227)	(257)	(260)	(263)	(262)	(205)	(200)	(271)	(272)	(1986)	1784	1000	(199)	(210)		-

62

Ho

Gd Tb Dy

http://reports.weforum.org/toward-the-circular-economyaccelerating-the-scale-up-across-global-supply-chains/mountingpressure-on-resources/

... while only few materials are recycled at scale

1	140.9077 144.24	077 544.24 (M4) 950.36 916.964 157.25 918.8033 918.8253 912.80 94.8333 97.26 918.912													/												
Actinides I	10 31 Th Pa	ч U	10 Np	н Рu	15 Am	% Cm	sr Bk	90 90 Cf Es	11	H			rent r				<1%									F	2
Pertindes 1	212 0381 231 0289	201.000	an	(244)	00	(247)	(247)	(251) (252)	0	H		of recycling					-10%										He 4 002502
									3								-25%					5	6	7	8		10
										u	Be						5-50%					B	С	Ν	0	F	Ne
									11	641 1	1212112						50%					10.811	12.0107	14.00674	15.9054	18.99640	20.1797
									1	Na	Mg					No data available						AI	Si	P	s	CI	Ar
									-	22 96977 24 3060 26.08153 28.0865 39.97376 32.00						32.066	36.4527	39.548									
										K 2	Ca	21	22	20 V	2H Cr	25 Mn	× Fe	27 Co	28 NI	29 Cu	30 Zn	31 Ga	и Ge	33		and and a	× Kr
											40.078	44.95591	47.967	50.5415	51.9061	MID 54.93804	55.845	58.30320	58.6334	63.546	65.39	69.723	72.61	74.95 TH 97.950	71.96	Br 79:904	83.80
									20			30	40	41	42	43	44	45	45	47	41	•	90	51	92	53	54
										RЬ	Sr	Y	Zr	Nb	Mo	Te		Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
										4678		88.5085 57	91,224	12 90638	95.54	(96) 75	No. of Concession, Name	102.9055	106.42	107.M82 79	112411	114,818	118.760 82	121.798	127.60	125.9044	131.29
									1	Cs	Ba	La*	Hf	Та		Re	Os	lr -	Pt	Au	Hg	Ti	Pb	Bi	Po	At	Rn
From line	ar to	· ci	rci	ula	r o	0	no	my	_	_	_	138.9055	_	150.5479	163.84	106.207	190.23	192.217	195.078	196.9665	200.59	204.3635	270.2	208.9804	(229)	(210)	(222)
		GII		Jia		60			67		Ra	Act	NA Rf	905 Db	105 Sg	st7 Bh	100 Hs	100 Mt	110 Ds	Rg	112 Uub	110 Uut	114 Uug	115 Uup	115 Lv		118 Uuo
comple	exity r	ma	nar	aer	ner	nt a	and				226.025	(227)	(257)	(252)	(263)	(262)	(255)	(296)	(271)	(272)	(205)	(254)	(2119)	(288)	(212)		600
••••••																											
	mc	ode	<i>i</i> llir:	ng												60	61	42	63	64	65	66	67	8			7
dominique.luzeau	ux@nolvte	achnic	nue.c	ora		5/	/11/20	014			La	anthan	ides *	Ce	Pr	Nd	Pm 152.36	Sm 151 964	Eu 19735	Gd	Tb 158.3253	Dy 102.00	Ho	Er 117.36	Tm 101.1042	Yb 173.04	LU
	херение	5111.19	40.0.	19									- 1	and so it is not it.	91	_	150.36	94	95	_	97	98	99	100	101 1042	_	103
											Ac	ctinide	st	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
/ http://www.mos	http://www.mosim2014.org/sites/mosim2014.org/files/													232.0301	231 0289	238-0289	(297)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(242)
pdf/Pleniere_D.Luzeaux.pdf																									4	L	ļ

Source: Professor James Clark, Green Chemistry, The University of York

« Grey » renewables energies (wind, PV) consume lots of rare elements : unsustainable !

