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ScienceDirect
Developing masticatory apparatus, chewing robots or an

artificial mouth is an old but ever more important goal in food

science, nutrition or dental research fields, as reflected by the

number of existing digital or biomechanical systems. Whatever

the objective of the approach, basic knowledge of the

physiology of mastication, adaptation and neurophysiological

control is absolutely needed before conceiving an apparatus.

Obviously, the final step in the development of a mastication

simulator is its validation before performing food or food bolus

characterization. This validation step is imperative to avoid

biased interpretation and can be performed through in vivo–in

vitro comparison of particle size distributions in food boluses

obtained after normal mastication. This kind of validated

machine offers the chance to produce boluses for other related

uses such as nutrient bioaccessibility or digestion studies, for

example. Such an apparatus can also be employed to simulate

different dental states or ageing conditions.
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Introduction
Two main driving-objectives can be identified while

simulating mastication: firstly, when the goal is to

improve knowledge, to reproduce the biomechanical

aspects of the masticatory system or to analyze the effect

of forces, movements or constraints, for example. It

generally results in the development and the use of

mathematical models alone in an in silico approach or

associated with mechatronic techniques to develop robots
www.sciencedirect.com 
for biomechanical studies. Secondly, in very different

approaches, simulators can be used to study either food

bolus characteristics or to produce boluses for subsequent

analyses (Figure 1).

Despite the important understanding gathered in sev-

eral aspects of the masticatory process, simulation of

mastication in the area of food science has, too often,

been over-simplified and reduced to grinding, probably

due to the lack of knowledge of physiology. This

review resumes the main physiological key points of

masticatory process, and describes the different existing

simulations with biomechanical and modalities of func-

tioning.

Mastication must be understood before being
simulated
Through a complex and well-coordinated sensory-mo-

tor and visceral activities, mastication of a solid mouth-

ful results in a bolus made of particles reduced in size,

moistened enough to be cohesive, plastic to avoid

particle aspiration, and to permit passage through the

throat without discomfort or pain. The sensory-motor

and visceral program is continually commanded by the

central nervous system. The food properties are sensed

as early as the first bite and, through sensory-motor

feedback, the masticatory program is adjusted to

the changes in bolus features occurring along the

masticatory process. This highly complex and feed-

back-dependent dynamic complicates any attempt to

reproduce instrumentally mastication. Therefore, ad-

vanced knowledge about how food structure influences

the pattern of oral processing is required. Food is a

complex stimulus, but the physical dimensions modu-

lating the oral processing are limited to its hardness, its

rough rheological dimensions (plasticity, elasticity or

brittle nature for example), and size of the mouthful.

Briefly, an increase in food hardness as well as in

mouthful size leads to an increase in the number of

masticatory cycles (tooth strokes) and applied muscle

forces, whatever the rheological nature of the food. On

the other hand, the rheological properties of food seem

mostly to impact the kinematics of mandibular move-

ments due to a need to adjust the combination of

compression and shear stresses [1�]. Furthermore, frac-

ture propagation during mastication inside the food

matrix strongly depends on its structure [2]. The num-

ber of fractures and consequently of food fragments

seems mainly to depend on food toughness [3] with

resistant food often favouring fracture propagation,

resulting in greater comminution. In parallel, the many

and well-documented individual chewing strategies
Current Opinion in Food Science 2016, 9:21–28
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Figure 1
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Flowchart displaying the key steps in development through sequential in vivo–in vitro actions, and validation stage of a mastication simulator

before operating it to produce boluses for multiple purposes.
help to accomplish the mechanical food disruption. The

end point of the masticatory sequence is determined by

the intrinsic properties of the bolus. Thus, swallowing

is initiated when the bolus has been perceived by the

oral receptors to be ready for safe-swallowing. Thus the

swallowing threshold is a combination of numerous

physical dimensions including particle size, cohesive-

ness, elasticity, plasticity, moistening, intrinsic action of

mucines and enzymes, among other factors. In particu-

lar, particles must be bound together by viscous forces

rendering the bolus sufficiently cohesive [4,5]. This

swallowing threshold is specific to each food.

In summary, the basic points to be considered, before

simulation and according to the research strategy, are

[1�,2,5]:
Current Opinion in Food Science 2016, 9:21–28 
1) Mastication of solid food ends with a bolus swallow-

able without risk of mucosal injury and aspiration. For

each food, a correct and specific granulometry,

rheology and saliva impregnation characterize a

swallowable bolus. In normal mastication, bolus

particle size distribution is specific to food structure

and similar between boluses from different subjects.

