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Anchorage is a key factor
In wind damage by stem leaning/toppling/uprooting

Anchorage
strength

root architecture \

+ soil properties



-> Winching = maximum turning moment
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-> inventory of storm damage

-> Empirical relationships

But winching a large amount of trees can be tedious and winching is not
predictive



What we would need is quality of anchorage as a function of factors like
species, genotype, nursery conditions (cutting/seed), installation techniques
(planting/sowing), soil profile, soil water content, soil preparation

-> explanatory approach:
Root architecture & material properties assessment

Anchorage strength is given by:
Winching / storm damage / stem straightness / biomechanical models

Thanks to explanatory approaches, we may provide anchorage parameters
for a range of factors with extrapolations at a given age and from age to
age



- soil can be a highly heterogeneous medium + variable
water content -> high variability in root systems

- all is hidden in the soil, entangled in roots from other
plants.

- tree anchorage failure is a discrete phenomenon:
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Root architecture and anchorage in trees: what's known ?

Coutts, Nicoll, Gardiner et al.: (a) root-soil plate
very shallow soil (< 40 cm), > F weight
larger trees, ditches
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Root architecture and anchorage in trees: toppling

Crook, Ennos, Goodmann, Mickovski et al.:
deeper tap-rooted species (Mallotus, Larix, Pinus)

taproot: 80% anchorage sinkers predominant
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Mallotus, Crook et al. 1997 Larix, Crook Ennos (1996)

3-9 laterals, 3.2 cm diameter

very simple root system or simplified description of root architecture



The way we choose to study relationship between architecture and anchorage

media
woody plants
full deployment of RSA
R
In pots
In agar

hydroponics

Mechanical uprooting



In-depth phenotyping of complex root architectures
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In-depth phenotyping of complex root architecture

media
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In-depth phenotyping of complex root architecture

media measurement coding analysis

3D magnetic
digitizer

in pots

manual

in agar @tural a@
CTscan

hydroponics
Laser scan
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Deep Phenotyping of Coarse Root Architecture in
R. pseudoacacia Reveals That Tree Root System Plasticity
s Confined within Its Architectural Model
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Abstract

This study aims at assessing the influence of slope angle and multi-directional flexing and their interaction on the root
architecture of Robinia pseudoacacia seedlings, with a particular focus on architectural model and trait plasticity. 36 trees

Danjon et al. 2005 New Phytol, Danjon & Reubens 2008 PLSO, Danjon et al. 2014 Frontiers



Pinus Pinaster, podzols: large trees failing by uprooting

Martin storm (1999)
12 undamaged and 12 uprooted trees
35 cm DBH
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Wind

Resulting
root-soil plate force
weight
(requires a
rigid cage)

flexion flexion =

windward leeward




Large selective acclimation to prevailing wind

Very large acclimation:
Selective reinforcement as a function of
constraint experienced (tension/flexion)

orancned wincdward

roots peyond ZK few big roots

leeward ZRT

hard pan shield

Danjon et al. (2005)






Large acclimation to soil depth/soil profile

Water table: brushes

Hard pan: shligelds
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Large intra-stand soil variability

-> soil profile is determined by the micro-topography
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-> large plasticity of root system as a response to available soil

depth

Danjon et al., 2005
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Pinus Pinaster, architectural scheme

tap-rooted

!

secondary sinkers

No retarded branching

Atger & Edelin (1994)
20



no retarded
branching
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Danjon et al. (2013c)




Pinus Pinaster, podzols: smaller trees failing by toppling

Klaus storm (2009)
48 trees, including 12 toppled
17 cm DBH

Estimation of roots lost during uprooting = yellow - (panjon et al. 2013)

Danquechin Dorval PhD (2015) // Danjon Dorval Meredieu submitted
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Computing mechanical characteristics from morphological data

maximal tensile load ——

flexural stiffness

straight
toppled

Central root system has
to be rigid to prevent a
small displacement of
the stump.

A large taproot guyed by
deep roots is still the
main component of
anchorage + soil depth

depth (cm)

relative weighted flexural stiffness (dashed line — kPa.m)
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resulting
@force Breaking
points:

flexion = hinge  leeward

Wiricl

From windward

literature
7@4 3 -

« guyed 7
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‘ constraints on the taproot

—
A
Danjon et al. 2013
resulting
\Wiricl Shallow at 45 cm @force Breaking é
windward points:

flexion = hinge  leeward

From
experiment

a rigid
central part
guyed by the
bottom

Taproot complex
at 50 cm depth
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deep roots

Danquechin Dorval PhD (2015) // Danjon Dorval Meredieu submitted



Genetic variability of root architecture: natural selection

4-years-old trees / 10 trees per genetic unit
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Perturbation of architectural scheme by planting

Turf plug planting: 300 three-years-old trees.
no clustering, clumping of shallow roots, generally good regeneration of taproot.

retrospective approach : what happened at plantation ?

Danquechin Dorval PhD (2015)



Prospective approach: portion of crop trees in stands

from taproot and shallow root characteristics
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half the plots had less than 50% crop trees

large variation in perturbations of architectural model:
could not been attributed to sylvicultural practices. )8
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Strip ploughing leaving a ditch + mapping shallow roots/sinker branching point in

situ: roots follow soil surface

Danquechin Dorval PhD (2015)






control

Danjon et al (2013b)




We have static data, we could quantify factors effect on root
architecture

Growth model for interpolation/extrapolation/summarizing
knowledge

Anchorage assessed with the biomechanical model (Yang et
al. 2014)

Input in wind risk models:

e.g. planting technique: could not be linked to anchorage
strength

low stem straightness: higher probability of anchorage failure
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