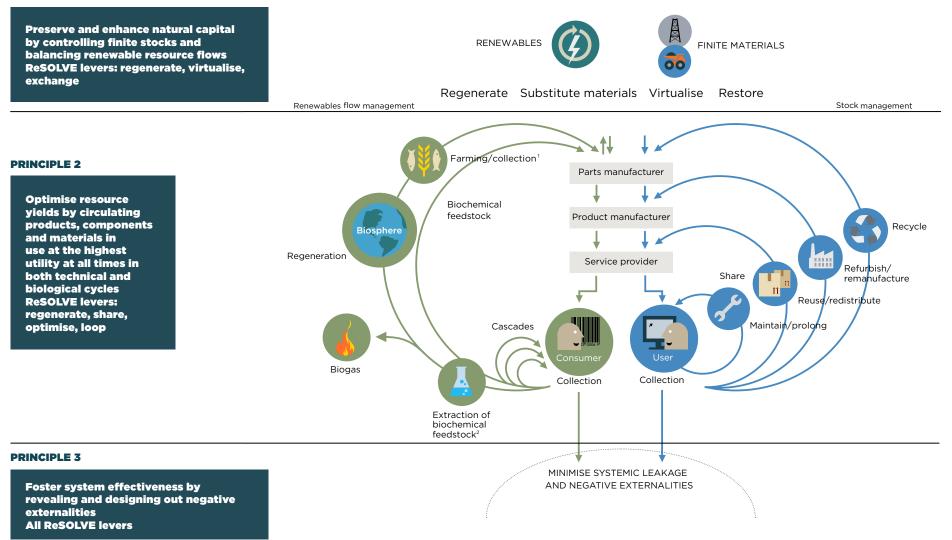
« la **dépendance des éoliennes au néodyme et au dysprosium**, deux métaux de la famille des terres rares qui constituent les aimants permanents actuellement nécessaires pour l'alternateur, illustrent bien cette question sensible des ressources minérales :

un déficit en dysprosium est prévisible à partir de 2020 compte tenu de l'augmentation de la demande actuelle.

Autre exemple avec des technologies **photovoltaïques** très prometteuses comme le CIGS (cuivre, indium, gallium, sélénium) qui sont confrontées aux mêmes enjeux :

on estime à 20 ans seulement le ratio « réserves sur production de l'indium »

Isabelle Blanc, 21 oct 2015, ParisTech Review. Comment calculer l'**impact environnemental des énergies renouvelables ?**


 $http://www.paristechreview.com/2015/10/21/impact-environnemental-renouvelables/?utm_campaign=NL\%2052\%20-\%20112015\%20-\%20Global\%20EN \& utm_medium=email_eCircle&utm_source=Global\%20FR$

Circular economy - an industrial system that is restorative and regenerative by design

PRINCIPLE 1

1 Hunting and fishing

2 Can take both post-harvest and post-consumer waste as an input

SOURCE: Ellen MacArthur Foundation, SUN and McKinsey Center for Business and Environment, *Growth Within: A Circular Economy Vision for a Competitive Europe* (2015). Drawing from Braungart & McDonough, Cradle to Cradle (C2C).

« Close-to-nature » forestry : is it efficient as an adaptive strategy ? what does it mean (ref Anthropocene) ?

Extreme events such as storms, droughts, flooding, and heat waves are probably the **most important threats** in Temperate Oceanic regions [...]

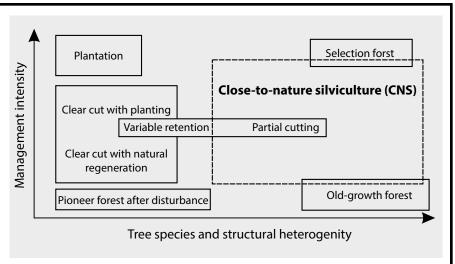
2010

natural mechanisms of **inherent adaptive capacity** are diverse and **will support adaptation** of forests to climate change. However, **natural processes alone are too slow to cope with** the projected rates of environmental change [...]

from European biogeography it can be inferred that **adaptive capacity is smallest at the rear edge** of the forest biome, where only short-term adaptation and plasticity are able to counteract the threat of extirpation of forest species under less suitable climate conditions. There are **considerable differences in socio-economic adaptive capacity** within Europe and **it is worrying that this is smallest in the Mediterranean region where the largest potential impacts are expected**

Lindner, M., M. Maroschek, S. Netherer, A. Kremer, A. Barbati, J. Garcia-Gonzalo, R. Seidl, et al., 2010. « Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems ». Forest Ecology and Management 259(4): 698–709

Review


Journal of Environmental Management 146 (2014) 69–83

Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management?