2) If such a bolus cannot be produced, mastication must

be considered as impaired. At the individual level, two

indicators sign for an impaired mastication: increased

bolus granulometry above a certain threshold level and

variation in frequency of the strokes while masticating

a given food compared with normal mastication.

3) In subjects with perfectly healthy mastication,

increasing either the force or the number of tooth

strokes or the combination of compressing versus
www.sciencedirect.com
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shearing constraints allow adapting to different food

structures or to harder or more difficult food stuffs to

chew.

4) Subjects with moderate impairment of the anatomical

or physiological conditions of the masticatory appara-

tus can also succeed in making a viable bolus through a

more demanding adaptation. Again, the adaptation

relies on increasing the force, the number of tooth

strokes or the constraint modes.

Different kinds of simulation/reproduction of
masticatory function
Biomechanical knowledge-oriented simulation

Computer or computer-assisted models have often been

elaborated to analyze the dynamics of biomechanical

aspects of the masticatory function for dental, medical

and therapeutic objectives and for understanding biolog-

ical systems. It participates in predicting jaw movements,

muscle activations, recruitment patterns and controls,

resulting forces, or movements at the temporomandibular

joint [6–12]. Recently, some digital investigations based

on the discrete element method were conducted on the

food breakdown pathways during oral processing and the
Figure 2
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establishment of links between food fragmentation and

initial food structure [13].

Several mastication robots or mechatronic devices have

been conceived and designed to study biomechanics of the

masticatory process. Development of a series of mastica-

tion robots was carried out for quantitative and dynamic

assessment of mechanical stress applied to oral elements

during oral activity. The ‘Waseda Jaw (WJ)’ systems were

mostly developed to analyze the mechanical effects of

mastication on jaw bones in terms of position, force,

velocities and muscle controls [14,15]. A second example

of a mechatronic chewing device is of particular relevance

since it can reproduce the entire suite of complex functions

and movements involved during mastication, encompass-

ing most of oral applications [16,17]. The main objective of

this device was to propose a ‘chewing robot’ (Figure 2a)

able to reproduce a molar trajectory in actual dimensions

[18,19,20�]. Aside from the area of food science, dentistry

and specialists in dental materials developed tools to

evaluate fatigue, resistance, wear or behaviour of restor-

ative pieces under mechanical testing as close as possible to

in vivo oral conditions [21–23].
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Food-oriented or bolus-oriented simulation

The first attempts to mimic jaw movement with a main

interest towards the food sample were equipment roughly

designed to activate the upper jaw against the food

sample for measuring mechanical properties of food tex-

ture or equipped for example with a piston presenting a

cuspal angulation reflecting angles observed in the mouth

[24,25]. This kind of machine, considered as providing

objective methods for food evaluation, generally dis-

played significant correlation between sensory perception

and mechanical measurement. Similarly, food science

researchers tried to improve the first basic devices devel-

oped to describe food texture [26]. For example, the

experimental ‘crush chamber’ was designed to include

evaluation of acoustic, tactile and olfactory stimuli during

crispbread mastication [27]; the ‘BITE Master II’ was

elaborated to study the perception of cheese hardness

during the very first chew [28], and an ‘in vitro mouth

model’ was developed for the determination of salt release

from the food matrix [29]. The ‘chewing robot’ (Figure 2a)

was first developed to reproduce the mechanics of the

chewing process but could also be proposed in the future to

give a quantitative analysis of mechanical disruption allow-

ing texture analysis of a food sample in nutritional ques-

tionings [30]. In addition, some simple instrumentation

was developed for semi-solid food issues [31].

Since it leads to perception of flavour, the release of volatile

aromatic compounds during food disruption is one of the

issues most studied using chewing simulation [32–37]. In

these different approaches, the liberation or retention of

volatile molecules was measured in relation to the presence
Figure 3
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of saliva of known flow and composition. These needs

induced specific requirements that were very challenging

for the conception of a masticatory device. It led to debat-

able choices; for example, in terms of food disruption

modalities, the volume of the artificial mouth, or the dura-

tion of masticatory sequence, to name a few. The ‘artificial

mouth’ developed by Salles and collaborators (Figure 2b) is

probably the most successful apparatus for measuring aro-

ma release during chewing since it encompasses more

physiological purposes than others [36,38]. The apparatus

produces food breakdown due to two opposite tooth arches

actuated in both vertical and horizontal/angular motions.

