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Abstract. The shear behavior of granular materials immersed in a viscous fluid depends on fluid properties

(viscosity, density), particle properties (size, density) and boundary conditions (shear rate, confining pressure).

Using computational fluid dynamics simulations coupled with molecular dynamics for granular flow, and ex-

ploring a broad range of the values of parameters, we show that the parameter space can be reduced to a single

parameter that controls the packing fraction and effective friction coefficient. This control parameter is a modi-

fied inertial number that incorporates viscous effects.

1 Introduction

Immersed granular materials occur in many natural pro-

cesses such as sediment transport, landslides and subma-

rine avalanches, as well as in many applications involv-

ing particle-laden fluids in powder technology and food

and pharmaceutical industries [1–6]. The central issue

in the field of dense suspensions of non-Brownian parti-

cles is how the suspended particles affect the rheology [7]

whereas in the granular community the query is how the

inertial, viscous, capillary and lubrication effects in the

presence of an interstitial fluid modify the shear behavior

and packing fraction in granular flows [8, 9].

Fluid-grain flows involve a large parameter space:

fluid viscosity η f , fluid density ρ f , particle mean size d,
particle density ρs, confining pressure (acting on the parti-

cle phase) σs and shear rate γ̇. In the absence of the fluid,

it is well-known that the parameter space can be reduced

to the inertial number I = γ̇d(ρs/σs)
1/2 [10], and the rhe-

ology is described by effective friction coefficient μ and

packing fraction Φ as functions of I. On the other hand, it

has been suggested that, when particle-inertial effects can

be neglected, the parameter space is reduced to the viscous
number Iv = η f γ̇/σs, and the rheology is described by μ
and Φ as a function of Iv [8].

Recently, it was suggested that a general control pa-

rameter combining I and Iv may account for both inertial

and viscous effects in a unified framework [11]. Truls-

son et al. simulated sheared granular materials by means

of Molecular Dynamics (MD) and the effect of fluid was

accounted for through the application of a drag force on

all particle centers. However, since the fluid is intro-

duced through its drag force effect on particles, it is un-

�e-mail: lhassan.amarsid@umontpellier.fr

clear whether the unified approach accounts for other ma-

jor fluid parameters such as density and volume effects and

lift forces induced by shear. In particular, the relative den-

sity r = ρs/ρ f may also influence the flow regime [12].

Moreover, the fluid in the pore space carries dynamic pore

pressures, which may come into play in a dense suspen-

sion. For all these reasons, the visco-inertial flow regime

needs to be investigated by using computational fluid dy-

namics coupled with granular dynamics.

In this paper, we use MD simulations for particle

dynamics coupled with the Lattice Boltzmann Method

(LBM) for the dynamics of the fluid phase to investigate

the rheology of dense granular flows immersed in a vis-

cous fluid. The simulations cover a broad range of param-

eter values. As we shall see, the effective flow properties

are well described by a single modified inertial number, in

agreement with the approach suggested by Trulsson et al.

[11]. We first briefly present the numerical approach and

system parameters. Then, we describe our main results

and conclude with the scopes of this work.

2 NUMERICAL METHOD

We employed the MD method interfaced with the Lat-

tice Boltzmann Method (LBM) for the simulations. The

fluid is modeled by a time-dependent distribution func-

tion f (�r,�v, t) of particle positions �r and velocities �v. The

spatio-temporal evolution of f is governed by the Boltz-

mann equation:⎛⎜⎜⎜⎜⎝ ∂
∂t
+�v · ∂

∂�r
+
�F(�r)
m

· ∂
∂�v

⎞⎟⎟⎟⎟⎠ f (�r,�v, t) = Ωcoll (1)

where m is particle mass, �F(�r) represents external forces,

and Ωcoll is the collision operator. The simplest collision
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model is the BGK operator [13]:

ΩBGK = −1

τ
( f − f 0) (2)

where τ is a relaxation time and f 0 is the Maxwell-

Boltzmann distribution. The Boltzmann equation together

with the BGK collision operator yields the Navier-Stokes

equations [14].

In LBM [15–17] the velocity vector space is dis-

cretized into a finite number of directions. We used the

D2Q9 lattice (two dimensions with nine velocity direc-

tions), as shown in Fig. 1. An independent distribution

function fi corresponds to each velocity direction �ei.
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Figure 1. D2Q9 scheme.

