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HAK/KUP/KT K+ transporters have been widely associated with K+ transport
across membranes in bacteria, fungi, and plants. Indeed some members of the
plant HAK/KUP/KT family contribute to root K+ uptake, notably at low external
concentrations. Besides such role in acquisition, several studies carried out in
Arabidopsis have shown that other members are also involved in developmental
processes. With the publication of new plant genomes, a growing interest on
plant species other than Arabidopsis has become evident. In order to understand
HAK/KUP/KT diversity in these new plant genomes, we discuss the evolutionary trends
of 913 HAK/KUP/KT sequences identified in 46 genomes revealing five major groups
with an uneven distribution among angiosperms, notably between dicotyledonous and
monocotyledonous species. This information evidenced the richness of crop genomes
in HAK/KUP/KT transporters and supports their study for unraveling novel physiological
roles of such transporters in plants.
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INTRODUCTION

Potassium is an essential macronutrient for plants, making up to 2–7% of the plant’s total dry
weight (Evans and Sorger, 1966; Leigh and Wyn Jones, 1984). It fulfills a number of important
functions, such as enzyme activation, neutralization of negative charges and, more specific to
plants, the maintenance of cell turgor that leads to plant growth and organ movement (Marschner,
2012). As sessile organisms, plants need to take up K+ from the soil. This is firstly achieved by
root epidermal and cortical cells. Then, K+ is loaded in the stele and transported to the shoot
and distributed to the leaves (Ahmad and Maathuis, 2014; Wigoda et al., 2014). Potassium short-
and long-distance transport involves the movement of K+ through cell membranes, notably the
plasma membrane which in many cases occurs against steep concentration gradients (like in the
root–soil interface, for instance). In plants, there are fivemajor multi-gene families that encode K+-
permeable transport systems: (i) Shaker-like K+ channels, (ii) tandem-pore K+ (TPK) channels,
(iii) HAK/KUP/KT transporters, (iv) HKT transporters, and (v) cation-proton antiporters (CPAs;
Mäser et al., 2001). They have become the essentials of the K+ transport toolkit during terrestrial
plant evolution due to their widespread presence in different land plant lineages (Gomez-Porras
et al., 2012).
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Here we focus on the HAK/KUP/KT (High-Affinity
K+/K+ UPtake/K+ Transporter) transporter family. Plant
HAK/KUP/KT transporters were first identified in barley
and Arabidopsis (Quintero and Blatt, 1997; Santa-María
et al., 1997; Fu and Luan, 1998; Kim et al., 1998) from their
homology to bacterial KUP and fungal HAK transporters
(Schleyer and Bakker, 1993; Bañuelos et al., 1995). Due to the
different acronyms used in these early reports, the composite
name of HAK/KUP/KT is widely used to refer to the whole
family in plants. Plant HAK/KUP/KT proteins possess 10–15
transmembrane (TM) segments with both N- and C-termini in
the intracellular side of the membrane, the latter being much
longer (Rubio et al., 2000; Gomez-Porras et al., 2012). They have
been widely shown to mediate K+ fluxes when expressed in K+-
uptake deficient bacteria or yeast. Moreover, plant HAK/KUP/KT
proteins differ in their affinity for K+ and can mediate cation
influx as well as efflux (Fu and Luan, 1998; Rubio et al., 2000;
Senn et al., 2001; Bañuelos et al., 2002; Garciadeblas et al., 2002;
Ahn et al., 2004). Different studies reported that HAK/KUP/KT
transporters poorly discriminate between K+, Rb+, and Cs+
and are inhibited by NH4

+ (Santa-María et al., 1997; Rubio
et al., 2000; Bañuelos et al., 2002; Martínez-Cordero et al., 2004).
Plant HAK/KUP/KT proteins exhibit a great diversity in terms
of subcellular localization (plasma membrane, tonoplast, or
other endomembranes; Bañuelos et al., 2002; Jaquinod et al.,
2007; Qi et al., 2008; Osakabe et al., 2013; Rigas et al., 2013) and
expression patterns (root meristems, vascular tissues, guard cells,
fruits, or specialized organs such as flytraps; Elumalai et al., 2002;
Ahn et al., 2004; Vicente-Agullo et al., 2004; Davies et al., 2006;
Osakabe et al., 2013; Scherzer et al., 2015).