Marcus Lindner ^a, Joanne B. Fitzgerald ^{a, *}, Niklaus E. Zimmermann ^b, Christopher Reyer ^{c, d}, Sylvain Delzon ^{e, f}, Ernst van der Maaten ^{g, h}, Mart-Jan Schelhaas ⁱ, Petra Lasch ^c, Jeannette Eggers ^{a, j}, Marieke van der Maaten-Theunissen ^{g, h}, Felicitas Suckow ^c, Achilleas Psomas ^b, Benjamin Poulter ^{b, k}, Marc Hanewinkel ^{b, 1}

Adapting forests to extreme storm events is - outside Great Britain and Ireland with already existing particular storm adapted management strategies - an exception, and requires measures such as limiting tree height that are unpopular and against the dominating "close-to-nature" forestry with long rotation periods in Central Europe

Figure 1

Classification of CNS according to management intensity as well as tree species and structural diversity. Adapted after Puettmann et al. (2009). Utiliser des processus naturels pour guider les écosystèmes avec **le moins possible d'apports** en énergie (coûts) :

- promotion d'espèces naturelles et/ou adaptées à la station (non-natives acceptées en mélange avec des natives)
- forêts mélangées et structurées
- éviter les coupes rases autant que possible
- promotion de la régénération naturelle
- sylviculture d'arbres individuels
- intégration des services écosystémiques (eau, récréation...) à grain fin

Pommerening & Murphy (2004), Johann (2006), Spathelf (1997)

« **the restrictions of CNS** for the use of natural regeneration and 'low impact' interventions and the focus of CNS systems on mid- and late-successional tree species **limit the options for human-induced assistance of adaptation**, e. g. by introducing non-native or specific drought-resistant tree species and provenances »

Is Close-to-Nature Silviculture (CNS) an adequate concept to adapt forests to climate change?

Landbauforsch · Appl Agric Forestry Res · 2015 · online first · 1-10

Peter Spathelf*, Andreas Bolte**, and Ernst van der Maaten***

Suitability of close-to-nature silviculture for adapting temperate European forests to climate change

Peter Brang¹*, Peter Spathelf², J. Bo Larsen³, Jürgen Bauhus⁴, Andrej Bončìna⁵, Christophe Chauvin⁶, Lars Drössler⁷, Carlos García-Güemes⁸, Caroline Heiri¹, Gary Kerr⁹, Manfred J. Lexer¹⁰, Bill Mason¹¹, Frits Mohren¹², Urs Mühlethaler¹³, Susanna Nocentini¹⁴ and Miroslav Svoboda¹⁵

6 strategic principles (to increase adaptive capacities) :

- 1 Increase tree species richness (at the stand scale)
- 2 Increase structural diversity
- 3 Maintain and increase genetic variation within tree species
- 4 Increase resistance of individual trees to biotic and abiotic stress
- 5 Replace high-risk stands
- 6 Keep average growing stocks low

Single-tree selection has limitations :

- very small gaps favour few shade-tolerant species, exacerbated if no tending
- enrichment planting often not used (browsing damage constraint)
- rarely uses non-native species with high adaptive capacity (Douglas fir)
- variant « target diameter harvesting » may decrease genetic variation (trees with higher heterozygosity)

Single-tree selection, which also includes 'continuous forest'

3 types of close-to-nature silviculture (CNS)

- 2 Group selection
- 3 Shelterwood

The uniform shelterwood system :

- has the lowest structural diversity in the long term
- but is more suitable for increasing tree species richness in the next forest generation, by facilitating the introduction of new species or provenances with enrichment planting

Shortcomings of CNS : 'species richness', 'genetic variation', 'replace high-risk stands'

- employ a larger variation in regeneration methods
- ➡ integrate light-demanding tree species, **non-native species** and **non-local provenances**
- ➡ apply different CNS types at the landscape level
- overcome restrictions aimed at conserving genetic diversity of local populations

J.F. Dhôte, C. Bastien, J.M. Carnus, C. Collet, B. Gardiner, M. Legay, L. Saint-André Intensification in the context of bioeconomy and circular economy EFI-IEFC-IUFRO « Sustainable intensification of planted forests : how far can we go ? », Biarritz

June 13th. 2016

What is close-to-nature silviculture in a changing world?