Volatile retention is completed with a gas introduced into

the system, allowing air sampling in synchronization with

mastication events, as sniffing does in vivo. Food break-

down has only been ‘validated’ against peanut particle size

observed in vivo in a very few number of subjects [36].

The ‘AM2 apparatus’ (Figure 3b) is the unique mastication

machine focusing on the food bolus as the result of masti-

cation while introducing most of the actual biomechanical

masticatory features [39,40]. The AM2 apparatus thus

permits simulation of mastication in various oral contexts

and provides a complete food bolus recovery after masti-

cation for further analysis. It produces a food bolus with

properties similar to those of a bolus produced by in vivo
mastication in numerous subjects ([41] — Figure 1). This

kind of device can also be successively employed to

investigate food science, physiological or nutrition fields

such as nutrient bioaccessibility assessment or digestive

process follow-up in link with oral food transformation

([42] — Figure 1).
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Biomechanical aspects of masticatory
simulators
Depending on the reason for using them, the various

existing mastication simulators have differently set five

key variables: teeth or equivalent, inside-mouth volume,

saliva or equivalent, temperature control, and kinetic and

stress modalities of functioning. The most crude simula-

tion of tooth function is probably Mills’s ‘in vitro mouth

model’ that only compresses a food sample under a flat

piston to measure the salt released in the liquid medium

[29]. Other developers equipped their apparatus with

teeth using either a complete human skull (‘Waseda

Jaw’, [14]), patient’s complete arcades (‘Bite MASTER

II’, [28]), or series of molar teeth fixed on two opposite

ring-shaped cylinder) ‘artificial mouth’, [36]). The major

limit of this type of choice is that it under-estimates the

role of the central nervous system in taking advantage of

the complex anatomy of the tooth arches. The control of

masticatory movements and forces performed by the

nervous system cannot be replaced and this renders

difficult the interpretation of what happens to the food

sample in term of mechanical stress and strain. The

experimental mouth proposed by Salles et al., with teeth

organized on a circle-shaped design (Figure 3a), misco-

pies the normal human tooth contacts and offers more

contacts between teeth and food than in a human mouth,

making the estimation of the forces and constraints
Figure 4
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applied to the food samples difficult. It also renders

difficult the recovery of the food particles that constitute

the bolus. Consequently, it could probably cannot be

used for other purposes than study of the dynamic release

of volatiles during mastication. Finally, the use of dental

arcades similar to the ‘real’ anatomy has not been shown

to give better correlation between sensory and instru-

mental hardness assessment than when food hardness is

measured by a classical compression test. It may also

introduce another source of variation by its inability to

maintain the food particles between the teeth. This limit

was accounted for in the artificial mouth of Salles’s team

by a tongue placed at the centre of the ring supporting the

teeth, programmed to place food particles on the teeth.

This design, however, does not gather food particles in a

bolus since particles are inevitably distributed over the

full ring [36]. Despite these limits, this latter device

seems to be the most advanced for the study of aroma

release during oral food breakdown. The systems

equipped with cutting blades [37] or triangular-shaped

elevations [27], cannot be considered to mimic mastica-

tory action due to the absence of a lot of components of

movement, of ‘tooth’ elements and no control of the stress

applied to the food sample. In the AM2 apparatus, tooth

function is reproduced but not tooth anatomy. Tooth

action is made by two opposite triangular forms whose

active surfaces are similar to the sum of the molar and
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Figure 5
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premolar surface areas involved when chewing a standard

bolus. These ‘tooth’ elements are actuated by translation

and rotational movements to ensure correct impact on

food and gathering of the particles before tooth confron-

tation [39].

Three other key points are important in the develop-

ment of a simulator. Saliva should be used. Ideally, its

composition, flow distribution along masticatory se-

quence and total injected volume should mimic those

seen in the human mouth. The volume of the ‘mastica-

tory chamber’ should be similar to the volume of the

mouth and a possibility of controlling the oral tempera-

ture should exist. Saliva, volume and temperature items

are fundamental for studying aroma or nutrient release

and food texture measurements. Not all apparatuses are

equipped for these controls and this may affect data

interpretation.