The discretized equations for different directions are

solved in two steps:

Collision : f out
i (�r, t) = fi(�r, t) + Ωi

Streaming : fi(�r + Δt�ei, t + Δt) = f out
i (�r, t) (3)

where Δt is the time step, and the f out
i (�r, t) are the distribu-

tion functions after the collision step. The density ρ(�r, t)
and fluid velocity �u(�r, t) are obtained as follows:

ρ(�r, t) =
∑
i

fi(�r, t)

ρ(�r, t)�u(�r, t) =
∑
i

fi(�r, t)�ei
(4)

The BGK operator is simple but leads to fluctuating

velocity fields. In our simulations, we used a Multi-

Relaxation Time (MRT) collision approach [18, 19]. Nine

moments are attributed to every fluid node, corresponding

to the nine distribution functions, through a matrix M such

that

m =Mf (5)

where m = (m0,m1, . . . ,m8)
T is the moment vector, f =

( f0, f1, . . . , f8)T and M is given by:

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1

−4 −1 2 −1 2 −1 2 −1 2

4 −2 1 −2 1 −2 1 −2 1

0 1 1 0 −1 −1 −1 0 1

0 −2 1 0 −1 2 −1 0 1

0 0 1 1 1 0 −1 −1 −1
0 0 1 −2 1 0 −1 2 −1
0 1 0 −1 0 1 0 −1 0

0 0 1 0 −1 0 1 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Hence, the collision step is applied in the moment space,

each moment mi being relaxed to its equilibrium state meq
i

with a relaxation time si. The moments corresponding to

the density ρ(�r, t) and the flux �j(�r, t) = ρ(�r, t)�u(�r, t) are con-
served. The moment vector mout resulting from collision

can be written as

mout = m − S(m − meq) (6)

where S = diag (0, s1, s2, 0, s4, 0, s6, s7, s8) is a diagonal

9×9 matrix.

All relaxation times are proportional to τ−1 [20]. The

equilibrium moment vector meq is given by

meq =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ

−2ρ + 3
(

j2x + j2y
)
/ρ

ρ − 3
(

j2x + j2y
)
/ρ

jx

− jx

jy
− jy(

j2x − j2y
)
/ρ

jx jy/ρ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

The distribution functions f out
i (�r, t) after the collision step

are fout = M−1mout. Finally, the streaming step is applied

in the velocity space.

The no-slip boundary conditions are implemented us-

ing the bounce-back rule, which consists in reflecting back

the incoming distribution functions at a boundary node to

their original fluid nodes in the opposite direction iopp
(�ei + �eiopp = �0):

f in
iopp(�r, t + Δt�ei) = f out

i (�r, t) (8)

The equations of motion of the particles are integrated

by means of the MD method [21, 22]. The normal force
�FN between a pair (i, j) of touching particles is governed

by a viscoelastic law:

�FN =

⎧⎪⎪⎨⎪⎪⎩
(
−knδi j − γnδ̇i j

)
�ni j if δi j < 0

�0 otherwise
(9)

where δi j is the gap or the overlap, δ̇i j its derivative with

respect to time, kn is the stiffness and γn is a viscous damp-

ing parameter that controls restitution coefficient.

The friction force �FT obeys the dry Coulomb friction

law:

�FT = −min
{
γt‖�vt‖; μs‖ �FN‖

}
�ti j (10)

where �vt is the tangential velocity at contact, γt is the tan-

gential viscosity parameter, and μs is the friction coeffi-

cient.

The particles are meshed on the lattice grid and repre-

sented by solid nodes. The interaction between particles

and fluid occurs at their interface. The solid nodes are

considered as moving boundaries over which the no-slip

condition is imposed [23]. The hydrodynamic forces act-

ing on particles are calculated by the momentum exchange

method proposed in [24].
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Figure 2. A snapshot of the suspension and its boundary con-

ditions (left); a snapshot of the force network and negative and

positive fluid pressures in blue and red, respectively.