Kevin L. O'Hara*

The **silviculture of the future** will be **highly varied** and highly **flexible**, [...] recognize the importance of adaptive or 'artificial' treatments such as tree **planting**, planting **non-native species**, **moving species beyond** their native range or **developing even-aged forests**. These are treatments that will **help forestry maintain productive** forest landscapes in a period of changing climate, conversion of forest land to other uses and expanding problems with invasive plants, insects and pathogens.

If the purpose of a close-to-nature forestry is to **persuade a doubtful public** that our intentions are good and our actions are sound, then **why risk alienation by using terms that are misleading** ? Why promote a suite of treatments that are artificially limited by **a selective interpretation of ecology** and truly unnatural ? [...]

Whereas our understanding of natural processes and stand dynamics has advanced, **rebranding forestry** with new labels that use the words 'nature', or 'balance', or 'holistic' **is really just advertising** or a form of 'buzzword creep' (e.g. Park 2011). **If existing scientific information is ignored** to pursue management strategies based on **tradition**, **beliefs or old science**, the label of close-to-nature is simply **misadvertising**

Forestry 2013; **8**, 401–410, doi:10.1093/forestry/cpt012 Advance Access publication 21 May 2013

Silviculture in an uncertain world: utilizing multi-aged management systems to integrate disturbance[†]

Kevin L. O'Hara* and Benjamin S. Ramage

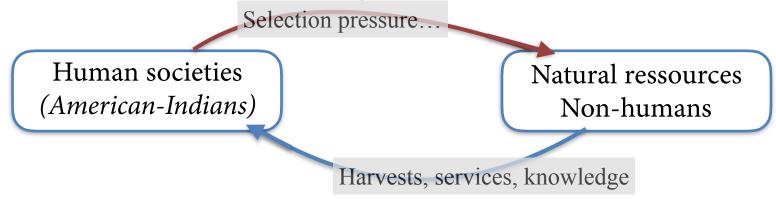
University of California, 137 Mulford Hall, Berkeley, CA 94720-3114, USA

Anthropocene : the distinction natural/artificial becomes less & less straightforward

« La caractéristique principale du naturalisme est son dualisme : s'il a permis, en objectivant la nature, d'en développer la connaissance scientifique, il est aussi ce qui permet d'opposer l'homme et la nature, alors même que **la distinction entre le naturel et l'artificiel, entre histoire humaine et histoire naturelle, est de plus en plus difficile à faire** »

Catherine Larrère, 2015. Pour une nouvelle approche de l'idée de « nature ». In « Guide des humanités environnementales » (éd. Aurélie Choné, Isabelle Hajek et Philippe Hamman), Presses universitaires du Septentrion

« Nous ne saurions penser et changer la société par les seules sciences. [...] En revanche, elles ne peuvent plus être tenues à l'écart de nos décisions politiques. [...] En ce seul sens, la nature entre résolument en politique.


Et les sciences de la nature constituent dès lors les organes sensoriels de la politique »

Dominique Bourg, 2 janv. 2016. Les sciences naturelles sont-elles révolutionnaires ? http://sciences-critiques.fr/les-sciences-naturelles-sont-elles-revolutionnaires/

Descola, P., 2014. Les choix du monde de demain. Presented at the meeting « L'homme peut-il s'adapter à lui-même? Options futures et marges d'acceptation », Collège de France, Paris, 23 mai 2014 Philippe Descola : adaptation, co-evolution & Anthropocene

les humains participent évidemment de façon active à la production même des facteurs environnementaux qui affectent leur existence et, dans la très grande majorité des cas, sans en être conscients et dans la très longue durée

Avec l'**Anthropocène**, [...] ce qui s'était opéré de façon non intentionnelle, dans l'essentiel des cas, et sur une échelle de temps pluri-millénaire, nous apparaît soudain [...] comme **réclamant une action volontariste à mener dans des délais très courts**

notre destinée **ne se résume pas à un face-à-face**, plus ou moins hostile ou plus ou moins bienveillant, **entre l'homme et la nature**, ainsi que la tradition naturaliste nous avait portés à le croire, mais que cette destinée est entièrement dépendante des **milliards d'interactions et de rétroactions** par lesquelles **nous engendrons**, au quotidien, **les conditions environnementales nous permettant d'habiter** la Terre

Adaptation & mitigation : paths for diversification under uncertainty, looking for performance and flexibility

Plant reproduction material produced in seed-orchards may bring a better mixing of initial genetic diversity