Regarding their functions, some members of the plant
HAK/KUP/KT family contribute to root K+ uptake, notably
at low external concentrations (high-affinity range) through
active K+ transport (Nieves-Cordones et al., 2014). Such high-
affinity K+ transporters are expected to be H+/K+ symporters
(Rodriguez-Navarro et al., 1986; Maathuis and Sanders, 1994),
but experimental support for this notion is still required.
Several studies carried out in Arabidopsis have shown that
other members are involved in the regulation of cell size, auxin
distribution or osmotic stress adaptation (Very et al., 2014). Such
three roles highlight the great importance and role diversity
of HAK/KUP/KT transporters in plant physiology besides K+
acquisition.

During the last two decades, research on Arabidopsis has
notably accelerated the acquisition of information concerning the
molecular and physiological mechanisms around K+ transport
and HAK/KUP/KT proteins. This has been possible mainly
because of the availability of its genome sequence and the use
of T-DNA insertion lines to knock-out gene function. In recent
years, genome sequences from many plant species have become
available. This, together with the establishment of genome-
editing techniques, such as Transcription Activator-Like Effector
Nucleases (TALEN) or Clustered Regularly Interspaced Short
Palindromic Repeats-Cas system (CRISPR-Cas) opens the door
to investigate HAK/KUP/KT gene function in crops much faster
(Andersen et al., 2015). It is true that research on crop species
can benefit from the information gained in Arabidopsis, but the

study of certain physiological processes, such as the development
of a fleshy fruit, need to be carried out in appropriate species. In
order to orientate further research in HAK/KUP/KT function in
crop species, we present a multi-species phylogenetic analysis of
plant HAK/KUP/KT proteins (comprising 913 members from 46
sequenced genomes) evidencing the presence of five major clades
and remarkable specificities depending on the angiosperm group
considered.

HAK/KUP/KT PHYLOGENY IN
ANGIOSPERMS

Phylogenetic relationships within the HAK/KUP/KT family have
consistently shown the existence of several clades in angiosperm
species, but with weak biological support for such distribution
(Rubio et al., 2000; Gupta et al., 2008; Gomez-Porras et al., 2012;
Very et al., 2014). Since the number of sequenced angiosperm
genomes, and thus that of HAK/KUP/KT available sequences,
has notably increased in the last years, we wanted to assess the
robustness and the species distribution of the different clades. For
that purpose, we made an inventory of HAK/KUP/KT protein
sequences from 43 angiosperm genomes plus three outgroup
species (one gymnosperm, Picea abies, and two primitive non-
seed plants Selaginella moellendorffii and Physcomitrella patens;
Supplementary Table S1). The phylogenetic tree obtained by
maximum likelihood for such sequences revealed five major
clades (I to V) where I to IV followed previous numeration
(Rubio et al., 2000; Gupta et al., 2008; Gomez-Porras et al.,
2012; Very et al., 2014) (Figure 1). Representative HAK/KUP/KT
transporters that have been functionally characterized are found
throughout the tree. Several subgroups were identified in clade
I (Ia and Ib) and in clade II (IIa, IIb, and IIc). Then, we
assessed the HAK/KUP/KT sequence distribution in the different
analyzed species and the angiosperm orders to which they belong
(Table 1). Results from the common ancestor of dicotyledonous
andmonocotyledonous species, Amborella trichopoda, evidenced
the presence of HAK/KUP/KT transporters in that ancestor in
all of the aforementioned clades. They also suggested that clade
I separation into Ia and Ib occurred at the beginning of the
angiosperm lineage since A. trichopoda has Ia and Ib transporters
and outgroup sequences belonging to clade I were not placed in
any of this two major subclades. It is worth to note that clade Ib
only contained sequences from dicotyledonous species, but not
from monocotyledonous ones (Figure 1, Table 1). This result
suggests that clade Ib disappeared in the monocotyledonous
lineage because, as stated before, it was already present in
the A. trichopoda genome. Within HAK/KUP/KT transporters
from dicotyledonous genomes, different transporter distributions
among orders were identified and, in some cases, groups of
related species displayed empty clades that are indicative of
important events in the evolution of HAK/KUP/KT transporters
in dicotyledonous orders. Indeed, in Solanales, clade IIb
transporters were not identified, while in Cucurbitales it
was the case for clade IV. The analysis of HAK/KUP/KT
transporters from Brassicales species provided striking results:
clades Ib and IV were absent in HAK/KUP/KT transporters from
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FIGURE 1 | Phylogenetic tree of the HAK/KUP/KT family in plants containing 913 sequences from 46 fully sequenced angiosperm genomes plus
three outgroups (Picea abies, Selaginella moellendorffii, and Physcomitrella patens). Protein sequences fall into five main clades (I to V) where V is a novel
clade. Some sub-clades within clade I contain only sequences from dicotyledonous (green lines) or monocotyledonous (red line) species. Asterisks represent
outgroup sequences, which did not fall into main clades. Letters depict sub-clades within clades I and II. Representative members within the different clades are
shown. Retrieved sequences from public genomic resources were ascribed to the HAK/KUP/KT family by using Orthomcl (http://orthomcl.org/orthomcl/). Protein
organization was evaluated with MEME suite website (http://meme-suite.org/). Then, sequences were aligned by MAFFT (http://mafft.cbrc.jp/alignment/server/) and
then alignment curation by G-block analysis in Seaview was applied prior to tree building. Tree building was constructed with MEGA6 by maximum-likelihood
analysis. The scale bar represents number of substitutions per site. See also Supplementary Table S1.

