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Abstract
We consider analytically the non-cooperative behavior of many private property
owners who each controls the stock of a public bad, which can grow and spread
across spatial areas. We characterize the conditions under which private prop-
erty owners will control or eradicate, and determine how this decision depends on
property-specific environmental features and on the behavior of other landown-
ers. We show that high mobility or lower control by others result in lower private
control. But when the marginal dynamic cost of the bad is sufficiently large, we
find that global eradication may be privately optimal – in these cases, eradication
arises in the non-cooperative game and is also socially optimal so there is, in effect,
no externality.
Keywords: Public Bad, Spatial Externality, Invasive Species, Spread,
Eradication

JEL classification: H41, Q24, Q57, R12, R14

1. Introduction

The management of public bad resources represents a ubiquitous challenge with
real-world policy implications. Applications are numerous and include diverse re-
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sources such as infectious diseases, fire, invasive species, antibacterial resistance,
noxious advertising, cyberspace viruses, and aquaculture pathogens, among many
others. Controlling these nuisances is complicated by their mobility and renewa-
bility since they may grow and spread to surrounding areas in subsequent periods,
thus imposing future damages in other locations. While the literature often focuses
on socially-optimal management,1 issues that arise when individual property own-
ers each make decentralized decisions have received less attention for renewable
public bads. Indeed, spatial connectivity induced by the mobility of these resource
influences private decisions, which collectively can have important consequences
for control or eradication across the spatial domain.2

Our objective is to provide a general, theoretical treatment of non-cooperation
over renewable, mobile public bads. This has important parallels with the canon-
ical transboundary pollution problem where spread of the bad is also a prominent
feature. But because our focus is on renewable public bads, we must also account
for resource growth. This class of bads, which includes applications such as insect
pests on agricultural fields, infectious diseases in countries, and head lice in an ele-
mentary school classroom, differs from the transboundary pollution problem in one
more fundamental way. For these public bads, eradication is a viable policy option;
this type of corner solution has not been the focus of models of cross-jurisdictional
emissions of, say carbon or sulfur dioxide, where global (or even local) eradication
is not viewed as a policy-relevant option.

With these intended contributions in mind, we note that a growing, though
disparate, literature contributes to the issue of public bad management from the
spatial perspective. The literature on optimal control of infectious diseases com-
monly introduces a transmission parameter to capture the rate of spread, but
typically does not model the spatial dimension of disease transmission (exceptions
are noted in the review by Arino and den Driessche (2006)). An early literature
on transboundary pollution, such as acid rain, sheds light on control of pollutants
that are not only deposited in the emitting country, but transported by wind,
or water, across borders. Calvo and Rubio (2012) provide an informative survey
on dynamic models of international environmental agreements when pollution is
transboundary, and Jorgensen et al. (2010) focus on dynamic pollution games.
However, the transport issue is rarely considered. In van der Ploeg and de Zeeuw
(1992) a quadratic welfare function is maximized, considering separate pollution

1Among others, Lichtenberg and Zilberman (1986) and Archer and Shogren (1996) seek to
optimally control a pest population, other biological invasions (Shogren, 2000; Olson and Roy,
2002) or infectious diseases (Wiemer, 1987; Gersovitz and Hammer, 2004). Adda (2015) provides
an evaluation of health-related policies relying on cost-benefit analysis.

2Brito et al. (1991) and Geoffard and Philipson (1997) focus on the economics of vaccination
(but not eradication) and abstract from issues raised by strategic interactions and heterogeneity.
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levels in each country, and assuming that a proportion of the emissions spreads
to other countries while the rest of the emissions remain at home. They contrast
the open-loop Nash equilibrium and the Markov-perfect equilibrium. Mäler and
de Zeeuw (1998) explicitly describe a matrix of transport coefficients of emissions
and adopt specific functional forms (as do Kaitala and Pohjola (1988) and Escapa
and Gutièrrez (1997)), to provide numerical simulations to discuss the gains from
cooperation.