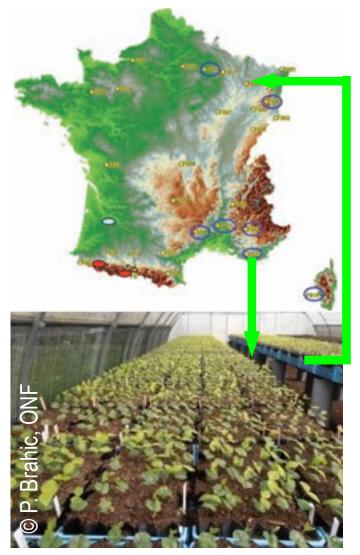
Diversité allélique

Mode de régénération	Nb allèles SPAC 7.14	Nb allèles SPAC 12.5	déficit en hétérozygotes
Régénération naturelle (après tempête)	19 + 5	12 + 3	0,282
Verger à graines	27	18	0,074

PSY-VG-003- Haguenau 4,3 ha 191 « arbres + » sélectionnés dans les parcelles autochtones Haguenau 5 à 17 copies par géniteur Répartition aléatoire

Diversité plus élevée en verger à graines

Réduction de l'apparentement dans le matériel collecté en verger à graines


Pas d'organisation spatiale de la diversité en plantation

Source : Catherine Bastien

J.F. Dhôte, C. Bastien, J.M. Carnus, C. Collet, B. Gardiner, M. Legay, L. Saint-André Intensification in the context of bioeconomy and circular economy EFI-IEFC-IUFRO « Sustainable intensification of planted forests : how far can we go ? », Biarritz

June 13th. 2016

Change genetic resources : moving populations polewards

Projet GIONO

Vulnerability of populations at southernmost margin of distribution areas

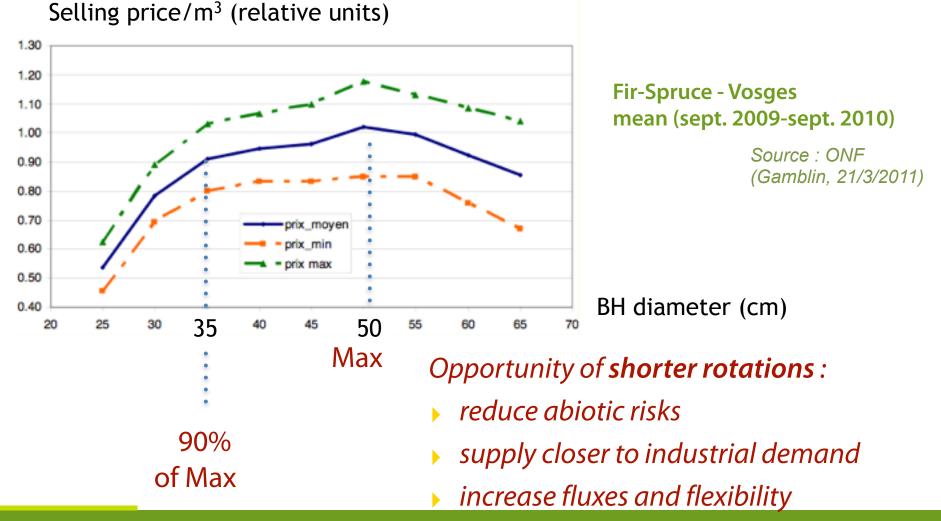
- monitoring/identification of vulnerabilities
- safegarding in nurseries
- planting on +northern locations

Applications :

- conservation of genetic resources
- strengthen local adaptation of autochthonous species

Source : Brigitte Musch, Hervé Le Bouler, Olivier Forestier, Patrice Brahic, Myriam Legay (ONF)