3 Simulated system

The simulated system is shown in Fig. 2. The fluid fills

a rectangular domain which is periodic in the horizontal

direction. The particles are disks of mean diameter d =
2.5 × 10−3 m and distributed in the range [dmin, dmax] with

dmin = 0.6dmax. A confining pressure σs is applied on the

top wall in contact with the granular column. This wall is

permeable to the fluid filling a larger domain of constant

volume. A velocity gradient γ̇ is applied to the fluid nodes

at the domain boundary to generate a plane Couette flow.

The particles are initially distributed randomly in the box

and assembled by downward motion of the top mobile wall

under the action of the normal stress σs.

All simulations were performed with 1253 particles

and a well-resolved fluid with lattice step < 0.03d. The

friction coefficient μs is set to 0.4 between the particles and

to 0 with the top wall. The bottom wall is made rough by

sticking a layer of particles to the bottom of the box. The

shear rate γ̇ is varied in the range [0.28, 5.6] s−1, confin-
ing stress σp in the range [20, 120] Pa, the relative density

r = ρs/ρ f in the range [0.5, 3] and the fluid viscosity η f

is varied from that of water ηw to 2500ηw. More than 70

simulations with a total CPU time of about 105 hours were

carried out.

4 Results and discussion

In order to reduce the parameter space, we consider the

characteristic stresses which, in contrast to characteristic

times, have the advantage of being additive. They are of

three different origins: 1) the static stress σs 2) the viscous

stress σv ∼ η f γ̇ and 3) the inertial stress σi ∼ ρs(dγ̇)2. The
corresponding characteristic times are ts = d(ρs/σs)

1/2,

tv = d(ρs/η f γ̇)
1/2 and ti = γ̇−1, respectively. We also have

the Stokes time tS t = η f /σs = ti(ts/tv)2. From these three

time scales two independent dimensionless numbers can

be build: I = ts/ti = (σi/σs)
1/2 = γ̇d(ρs/σs)

1/2, the in-

ertial number, and J = ts/tv = (σv/σs)
1/2 = (η f γ̇/σs)

1/2,

which is the square root of Iv. The ratio S t = (tv/ti)2 =
σi/σv = I2/J2 = ρsd2γ̇/η f is the Stokes number.
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Figure 3. Effective friction coefficient μ (a) and packing fraction

Φ (b) as a function of the modified inertial number Im for all data

points obtained with different values of system parameters. The

solid lines are the fitting forms (12) and (13).

The total shear stress in steady flow is the sum of static,

inertial and viscous stresses, and we expect that the rheol-

ogy is governed by the additive effects of viscous and in-

ertial stresses on particles compared to the static stress.

Hence, owing to this additivity, we can build a unique

dimensionless number (σi + ασv)/σs = I2 + αvJ2 =

I2(1 + αv/S t), where αv is a constant to be determined.

Taking the square root of this ratio, we get a modified in-

ertial number

Im = I
(
1 +
α

S t

)1/2
=

{
ρsd2

σs
γ̇2 + α

η f

σs
γ̇

}1/2
, (11)

In this way, the parameter space can be reduced only if the

packing Φ and effective friction coefficient μ are unique

functions of Im for a constant value of α.

Figure 3 shows μ and Φ as a function of Im for α =
2.0. We see that, all data points remarkably collapse on

well-defined curves both excellently fit by the following

functional forms:

μ(Im) = μc +
δμ

1 + b/Im
, (12)

Φ(Im) =
Φc

1 + aIm
(13)
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with μc = 0.280 ± 0.002 the quasi-static effective friction

coefficient, Φc = 0.8123 ± 0.0003 the steady-state pack-

ing fraction, b = 0.246 ± 0.008, δμ = 0.783 ± 0.014 and

a = 0.750±0.003. Hence, all system parameters, including

the relative fluid-particle density, affect the rheology only

through Im. The transition from viscous to inertial regime

is governed by the Stokes number. According to the def-

inition of Im, this transition occurs for S t � α � 2. This

result is in agreement and extends the scope of a unique

framework introduced by Trulsson et al. [11] to a more

general parameter space.

Note that, according to the defintion (11) of the mod-

ified inertial number, when the shear rate γ̇ tends to zero,

the leading term is the viscous stress (the term in γ̇) irre-
spective of the values of other parameters. For this reason,

at low shear rates, we generally expect a viscous behav-

ior, where the control parameter is Im � √
αIv. But the

confining stress σs plays the same role with respect to vis-

cous and inertial forces and its variation does not lead to a

transition between inertial and viscous regimes.