A distinction between pollution problems and the resource problems considered
here is that the latter class allows for endogenous growth of a renewable public bad.
For example, it has become common recently to examine the optimal management
of an exotic species that is spatially distributed across the landscape. A sole owner
accounts for all spatial connections and optimizes her control efforts across space to
derive the optimal design of policies; provided that all externalities are accounted
for, such a sole owner achieves the socially-optimal outcome. In this setting some
authors focus on the question of prevention vs. control: Leung et al. (2002) find,
for zebra mussels, that ex-ante prevention is more efficient than ex-post control,
while Burnett et al. (2008) use the case of the Brown Tree snake in Hawaii, af-
ter having theoretically characterized the paths of expenditures and damages, to
analyze the optimal integrated management of prevention and control. Others con-
trast long-run solutions from optimal control systems and solutions from a static
optimization problem (Finnoff et al., 2010), or uniform vs spatially-optimized pol-
icy (Albers et al., 2010). Epanchin-Niell and Wilen (2012) numerically examine
optimal policies over a range of spatial and ecological configurations, and stress the
influence of these qualitative characteristics on policies. While some purely theo-
retical works exist (e.g. Blackwood et al. (2010)), most papers conduct numerical
simulations either in stylized systems or in systems loosely parameterized by em-
pirical observations because analysis tends to grow in complexity with the spatial
domain. These focused numerical applications help establish insights in specific
settings, but they also raise more general hypotheses that can be addressed by
theory.

A second strand of literature explicitly introduces the non-cooperative nature
of private property owners, and emphasizes mechanisms that can be used to induce
cooperation. Grimsrud et al. (2008) show that coordination is more likely with
low levels of invasion in a two-agent dynamic model. Epanchin-Neill and Wilen
(2015) examine how different degrees of cooperation affect invasion and find that
the degree of cooperation is related to control costs: less cooperation is required to
achieve high control when costs are low relative to damages. Our analysis follows
this line of research, but we rather provide a game-theoretical approach with many
economic agents instead of conducting numerical analysis of a particular system.
Our model also allows for heterogeneous landowners, for example with respect to
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costs, damages, and spread rates. We find that these sources of heterogeneity
can significantly alter individual landowner incentives over control or eradication,
suggesting that heterogeneity can play an important role in economic outcomes.
Our theoretical approach allows us to home-in on the effects of different patterns
of spread and infestation on non-cooperative outcomes.3 This helps to generalize
previous numerical results.

Modeling non-cooperation in a dynamic spatial context is a non-trivial task.
As emphasized in the literature on the canonical transboundary pollution model,
there are several non-cooperative solution concepts that may be used in dynamic
settings. Open-loop Nash equilibrium (OLNE) and Markov-perfect (or feedback)
Nash equilibrium (MPNE) are the most commonly used approaches. One critique
of the OLNE concept is that it relies on unrealistic information sets and an infinite
period of commitment (van der Ploeg and de Zeeuw, 1992). In many settings, it
may be more realistic to allow agents to a priori condition the current management
decisions on the state variable. Under that assumption, the appropriate non-
cooperative solution concept is the MPNE, which corresponds to a zero length
of commitment (Reinganum and Stokey, 1985) and is subgame-perfect. In our
model, we adopt the MPNE solution concept, and thus assume that landowners
can condition their current levels of control on the stock of the public bad. Other
solution concepts have been used in natural resource management problems, such
as the incentive equilibrium or the trigger-strategy equilibrium: the credibility of
such strategies often raises important issues (see for instance Breton et al. (2008));
these issues are avoided with the MPNE.