The final items that should be considered are kinetic

factors and constraint modalities of functioning. Various

degrees of freedom have been chosen depending on the

main purpose for using the apparatus (aroma release, food

texture/bolus measurements, dental training, for exam-

ple). Obviously, complex mandibular movements adjust-

ed to the food being chewed cannot be completely

reproduced. Complete feedback control is always absent

although it has been sought while studying the first stroke

[28]. This requirement has been addressed differently by

choosing to reproduce or control the mechanical function,

jaw movements, imitation tooth anatomy and applied

forces [30,36,39], or by applying fracture propagation

knowledge to food matrix during disruption (tooth action

in mechanical terms) in order to select appropriate stress-

strain conditions [39].

Validation of mastication devices by food
bolus analysis
The food bolus is the main focus of interest in most topics

in food science research. Food bolus analysis is at the

crossroads between food structure, food formulation, food

perception, food oral processing and the further stages of

digestion. The ready-to-swallow bolus contains informa-

tion about the oral conditions of its formation. In addition,

it constitutes the vector for nutrients. For all these rea-

sons, a mastication simulator provides a valuable contri-

bution since it allows recovering the totality of the food

bolus at the end of the masticatory sequence. During

mastication, food sample is drastically disrupted to form a

cohesive entity, which can be swallowed easily and with-

out risk of particle aspiration. As particles are formed, they

are mixed with saliva. During this process, the smaller the

food particles, the greater the surface contacts between

food and saliva, favouring the access of salivary enzymes

to substrates. The ready-to-swallow final bolus is com-

posed of particles of various sizes and saliva or juice
Current Opinion in Food Science 2016, 9:21–28 
released from the food matrix. The bolus can be analyzed

for particle size distribution, a major characteristic of food

disruption.

Any chewing device used to provide food boluses has to

be validated against human mastication (Figure 4).

Such validation has not been conducted for many of

the proposed systems. This deficiency is striking in

digestion studies, which are generally operated without

a specific masticatory apparatus or with food particles

coarsely ground or minced and mixed with saliva or

enzyme during an uncontrolled or unjustified time, to

obtain what must be considered as a fortuitous food

bolus [43]. Mishellany-Dutour et al. [41] validated

the AM2 apparatus by comparing particle size distribu-

tion and median particle size of an in vitro bolus with

a bolus made in vivo by selected subjects with normal

dentitions, a correct occlusion and a normal saliva

flow (Figures 4 and 5). Some bolus rheological proper-

ties, hardness or cohesiveness, for example, are also

very informative of the suitability of the bolus to be

safely swallowed [5] and should also be used for in vivo/

in vitro validation purposes.
www.sciencedirect.com
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Conclusion
In summary, when the major objective of simulation is to

reproduce the biomechanics of jaw movements and

forces, mathematical models or robots are more appropri-

ate. When the objective is to study the resulting food

bolus, a device reproducing masticatory parameters and

correct food disruption is a better option. The specifica-

tions and technical limits for a simulation device depend

on the primary research purpose: aroma release, food

texture assessment, production of a food bolus providing

for subsequent digestion analyses, the impact of a change

in food formulation on bolus, biomechanical analysis of

stress applied to oral elements and other factors are

specific questions. Nevertheless, taking account of the

main laws governing the biomechanical mechanisms of

the masticatory processes and the dynamics of bolus

properties are always needed [26]. Knowing the features

associated with a correct use of an in vivo bolus simulator

allows the preparation of a realistic bolus for subsequent

analyses (Figure 1). In addition, it favours interpretation

of the results. Obviously, all apparatuses must be validat-

ed before use and this essential step can only be done by

comparing boluses obtained in vivo in a sufficient number

of individuals versus boluses obtained in vitro. Clearly, a

mastication simulator cannot reproduce the large range of

mastication strategies observable in human. The appara-

tus is therefore assumed to reflect average mastication. A

well-designed apparatus can be employed to investigate

the kinetics of bolus formation in terms of particle size,

rheological behaviour, saliva impregnation, compound

release or biochemical modification, as a function of food

structure, food formulation and processing, or even to

simulate several dental or ageing conditions (Figure 1).

Mimicking oral steps using a kitchen food processor or a

static oral digestion apparatus, as is too often done in

digestion studies, cannot produce a realistic bolus for a

majority of solid foods, especially if considering specific

populations such as the elderly or infants, because it

cannot produce a particle size distribution and cannot

reproduce the dynamics of bolus formation. If these

complex oral steps are overlooked, data obtained from

bolus analyses in digestion studies or for texture assess-

ment during the whole masticatory sequence could be

biased.
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