the Brassicaceae family (eight genomes, including Arabidopsis
thaliana) while in Carica papaya (belonging to Brassicales but
not to such family) had one transporter belonging to clade Ib
and three in clade IV. Thus, a loss of both clades could have
taken place during the evolution of Brassicaceae. At the outgroup
level, HAK/KUP/KT transporters from Physcomitrella patens
were found in clade I, IV, and V whereas 13 sequences from
this organism fell apart in two separate branches independent
from the five major clades. With respect to Selaginella
moellendorffii and Picea abies, we did not observe sequences
in clades IIa and IIb in the former and in clade III in the
latter.

Despite the number of HAK/KUP/KT transporters whose
physiological role has been established is relatively small,
some conclusions can be drawn from the present analysis.

Transporters involved in root high-affinity K+ uptake both
from dicotyledonous or monocotyledonous species fall into clade
Ia: HvHAK1, AtHAK5, OsHAK1, CaHAK1, SlHAK5/LeHAK5,
and EsHAK5/ThHAK5, for instance (Santa-María et al., 1997;
Bañuelos et al., 2002; Martínez-Cordero et al., 2004; Nieves-
Cordones et al., 2007; Rubio et al., 2008; Aleman et al., 2009).
However, recent work on rice OsHAK5 and OsHAK21, which
also belong to clade Ia, showed more specialized functions when
compared to the typical high-affinity K+ transporter OsHAK1
(Chen et al., 2015). For instance, OsHAK5 and OsHAK21 were
involved in K+ transport to aerial parts during K+ deficiency
or salt stress, respectively (Yang et al., 2014; Shen et al.,
2015). Since rice and other grasses belonging to the Poaceae
family exhibited a higher number of clade Ia HAK/KUP/KT
sequences than dicotyledonous genomes (10.29 vs. 1.84), it could
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TABLE 1 | HAK/KUP/KT gene distribution among angiosperm orders and outrgroups.

