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E nvironmental conditions that prevent organisms from 
dispersing (ie dispersal barriers) have far-reaching 

consequences for the organization of life on Earth. 
Dispersal barriers promote diversification and limit the 
distribution of populations and/or species (Holt et al. 
2013). Yet, because dispersal barriers are rarely addressed 

explicitly in biogeographical models (Engler et al. 2012), 
our ability to accurately forecast the future of biodiversity 
is impeded.

In the context of rapid global environmental change, 
dispersal barriers can affect ecosystems through variations 
in their strength or location. Human-induced habitat 
fragmentation creates novel dispersal barriers, leading to 
decreasing population sizes, decreased species richness, 
and altered ecosystem functions (Haddad et  al. 2015). 
Humans also circumvent or remove natural dispersal bar-
riers by promoting the spread of species via deliberate 
and inadvertent introductions (Hulme et  al. 2008) and 
changes in land use. Finally, the multiple effects of cli-
mate change (eg warming and acidification of oceans, 
changes in wind currents) create opportunities for dis-
persal barriers to rise or fall (Sorte 2013). The conse-
quences of global change on the dynamics of dispersal 
barriers are therefore difficult to predict, especially as 
many of these mechanisms can have synergistic or antag-
onistic effects.

Although many studies have reviewed the causes and 
consequences of dispersal limitation (eg Ronce 2007; 
Travis et al. 2013), few have specifically considered the 
dynamics created by dispersal barriers themselves. Here 
we review recent literature on the ecological and evo-
lutionary aspects of dispersal to highlight key elements 
of dispersal barrier dynamics in the face of global change 
(see WebReferences for the complete list of identified 
references). After defining dispersal barriers, we develop 
our synthesis into three points (Figure  1): (1) identi-
fying barriers most susceptible to change, (2) predicting 
species’ responses, and (3) designing species or ecosys-
tem management efforts to increase or reduce connec-
tivity, and to maintain adaptive potential; note that 
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Dispersal barriers have demographic, evolutionary, and ecosystem-wide consequences. With ongoing 
changes in the environment, some dispersal barriers will likely disappear while new ones will appear, and it 
is crucial to understand these dynamics to forecast species’ distributions and adaptive potential. Here we 
review recent literature on the ecological and evolutionary aspects of dispersal to highlight key dynamics of 
dispersal barriers in the face of global change. After defining dispersal barriers, we explain that a better 
understanding of their dynamics requires identifying the barrier types that are most susceptible to change 
and predicting species’ responses. This knowledge is a prerequisite for designing management strategies to 
increase or reduce connectivity, and maintain adaptive potential. Our intent is to motivate researchers to 
explicitly consider dispersal barriers in order to better forecast the dynamics of species and ecosystems 
subject to global change.
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In a nutshell:
•	� Dispersal barriers drive many important ecological processes 

(eg population viability, speciation)
•	� Such barriers are dynamic features that can vary in strength 

and location, and can be affected by human intervention 
and environmental variation; however, they are rarely taken 
into account explicitly in global change studies

•	� It is important to be able to predict where they will appear or 
disappear, to consider their impact on species’ distributions 
and gene flow, and to manage species or landscapes to miti-
gate their impacts

•	� Management options that account for population genetics 
need to be developed to help maintain the adaptive capacity 
of species when barriers disappear

continued on last page
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topics (1) and (2) serve as a basis to develop a frame-
work aimed at understanding the dynamics of dispersal 
barriers per se.

JJ Defining dispersal barriers

Dispersal barriers have to be defined functionally (Dennis 
et al. 2013): a dispersal barrier is any environmental feature 
that limits movement through space, and whose effects 
depend on the interaction with species- or individual-
specific traits. For instance, dispersal barriers include 
oceans for terrestrial species (Holt et  al. 2013; Burrows 
et  al. 2014) but can also be caused by high densities of 
conspecifics limiting immigration (De Meester et al. 2002).

To capture the full complexity of dispersal barriers, 
scientists must consider two aspects. First, dispersal can 
be seen as a three-stage process involving the departure 
of organisms from a natal or previous breeding site, a 
subsequent transience stage, and finally settlement at a 
new potential breeding site (Ronce 2007). Dispersal 
barriers can come into play at any of these stages (Dennis 
et al. 2013), though they are usually regarded as obstacles 
during the transience stage (eg a mountain between 
adjacent valleys).