5 Conclusion

Our extensive simulations using a sub-particle well-

resolved computation of a viscous fluid coupled to rigid

particles suggest that the visco-inertial flow regime of im-

mersed granular materials can be described by a modified

inertial number combining the inertial number with the

Stokes number. This behavior can also be expressed by

using a viscous description of the flow. In this description,

both shear viscosity and bulk viscosity can be described by

unique function of the packing fraction provided the fluid

viscosity η f is replaced by η f + ρsd2γ̇/α. This remarkable

scaling reflects the joint effects of particle inertia and fluid

viscous forces on the granular microstructure. A detailed

analysis of local evolutions of pores pressures and contact

networks will be presented elsewhere.

Finally, it is important to note that the unified picture

discussed in this work is with regard to the functional
dependence of flow properties on those parameters that

control particle dynamics. It is thus implicitly assumed

that parameters such as particle size distribution and fric-

tion coefficient between particles enter the rheology only

through their effect on the model parameters μc, Φc, b, δμ
and a. This assumption needs to be checked by further

simulations.

References

[1] R.M. Iverson, Reviews of Geophysics 35, 245 (1997)

[2] F. Legros, Engineering Geology 63, 301 (2002)

[3] K. Hewitt, American Scientist 98, 410 (2010)

[4] K.D. Nguyen, S. Guillou, J. Chauchat, N. Barbry,

Advances in Water Resources 32, 1187 (2009)

[5] C. Lareo, P. Fryer, M. Barigou, Food and Bioprod-

ucts Processing 75, 73 (1997)

[6] M.J. Rhodes, Introduction to particle technology
(John Wiley & Sons, Chichester, 1998)

[7] J.J. Stickel, R.L. Powell, Annual Review of Fluid

Mechanics 37, 129 (2005)

[8] F. Boyer, E. Guazzelli, O. Pouliquen, Phys. Rev. Lett.

107, 188301 (2011)

[9] F. Blanc, F. Peters, E. Lemaire, Journal of Rheology

55, 835 (2011)

[10] GDR-Midi, The European Physical Journal E 14,
341 (2004)

[11] M. Trulsson, B. Andreotti, P. Claudin, Phys. Rev.

Lett. 109, 118305 (2012)

[12] S. Courrech du Pont, P. Gondret, B. Perrin,

M. Rabaud, Physical Review Letters 90, 044301

(2003)

[13] P.L. Bhatnagar, E.P. Gross, M. Krook, Phys. Rev. 94,
511 (1954)

[14] C. Bardos, F. Golse, D. Levermore, Journal of Statis-

tical Physics 63, 323 (1991)

[15] G.R. McNamara, G. Zanetti, Phys. Rev. Lett. 61,
2332 (1988)

[16] F.J. Higuera, J. Jiménez, EPL (Europhysics Letters)

9, 663 (1989)

[17] Y.H. Qian, D. D’Humières, P. Lallemand, EPL (Eu-

rophysics Letters) 17, 479 (1992)

[18] D. d’Humières, Progress in Aeronautics and Astro-

nautics 159, 450+ (1992)

[19] P. Lallemand, L.S. Luo, Phys. Rev. E 61, 6546 (2000)

[20] A. Mussa, P. Asinari, L.S. Luo, J. Comput. Phys.

228, 983 (2009)

[21] S. Luding, Collisions and Contacts between two par-
ticles, in Physics of dry granular media - NATO ASI
Series E350, edited by H.J. Herrmann, J.P. Hovi,

S. Luding (Kluwer Academic Publishers, Dordrecht,

1998), p. 285

[22] P.A. Cundall, O.D.L. Strack, Géotechnique 29, 47

(1979)

[23] M. Bouzidi, M. Firdaouss, P. Lallemand, Physics of

Fluids 13, 3452 (2001)

[24] A.J.C. Ladd, Journal of Fluid Mechanics 271, 285
(1994)

      
 

DOI: 10.1051/, 09044   (2017) 714009044140EPJ Web of Conferences epjconf/201
Powders & Grains 2017

4