Group Order Species Clade

Ia Ib IIa IIb IIc III IV V Total

Amborellales Amborella trichopoda 1 2 2 1 4 1 2 2 15

Dicotyledons Solanales Solanum lycopersicum 2 3 3 0 5 2 2 4 21

Solanum tuberosum 2 2 3 0 4 2 0 2 15

Lamiales Mimulus guttatus 0 3 2 0 4 1 1 2 13

Vitales Vitis vinifera 1 4 2 2 5 1 1 2 18

Fabales Cicer arietinum 1 1 2 2 4 1 1 3 15

Glycine max 3 1 6 3 10 3 1 5 32

Medicago truncatula 3 2 2 3 4 3 0 3 20

Phaseolus vulgaris 2 0 3 1 6 2 1 3 18

Rosales Fragaria vesca 3 1 2 2 4 2 3 0 17

Malus domestica 3 6 0 3 7 3 2 4 28

Prunus persica 2 1 1 2 4 3 0 2 15

Cucurbitales Cucumis melo 1 4 1 1 4 2 0 2 15

Cucumis sativus 1 4 1 1 4 2 0 2 15

Malpighiales Jatropha curcas 1 2 2 1 3 1 1 1 12

Linum usitatissimum 1 2 2 1 9 5 0 3 23

Manihot esculenta 1 5 3 1 7 1 1 2 21

Populus trichocarpa 3 1 3 4 8 4 2 4 29

Ricinus communis 1 2 2 1 4 1 1 2 14

Salix purpurea 3 1 3 2 6 4 1 3 23

Myrtales Eucalyptus grandis 6 9 2 1 6 3 1 2 30

Sapindales Citrus clementina 1 5 2 1 3 2 1 2 17

Citrus sinensis 1 3 2 2 3 2 1 2 16

Malvales Gossypium raimondii 2 3 3 3 7 2 1 5 26

Theobroma cacao 1 3 2 3 4 1 1 2 17

Brassicales Arabidopsis halleri 2 0 2 1 3 3 0 3 14

Arabidopsis lyrata 3 0 2 1 3 3 0 3 15

Arabidopsis thaliana 1 0 2 1 3 3 0 3 13

Boechera stricta 1 0 2 1 3 3 0 3 13

Brassica rapa 1 0 3 2 4 6 0 3 19

Capsella grandis 1 0 2 1 3 3 0 3 13

Capsella rubella 1 0 2 1 4 3 0 3 14

Eutrema salsugineum 1 0 2 1 3 4 0 3 14

Carica papaya 0 1 1 2 4 2 3 1 14

Ranunculales Aquilegia coerulea 3 0 2 2 3 1 4 2 17

Monocotyledons Zingiberales Musa acuminata 0∗ 0 4 3 7 5 1 3 24

Poales Brachypodium distachyon 6 0 3 1 7 3 5 2 27

Hordeum vulgare 5 0 2 0 4 2 0 2 15

Oryza sativa 8 0 3 1 5 3 4 3 27

Panicum virgatum 21 0 6 2 12 6 4 6 57

Setaria italica 12 0 3 1 5 3 3 3 30

Sorghum bicolor 11 0 4 1 5 3 2 4 30

Zea mays 9 0 3 1 5 3 3 3 27

Outgroups Species Cluster

I IIa IIb IIc III IV V Total

Gymnosperms Picea abies 5 1 1 3 0 1 2 13

Lycopodiophytes Selaginella moellendorffii 2 0 0 2 4 2 1 11

Bryophytes Physcomitrella patens 1 0 0 0 0 2 2 18∗∗

Clades where no sequence was found in a given species are shown in red. ∗There is one protein belonging to cluster I but it is located in a different branch from Ia and
Ib. ∗∗Thirteen sequences fell apart from the five major clades described for angiosperms.
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be interpreted as a specific diversification of Ia high-affinity
K+ transporters in Poaceae species. It is worth to note that
disruption of the OsHAK1 gene led to a dramatic decrease in
grain yield (Chen et al., 2015), whereas such a phenotype has
not been observed in the AtHAK5 KO mutant (Nieves-Cordones
and Rubio, unpublished results). It would be interesting to
know which is the contribution to grain yield of OsHAK1-
like transporters from other cereal species, since they could be
good targets to improve food production. Regarding clade Ib
HAK/KUP/KT transporters, two reports have provided us with
some information about this group. First, VvKUP1/VvHAK1-
a from grapevine was shown to be expressed in flowers and
grape berry skin, showing its highest expression level in the latter
tissue during the pre-veraison stage (Davies et al., 2006). Second,
DmHAK5 from Dionaea muscipula (Venus flytrap) contributes
to high-affinity K+ uptake in digesting traps (Scherzer et al.,
2015). Further characterization of clade Ib transporters will
clarify whether they are specialized in transporting K+ in tissues
other than roots. Interestingly, recent reports showed that some
clade I HAK/KUP/KT transporters, including DmHAK5 (clade
Ib), SlHAK5, CaHAK1, and AtHAK5 (clade Ia), are activated by
CIPK23-CBL1/9 complexes, which provide novel insights into
the regulation of high-affinity K+ transport (Ragel et al., 2015;
Scherzer et al., 2015). Moreover, such regulatory network offers
a new alternative that could be used to enhance K+ uptake in
tomato and pepper plants.