Second, barriers are not binary, permanent obstacles, 
but rather are dynamic features that can vary in strength 
(recently illustrated in a proposal to extend the theory 
of island biogeography to account for surrounding habi-
tat in man-made landscapes; Mendenhall et  al. 2014) 
and extent whenever the environment changes (Zeigler 
and Fagan 2014), species evolve, or individuals adapt. 

As such, barriers can be affected by 
human intervention and by climate. In 
the following sections we emphasize 
how dispersal barriers (to departure, 
transfer, and settlement) may appear 
or disappear as a result of global change, 
and how species respond to dispersal 
barriers. Bringing together these two 
topics allows us to consider how the 
dynamics of dispersal barriers can be 
approached. Even though barriers to 
dispersal may also affect other types of 
movement, such as seasonal migration 
or daily foraging, these are beyond the 
scope of this review.

� Falling and rising barriers

Here we explore how the different 
components of global change may 
contribute to barrier dynamics either 
directly, or indirectly, by influencing 
dispersal vectors or range shifts.

Dynamics of physical barriers as a 
consequence of global change

Habitat fragmentation caused by land-use change is a 
well-documented mechanism by which dispersal barriers 
arise. Terrestrial systems have been particularly well 
studied, and deforestation (Haddad et  al. 2015), road 
construction (Figure  2a; van der Grift and van der 
Ree 2015), urbanization, and other forms of habitat 
fragmentation cause major dispersal limitations (Baguette 
et  al. 2013). Human regulation of freshwater flows and 
flooding patterns also has consequences for dispersal 
of aquatic organisms (Ozinga et  al. 2009).

Human activities can directly facilitate dispersal and, 
consequently, remove barriers for other species. 
Biological invasions are frequently caused by human 
activities that reduce or remove dispersal barriers, or 
that elicit direct physical changes in the environment 
(Hulme et  al. 2008). The introduction and subsequent 
removal of river dams create and destroy barriers for 
aquatic organisms (Branco et  al. 2014). The construc-
tion of the Suez Canal enabled colonization of the 
Mediterranean Sea by many Red Sea species via a 
short-circuiting of a previously extensive oceanic barrier 
(Galil 2007). More often, though, it is the direct and 
deliberate (eg for biological control or trade) or 
inadvertent  (eg via ship ballast water, air traffic) intro-
duction of species that result in human-facilitated 
changes in species’ dispersal barriers (see Hulme et  al. 
2008 for a review of invasion pathways).

Because many organisms rely on air and water flows 
for dispersal, any changes in climate have potentially 
large consequences for dispersal by wind and water 

Figure 1. Studying dispersal barriers in a changing world.
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(see review by Sorte 2013). In particular, long-distance 
airborne introduction of new species can be deter-
mined by unusual weather events, such as strong winds 
(de la Giroday et  al. 2012). Climate affects water 
movement and therefore barriers to dispersal in aquatic 
ecosystems, both vertically (eg via stratification) and 
horizontally (eg currents, eddies, fronts). Retreating 
glaciers and melting sea-ice open new habitats and 
dispersal pathways, by removing barriers that are acting 
at the transience or settlement stages (Clarke et  al. 
2005).

Barriers emerging from distributional shifts

As species’ distributions shift following environmental 
change, new dispersal barriers are likely to appear, such 
as those that shape species’ range limits (Anderson 
et al. 2009). These barriers may prevent organisms from 
tracking environmental changes sufficiently quickly 
selection to ensure survival. Delimiting a species’ 

climatic niche and calculating climate trajectories are 
powerful ways to identify this type of barrier (Burrows 
et  al. 2014). Some barriers can be easily inferred, such 
as large water bodies for terrestrial species (“coastal 
sinks” in Burrows et  al. 2014). Other barriers can be 
deduced from information about geomorphology, land 
cover, or marine currents, though complementary meth-
ods are often needed (see “Detecting the impact of 
barriers on dispersal patterns” section below).