Change genetic resources : introducing thermophilous species

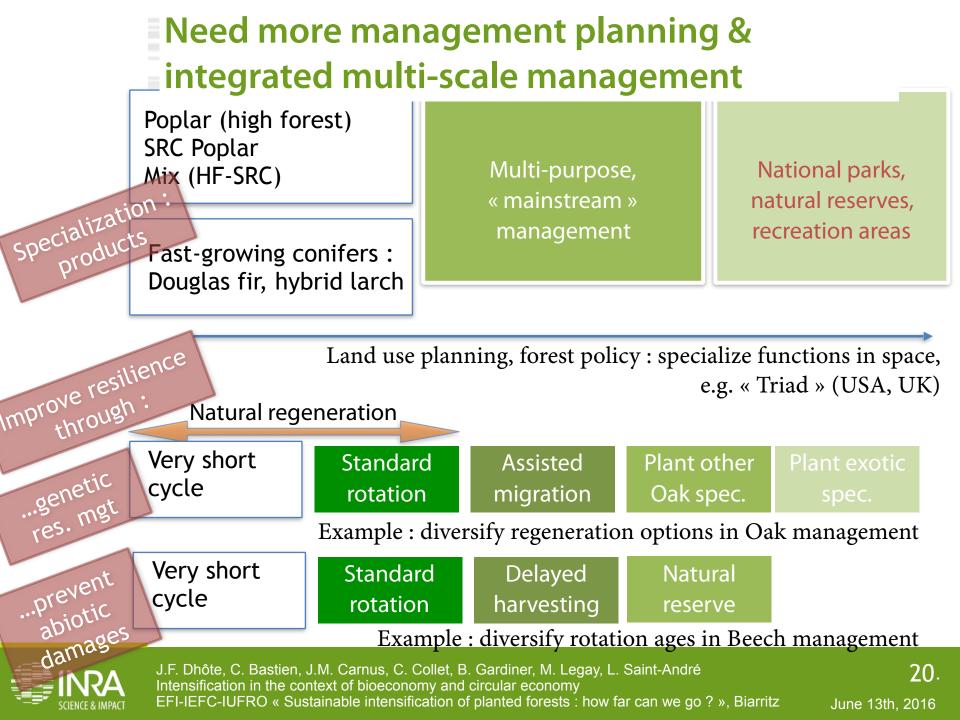

Performance of Eucalypts under strong drought constraint

(arboretum d'élimination de Caneiret, Estérel)

Change production systems : short-rotation conifers, SRC, mix SRC-high forest Increase carbon flux / hectare : create and use improved genetic material (productivity is no longer secondary)

Test of hybrid poplar clones for SRC Source : C. Bastien & G. Bodineau (INRA Orléans)

Example of forest-industries co-adaptation : shortened rotations in conifers



J.F. Dhôte, C. Bastien, J.M. Carnus, C. Collet, B. Gardiner, M. Legay, L. Saint-André Intensification in the context of bioeconomy and circular economy EFI-IEFC-IUFRO « Sustainable intensification of planted forests : how far can we go ? », Biarritz

June 13th, 2016

19.

« La bioéconomie suppose **une anthropisation réussie** de la biosphère » (Michel Griffon, 5 mai 2015, restitution prospective UE SCAR-4)

≈ « Bioeconomy needs a successful **anthropisation** of biosphere »

Ecological intensification : coupled cycles of matter/energy/information, acknowledged effort to transform (manage, learn by monitoring and science, improve)

Bioeconomy : circular processes/flows

LE PROJET FORÊT-BOIS pour la France

France Bois Forêt (FBF) et France Bois Industries Entreprises (FBIE) sont à l'initiative du