Clade II has been associated in Arabidopsis with
developmental processes, especially those which demand turgor-
driven cell expansion. In clade IIa, there is AtKUP4/TRH1 (Tiny
Root Hairs 1) which contributes to the polar localization of auxin
transporters in the root apex that, in turn, establishes auxin
gradients necessary for both gravitropic responses and root hair
formation (Rigas et al., 2001, 2013; Vicente-Agullo et al., 2004).
The first cloned HAK/KUP/KT transporter from Arabidopsis,
AtKUP1/KT1, belongs to clade IIb, but no physiological role has
been attributed to it so far (Quintero and Blatt, 1997; Fu and
Luan, 1998; Kim et al., 1998). In clade IIc, there are AtKUP2/6/8
which have been shown to negatively regulate plant growth
and cell size by mediating K+ efflux rather influx (Osakabe
et al., 2013). Analysis of an AtKUP2/6/8 triple null mutant also
evidenced impaired ABA responses in guard cells and lateral root
cells. Phosphorylation of AtKUP6 by OST1 connected osmotic
stress adaptation to the regulation of K+ fluxes mediated by
HAK/KUP/KT transporters.

With respect the other clades, GhKT1 from cotton (clade
III; Gossypium hirsutum) was specifically upregulated during
cotton fiber elongation (Ruan et al., 2001). Regarding clade IV
transporters, only two have been characterized so far. LjKUP
from Lotus japonicus was highly expressed during late nodulation
development and complemented K+ uptake deficient bacteria
(Desbrosses et al., 2004). On the other hand, PpHAK13 from
the outgroup species Physcomitrella patens is a high-affinity Na+
transporter, with low K+ permeability, that was repressed under
the presence of high Na+ concentrations (Benito et al., 2012).
The latter transporter raises the question whether other plant
HAK/KUP/KT transporters are permeable to Na+ at low external
concentrations. Finally, belonging to clade V, PpHAK1 from

Physcomitrella patens was shown to regulate steady K+ content
and plant morphology under non-K+-limiting conditions and
to contribute to high-affinity Rb+ and Cs+ uptake during K+
starvation (Garciadeblas et al., 2007).

Besides their physiological roles, subcellular localization of
HAK/KUP/KT transporters has been assessed in some cases and
it was shown to be quite diverse. Furthermore, there is not a clear
relationship between phylogenetic clade to which a transporter
belongs and its targeted cell membrane. For instance, several
members are targeted to the plasmamembrane, such as AtHAK5,
OsHAK1, OsHAK21, OsHAK5 (clade I; Qi et al., 2008; Yang et al.,
2014; Chen et al., 2015; Shen et al., 2015), AtKUP6 (clade IIc;
Osakabe et al., 2013), and LjKUP (clade IV; Desbrosses et al.,
2004) while others are targeted to the tonoplast (OsHAK10,
clade IIc, and AtKUP5 clade V; Jaquinod et al., 2007; Bañuelos
et al., 2002) or endoplasmatic reticulum-like endomembranes
(AtKUP4/TRH1; Rigas et al., 2013).

CONCLUSION AND PERSPECTIVES

Plant HAK/KUP/KT K+ transporters have been shown to
play key roles in plant physiology like K+ acquisition, abiotic
stress adaptation and developmental processes. Interestingly,
the fact that HAK/KUP/KT transporters are permeable to K+
only explains a part of the phenotypes exhibited by the plants
lacking them as it is the case of AtHAK5 or AtKUP4/TRH1,
where energization of AtHAK5-mediated K+ uptake or the
relationship between auxin distribution and AtKUP4/TRH1
activity deserve further attention. From our analysis, it can be
deduced that the contribution of HAK/KUP/KT K+ transporters
to plant physiology may substantially differ among species,
especially when entire clades are missing in a given group of
species as shown. Therefore, Arabidopsis can still be a good
model for certain well conserved roles of HAK/KUP/KT K+
transporters, AtHAK5 for example, but research on other species,
notably crops, is required: (i) to study transporters belonging
to clades Ib or IV (missing in the Brassicaceae family) or
clades where significant gene duplication occurred (clade Ia in
monocots) and (ii) to investigate physiological aspects which are
absent in Arabidopsis (fleshy fruit development, for instance).
Besides, some HAK/KUP/KT proteins can be already regarded
as interesting candidates for future crop improvement strategies,
for example GhKT1 (specifically upregulated during cotton fiber
elongation), VvKUP1/VvHAK1-a (highly expressed during the
preveraison stage) and OsHAK1 (critical for rice grain yield).
In line with this statement, the peach fruit is the organ where
more HAK/KUP/KT genes are expressed in this species (Song
et al., 2015). Further research on this transporter family will
contribute to understanding how we can engineer plants for food
and renewable biomass production.
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