Co-dispersal

Dispersal of many species depends on the movement 
of others. Modification of dispersal pathways for species 
that respond to global change may therefore have cas-
cading effects on other species that would not necessarily 
be affected otherwise. For instance, global change is 
having a radical effect on avian migration routes 
(eg  Visser et  al. 2009), which in turn will affect the 
dispersal of numerous organisms that rely on migrating 

Figure 2. Examples of dynamic barriers and associated management options. Road building (a) is a ubiquitous example of dispersal 
barriers threatening biodiversity, particularly in tropical forests as illustrated by this recent highway, constructed in the heart of the 
Congo Basin rainforest. Wildlife crossings (b) and other corridors are often proposed to recover connectivity between habitat areas. In 
Canada, the Elwha River dam (c), which negatively affected ecological processes (including fish dispersal), was removed in 2011 (d).
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birds as vectors for passive dispersal. Similarly, propagules 
dispersed by amphibians or fish between distant wetland 
sites are more likely to exhibit dispersal limitation than 
those dispersed by water birds (Viana et al. 2013), since 
amphibians and fish are generally more dispersal-limited. 
Given the current pace of extinctions, many species 
are losing their dispersal vectors (eg plants that rely 
on animals for dispersing pollen or seeds; Dirzo et  al. 
2014).

JJ Species’ responses

To gain insights into how species may respond to bar-
rier dynamics, researchers must determine the effects 
of rising and falling barriers on dispersal potential. We 
suggest two steps: (1) using patterns of dispersal lim-
itation to predict responses to changing barriers, and 
(2) assessing how plasticity and selection may change 
species’ responses to barriers.

Detecting the impact of barriers on dispersal 
patterns

Heterogeneity in species’ distributions over time and 
space has provided various opportunities for character-
izing dispersal limitations. Barriers are usually assumed 
to occur when a species is absent from a similar, con-
tiguous area offering suitable habitat (eg Naka et  al. 
2012). For instance, analyses of plant population trends 
suggest that important barriers to dispersal have been 
created in Europe owing to the loss of dispersal mech-
anisms for some plants, such as natural flooding regimes 
and mass movements of large mammals (Ozinga et  al. 
2009). Dispersal barriers may also be revealed when 
the spatial distribution of intraspecific phylogenetic 
lineages can be linked to past climatic changes (Peterson 
and Nyári 2008).

Geographic information system (GIS)-modeling can 
help to identify barriers when resistance of specific 
habitats to movement is known (McRae et  al. 2012). 
But predicting how species respond to dispersal barriers 
– based on species’ distributions – is complicated 
because doing so requires extensive mapping, correctly 
interpreting what “suitable habitat” or movement costs 
are (Zeller et  al. 2012), and knowing about dispersal 
distances and dynamics. For example, areas of high 
population density may themselves represent barriers 
for immigrants of ecologically equivalent competitive 
species (Urban and De Meester 2009). Density-
dependent dispersal complicates inferring dispersal 
barriers solely from distribution data, and we anticipate 
that future advances in this field of study may stem 
from improvements in dispersal modeling (through, for 
instance, individual-based models; McRae et  al. 2012) 
and molecular ecology, as movement and genetic data 
become more readily available.

Detecting dispersal barriers by identifying their effects 
on genetic structure is a key objective of landscape genet-
ics (Blair et  al. 2012; Baguette et  al. 2013). A major 
challenge for this approach is to distinguish genetic bar-
riers from the effects of genetic isolation by distance. 
Existing methods are able to detect genetic barriers to 
movement (eg linear barriers; Blair et al. 2012), such as 
rivers, roads, dams, or mountains (eg Dudaniec et  al. 
2012). These are examples of symmetric barriers: they 
constrain dispersal in both directions. However, asym-
metric genetic barriers also occur and may be common 
among organisms dispersed by abiotic means, such as by 
oceanographic circulation (eg Pringle et  al. 2011), cur-
rents of lotic systems (Pollux et al. 2009), or wind. Biotic 
drivers of asymmetrical gene flow may include priority 
or monopolization effects (eg where order of arrival of 
individuals or species in a new area has a long-term 
impact on genetic structures; De Meester et  al. 2002). 
Though rarely used in the context of barrier detection, 
asymmetric gene flow can be detected with methods that 
estimate population-specific backward migration rates 
(reviewed in Broquet and Petit 2009). The detection of 
barrier dynamics is further confounded by the temporal 
lag between ecological processes and population genetic 
structure (Landguth et  al. 2010). Such temporal mis-
matches can be avoided by using genetic methods that 
allow tracking dispersal events in real time (Broquet and 
Petit 2009).