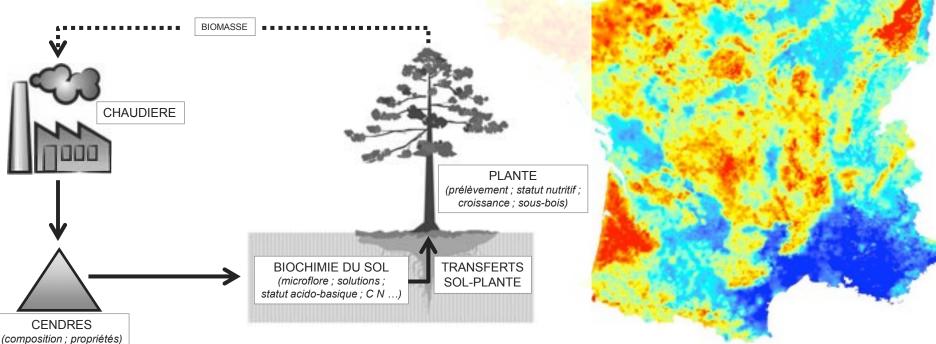
Optimized cycles of biomass

production de production

FIXE

RECYCLAGE

ASORBE


REJETÉ

CONSTRUCTION AMENAGEMENT D'ESPACE DE VIE

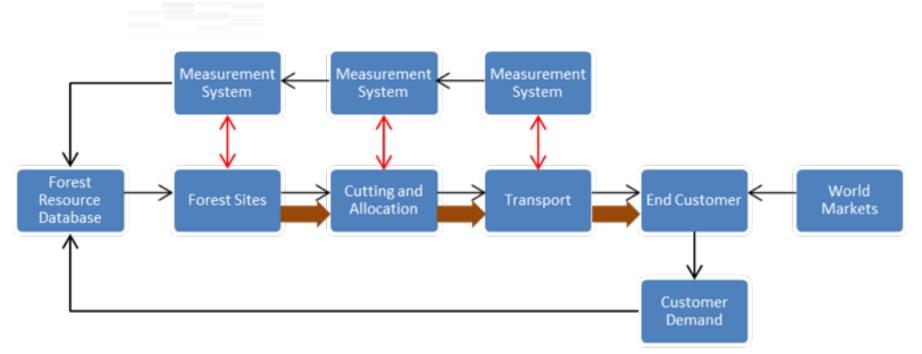
SCIERIE

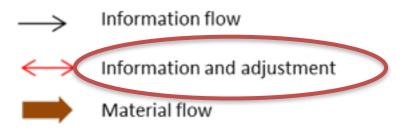
23. ne 13th, 2016 Recycle exported nutrients back to forests, possible strategies of flux limestones \rightarrow acid soils

Restitution or recycling of firewood ashes

Source : Augusto et al. (2014) - Les intrants sont-ils nécessaires pour développer durablement la fonction de production ?

Carte de France du pH des sols forestiers, échelle 1km, ©IFN, LERFoB




J.F. Dhôte, C. Bastien, J.M. Carnus, C. Collet, B. Gardiner, M. Legay, L. Saint-André Intensification in the context of bioeconomy and circular economy EFI-IEFC-IUFRO « Sustainable intensification of planted forests : how far can we go ? », Biarritz

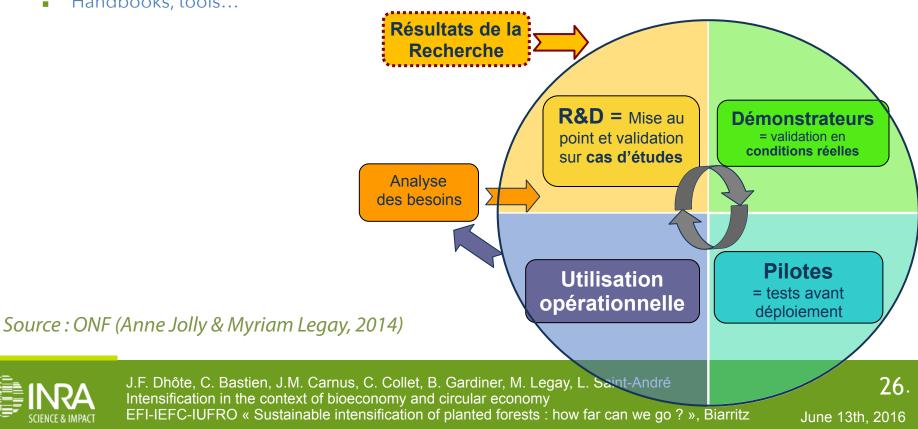
June 13th, 2016

74.

Integrated forest logistics : make a better use of information linked to production process

Adjustement-regulation : a major feature of ecological systems

Source : Barry Gardiner (25/1/2015)



Innovation through learning loops

Make a step-forward beyond linear technology-transfer of platform CAPSIS :

- Transfer methods, not only knowledge case of remote sensing
- Check robustness
- Validate in industrial context
- Handbooks, tools...

- Transition of sustainable management & climate challenges :
 - detect/analyze damages, anticipate large-scale crises
 - use existing forests (more !) and plant
 - reduce transaction costs (integration, contracts)
 - optimize the world's use of fibres and energy
 - forest soils : + targeted & + efficient use
- Which questions arises ecological intensification ?
 - cycles embed ecosystems-human artifacts : precaution
 - manage together climate risks & impacts of pratices
 - information & planning : monitor, control, correct, diversify, make explicit arbitrages ; optimization and viability
 - combine ecological/social/organisational resiliences (multiscale)

谢谢你的关注 Obrigado Gracias Thank you Merci

Forêt domaniale de Fontainebleau nov. 2015

« La bioéconomie suppose une anthropisation réussie de la biosphère » (Michel Griffon, 5 mai 2015, restitution prospective UE SCAR-4)