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Introduction 
Modern agriculture is essential for human development but crop production levels in many 
regions are threatened by climate change (Bugmann et al., 2010). Climate change is resulting in 
more frequent extreme events (Bugmann et al., 2010) such as increased (occurrences and/or 
strength) drought, heavy rainfall, high temperatures, tropical cyclones (Stocker et al., 2013), 
fires at mid- to high-latitudes (Moritz et al., 2012) and pest outbreaks (Allen et al., 2010). 
Consequently, it is essential to adapt agricultural systems to new conditions if production and 
environmental benefits are to be maintained. 
Genetic improvements form part of the solution to mitigate impacts in annual species, but this is 
more difficult for long-rotation species used in tree-based agriculture and silviculture. This paper 
assumes that the promotion of agroforestry has the potential to mitigate and provide adaptation 
to climate change. Therefore, investigating the performance of different agroforestry 
management strategies is a key priority as management can influence system responses 
(Battles et al., 2008) and modify competitive relationships, composition and choice of species 
(Linder, 2000). To do so, field experiments and modelling are the two main solutions. As most 
trees take decades to mature, and the number of possible management practices and/or stand 
compositions is large even when only two species are considered (Porté and Bartelink, 2002), 
field experiments alone will be overly expensive, complex and time-consuming. Therefore, 
computer models have to be used jointly to explore the numerous strategies in less time and 
effort (Bohn et al., 2014; Palma et al., 2007). Furthermore, modelling processes that describe 
tree growth and the harvest of tree components (such as fruits, wood, and sap) allow us to 
better understand the mechanisms involved and their interactions, and to predict their response 
to climate changes. Thus, modelling could improve our knowledge and be our basis to the 
guidance of the setting of future experimental cultivations. 
Considering all these challenges, our research project ANR Agrobiosphère MACACC (ANR-13-
AGRO-0005) combines field experiments, numeric simulations and econometrics. The system 
considered was agroforestry with coffee arabica plantations in Tarrazu (Costa Rica) grown 
under shade trees. Coffea arabica is a perennial plant which grows naturally under unfrosted 
elevated tropical forest. Beans can develop from two to three year old shoots, which are pruned 
every five years to maintain production.  Coffee can be grown in full sun to promote mass 
production, but the increase in canopy temperature often decreases the maturation duration and 
coffee quality (Martins et al., 2014).  
Coffee growth and fruit production are particularly sensitive to high temperatures and water 
availability, and previous studies predict large future losses of production (Bunn et al., 2014; 
Craparo et al., 2015; Oijen et al., 2010) or area cover (Baca et al., 2014). An alternative is to 
grow coffee in agroforestry systems, under shade trees with varying density. This technique 
allows a better bean maturation and quality, and increased adaptation options in response to 
climate change (Lin, 2007; Luedeling et al., 2014). 
 
Material and methods 
The research project was focused on studying different management options responses to sites 
properties and climate in order to secure future coffee production (Table 3). The management 
options were coffee cultivar, shade trees density and species (Figure 6). Two coffee variety 
were used: usual Coffea arabica var. Caturra and a F1 hybrid crossbreeding between Coffea 
arabica and a wild Sudano-Ethiopian strain (Bertrand et al., 2005) which has very promising 
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production, disease and drought resistance (Jarri, 2012; Khac, 2012). Also, three shade options 
were tested with different densities: coffee grown in full sun (no shade and no shade trees), 
under Erythrina poeppigiana (200-400 trees ha

-1
) or Cordia alliodora (50-125 trees ha

-1
). The 

first shade tree species is from the Fabaceae family and can fix nitrogen. It is pruned twice a 
year in order to optimize light interception by the coffee to promote flowering. The Cordia 
species grows quickly and can maintain a high canopy cover and it can be harvested for wood 
when the crop cycle ends. 
Table 3: Simulations parameters: climate, plot properties and management options. 
 

Climate 
 

Coffee variety 
 

Shade (species and density) 
 

Plot age (years) 

RCP 4.5 

X 

Caturra 

X 

Full sun: 0 

X 

1 
2 
. 
. 
. 
. 
35 

Erythrina poeppigiana 

RCP 8.5 Hybrid 

Low: 200/250 High: 350/400 

Cordia alliodora 

Low: 50/75 High: 100/125 

The site at Tarrazu is affected by a Pacific climate, and models for future climate (AR5, 
statistically downscaled) predict an increase of air temperature and similar rainfall levels (Figure 
6), which could lead to coffee flower buds abortion (Martins et al., 2014). 
Two numeric models were coupled for this study. The first model, a tree-scale three dimensional 
process-based model (MAESPA, Duursma and Medlyn (2012)) was used for diffuse and direct 
extinction coefficients (Kdif and Kdir) and light-use efficiency (LUE) computation and the second 
one, a plot scale allocation model (GO+, Loustau et al. (2012)) for growth and yield simulations. 

 
Figure 6: Mean annual air temperature and total annual rainfall downscaled to Tarrazu from 
historic data (1979-2005) and model predictions (2006-2049) over RCP +4.5 W m

-2
 and +8.5 W 

m
-2

. 
 
Results  
First results show that management could strongly impact the main drivers of coffee growth and 
yield: photosynthesis, canopy temperature, or light use efficiency. Figure 7 shows that daily 
coffee light use efficiency increased for coffee grown under shade trees and for higher shade 
trees densities (+21.4%*** to +34.9%*** for C. alliodora and +18%*** to +27.5%*** for E. 
poeppigiana).  
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Figure 7: Coffee daily light use efficiency (gross primary production/absorbed PAR) according to 
shade trees density. 
Furthermore, it appears (Figure 8) that only the C. alliodora planted at high densities was able 
to significantly reduce the maximum coffee canopy daily temperature based on recent 
temperatures (-3.3°C** for 75 trees ha

-1
 to -4.5°C*** for 125 trees ha

-1
) and predicted future 

conditions (-3.4°C*** to -4.7°C*** respectively). 

 
Figure 8: Simulated daily canopy maximum temperature comparison between full sun and two 
shade tree species at different densities for historic and future climate and CO2 conditions 
(RCP: +4.5 W m

-2
). 

 
Discussion 
It is proposed that the modelled results can be used to guide farmers on the best shading 
options to be adopted. The guidance should take into account management impacts on coffee 
canopy temperature, coffee fruit and timber yield, carbon balance and water use efficiency of 
past and future coffee growth cycles, under the two contrasted scenarios (+4.5 W m

-2
 and +8.5 

W m
-2

 representative concentration pathways). 
 These first results could help stakeholder adapt their plantations to future conditions whilst 
minimising current production losses. For example, increasing efficiency of shade management 
buffering with increasing temperatures could encourage stakeholders to grow coffee plantations 
under high coverage shade trees without pruning (e.g. C. alliodora), because even low densities 
can reduce maximum daily canopy temperature without the expense of high tree densities or 
intensive pruning of shade trees. 
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