Finally, because any rising or falling barrier is likely 
to affect numerous species, multi-species approaches are 
preferred when characterizing connectivity (Breckheimer 
et  al. 2014), and landscape genetic approaches are 
highly amenable to this (Whiteley et  al. 2014). The 
ability to sample assemblages and to characterize and 
assess signatures of local adaptation by high-throughput 
sequencing approaches will improve our understanding 
of how genetic barriers are formed (Rellstab et  al. 
2015). Distinguishing genetic barriers created by the 
landscape or by behavioral, life-history, or adaptive 
processes is a formidable challenge. Improvements in 
the understanding of dispersal limitations will obviously 
help to construct better predictive models of barrier 
dynamics.

Evolutionary changes in species’ response

Any aspect of dispersal (probability, success, direction, 
distance) can be seen as the product of the interaction 
of a disperser’s traits and its environment (Clobert 
et  al. 2009). Figure  3 illustrates how this interaction 
creates barriers and affects population dynamics. Traits 
vary between or within species, such that a barrier for 
one species or individual may not constitute a barrier 
for another species or individual of the same species 
(Clobert et  al. 2009; Travis et  al. 2013). These traits 
are not fixed, however, as organisms can react through 
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plastic and/or selection processes to 
developing or disappearing barriers.

Evolutionary responses to barriers 
can develop in two different direc-
tions. On the one hand, when the 
probability of crossing the barrier is 
close to zero, strong selection 
against dispersing individuals and 
subsequent reduction in dispersal 
propensity is expected, and has 
been documented in the case of 
severe fragmentation (Bonte et  al. 
2006). On the other hand, when 
crossing the barrier is possible and 
confers higher fitness, dispersal is 
selected for and can be expected to 
increase; this has been recognized 
in the case of climate change 
(Thomas et al. 2001) and invasions 
(Phillips et al. 2006) with selection 
for increased dispersal rate resulting 
in rapid colonization of newly avail-
able habitat (see also Travis et  al. 
2013).

In general, if individuals vary 
genetically in their ability to cross 
a dispersal barrier, it should result 
in non-random gene flow from one 
side of the barrier to the other 
(Edelaar and Bolnick 2012). This outcome will 
decrease genetic diversity among dispersers but might 
facilitate the colonization of novel habitats by specific 
individuals displaying a phenotypic disperser or colo-
nizer behavioral syndrome (Clobert et  al. 2009). In 
such syndromes, phenotypic and life-history traits that 
improve the ability to disperse and/or to settle in pre-
viously unoccupied habitats can be genetically corre-
lated with dispersal behavior (Cote et al. 2010). Taken 
together, plastic and evolutionary responses to changes 
in dispersal barriers imply that today’s dispersal rates 
and distances may be different from those of tomorrow.

JJ Forecasting barrier dynamics

Anthropogenic global change and its effects on range 
distributions and dispersal vectors increase the pace 
at which dispersal barriers may change. Because dis-
persal barriers have such profound effects on the 
species’ distributions, the probability that they will 
persist, and their adaptive potential, tools need to be 
developed that help forecast where those barriers will 
rise or fall. This requires combining global change 
scenarios with likely species’ responses. In addition, 
given that barriers usually affect entire communities, 
multi-species approaches will likely be needed to effec-
tively forecast the impacts of these barriers, despite 

the difficulties associated with community-level mod-
eling. Exploring dispersal strategies with spatially 
explicit individual-based models has already proven 
useful in recovering known dispersal barriers at a 
regional scale in the Pacific Ocean (Treml et al. 2015). 
Dispersal traits were not allowed to evolve in this 
study, which focused on passively dispersed species. 
The route taken in the modeling of spatial distribution 
shifts under global change (eg Bocedi et  al. 2014) 
shows how dispersal evolution can be taken into 
account, although such approaches are so far limited 
to single, actively dispersing species. A combination 
of functional grouping of species, spatially explicit 
modeling, dispersal trait evolution, and global change 
scenarios could serve as a basis for future developments 
(Marcot et  al. 2015).

JJ Management options

Notably, most recommendations for managing biodiver-
sity under climate change concern dispersal barrier 
mitigation (see Table 1 in Heller and Zavaleta 2009). 
The eco-evolutionary consequences of changing dispersal 
barriers are numerous, and can be understood directly 
by looking at the consequences of dispersal limitation 
(see Edelaar and Bolnick 2012; Baguette et  al. 2013). 
Although evaluating every possible effect of rising or 

Figure 3. Dispersal barriers are a result of the interaction between dispersers’ traits 
and the environment. Wing dimorphism in Roesel’s bush cricket (Metrioptera 
roeselii) demonstrates that environmental features that act as a dispersal barrier to 
short-winged individuals (a) may not act as a barrier to long-winged individuals (b). 
The frequency of these two phenotypes varies as the selection pressure for dispersal 
capacity changes (c) (Thomas et al. 2001), and local adaptation occurs on each side 
of the barrier.
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falling barriers on populations and species might be 
overwhelming, one thing is obvious: removing or main-
taining/creating barriers are two management options 
that should be considered, with the ultimate choice 
depending on context and management goals (Hermoso 
et  al. 2015).

Mitigating the effects of dispersal barriers: 
recovering connectivity

Management goals often involve alleviating the effects 
of a developing barrier; this may be achieved by ena-
bling source populations to increase emigration rates, 
creating dispersal corridors, moving target species (trans-
location or assisted migration), or removing barriers. 
Corridors help increase connectivity (Hale et  al. 2001; 
Gilbert-Norton et  al. 2010) and have therefore been 
used extensively, particularly in counteracting the neg-
ative effects of roads (wildlife crossings; Figure  2b; van 
der Grift and van der Ree 2015). However, their effi-
cacy depends on their implementation, and species-
specific assessments are still needed (van der Grift and 
van der Ree 2015). Translocations may be the only 
viable alternative for managing isolated populations, 
but they are difficult to implement and may increase 
biological invasion risk; as a consequence, they are 
still highly controversial (Webber et  al. 2011). Barrier 
destruction has become an option when the barrier is 
of anthropogenic origin and when the potential for 
restoring connectivity is well understood, as in the 
case of river dams (Figure  2, c and d). Yet the number 
of dams is so high that removals need to be prioritized 
based on ecological and economic constraints (Branco 
et  al. 2014).

When barriers disappear: what about adaptive 
potential?

Management of the results of disappearing barriers has 
concentrated on controlling invasive species. Invasion 
biology is a vast discipline that aims to produce man-
agement options through the modification of landscapes 
or by controlling invasion pathways (Hulme et al. 2008; 
Caplat et  al. 2012). Maintaining or even creating new 
barriers can have additional benefits, such as preventing 
disease spread or hybridization between native and 
introduced species or strains (Hermoso et  al. 2015). 
Adaptive potential, which is often presented as a key 
objective for climate-change adaptation (IPCC 2014), 
has been overlooked as a basis for management guide-
lines. We are not aware of any research focused on 
conserving population genetic structure when dispersal 
barriers are removed. What strategies could be developed 
to maintain or improve the capacity of species to track 
climate? In light of the rapid adaptation exhibited by 
range-shifting species (see “Evolutionary changes in 

species’ response” section above), it is worth considering 
that barriers could increase the selection toward dis-
persers and thereby increase the potential for range 
shifting. The genetic tools developed in the past decade, 
the recent interest in dispersal syndromes (Baguette 
et al. 2013), and research on managing micro-evolution 
(eg Rice and Emery 2003) are likely to improve our 
understanding of the role of dispersal barriers for adap-
tive potential.

JJ Conclusions

Dispersal barriers have important consequences for 
population dynamics and genetics, species’ distributions, 
and community composition, and therefore should be 
a key focus in evolutionary and conservation biology 
and biogeography. Here we have outlined the moti-
vational and conceptual means to identify where 
changes in dispersal barrier strengths and locations 
are likely to occur. Clearly, the interacting roles of 
extrinsic (environmental) and intrinsic (organismal) 
characteristics are mutually influential in defining the 
properties of a dispersal barrier. Both extrinsic and 
intrinsic characteristics may also alter under global 
change, causing the development or disappearance of 
dispersal barriers in different ways for different 
species.

This overview is intended to promote future research 
to identify, understand, predict, and manage the 
dynamics of dispersal barriers. We suggest a sequence 
of research objectives that should improve our capac-
ity to predict the effects of global change, based on 
(1) identifying emerging or disappearing barriers, 
(2) predicting the response of species, and (3) choos-
ing the appropriate mitigation strategy. Of these, the 
last is the most challenging, as it requires including 
knowledge on physical landscapes, species dispersal, 
and if possible, gene flow, in land management plans. 
In addition, the interaction between landscape features 
and species characteristics means that there will be 
no “one-size-fits-all” management approach, and only 
concerted efforts across taxa, biomes, and borders will 
provide the knowledge to manage dispersal barriers for 
conservation purposes and to maintain ecosystem 
function.
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