Broadly speaking, the literature on network games provides interesting insights
highlighting that players’ behaviors are influenced by those around them (Jackson
and Zenou, 2014). Indeed, spread rates of a resource, disease transmission param-
eters, or a network structure represent an adjacency matrix linking agents and
serve as a vector to impact their payoffs. This literature helps to characterize how
individuals’ decisions may depend on interactions across players. For example,
biological invasions are often considered a “weakest-link” public good where the
level of control is determined by the weakest contributor (Burnett, 2006). Our
theoretical framework also has ramifications for “reputation” spillovers, the prop-
agation and transmission of reputation between economic agents. Winfree and
McCluskey (2005) analyze reputation as a dynamic common-property resource,
and assume that the collective reputation (the common-property good) affects
firms’ profits. This public good depends on the sum of the level of quality strate-
gically chosen by firms, and the spread of consumer learning on firms’ qualities,

3Barrett (2003) develops an insightful model of global disease eradication within a static and
homogeneous setting.
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following the structure introduced by Shapiro (1982). Consequently the higher
the spread level, the more the growth rate of collective reputation increases over
time. Following this line, as a negative reputation will injure firms’ profits, our
study may give theoretical insights on the role of transmission coefficients (spatial
parameters) in reputation propagation, and provide a different setting to ana-
lyze the emergence of cooperation to control or eradicate bad reputation. Indeed,
the cleansing of bad reputation has become big business; large companies (such
as “reputationdefender.com”) now specialize in eradicating one’s negative online
reputation. Brandt et al. (2003) also consider a spatial public good to analyze rep-
utation. Much of this literature adopts experimental approaches (e.g. Palfrey and
Prisbrey (1996)). Although informative, and suggestive of mechanisms that may
be applied more broadly, these papers generally lack theoretical findings so gen-
eral lessons, and the conditions under which they arise, are difficult to ascertain.
This paper contributes by providing a general analysis of decentralized public bad
management in a spatial setting.

Our model is a theoretical treatment of the non-cooperative behavior across
many heterogeneous landowners controlling a mobile, renewable public bad. One
of our focal contributions is to allow for, and specifically analyze the interesting,
and policy-relevant corner solution of eradication. We employ the model to derive
general results such as the conditions under which control and eradication will
emerge, those under which non-cooperation results in a socially optimal pattern
of control, and the effects of system characteristics (e.g. the rates of spread) on
non-cooperative outcomes. Much of the literature emphasizes the spectrum of
policy options to manage public bads, including prevention and cure (Leung et al.,
2002) and detection and control (Kaiser and Burnett, 2010), but few authors
focus on eradication as a policy option (Olson and Roy, 2002; Burnett et al.,
2006). This option is often assumed to be too expensive or too complex (Gersovitz
and Hammer, 2005; Regan et al., 2006), yet hundreds of well-known examples
of eradication exist, suggesting that real-world circumstances may exist under
which it is economically viable. We address this possibility by characterizing the
conditions under which eradication is either socially optimal, or is an outcome of
non-cooperative behavior across all spatially connected properties.

The class of problems we tackle is most closely aligned with Fenichel et al.
(2014), who focus on the decision of a single landowner about the timing of spray
intervals to combat a citrus pest; this is framed as an optimal stopping problem.
In contrast, our model explicitly treats the dynamic non-cooperative behavior of
many landowners who each controls (or possibly eradicates) the public bad on
her property. Fenichel et al. (2014) use numerical simulations to shed light on
the specific case of a pest infecting a stock of citrus trees. This is helpful for
providing numerical results and insights for the problem at hand, but makes it
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difficult to draw general conclusions or to understand the conditions under which
those conclusions hold up. In contrast, our model is entirely theoretical, so we are
able to provide general results and can prove the conditions under which they will,
or will not, hold. This also allows us to examine a range of comparative statics
and other results relating to economic and resource heterogeneity. Finally, because
we are able to examine if, and under what theoretical conditions, eradication will
arise, we address a broader array of possible policy responses than in much of the
literature.

Our model contains an arbitrary number of spatially-distinct properties and
discrete-time resource dynamics. Here properties could be spatial areas, individ-
ual people, countries, or other jurisdictions. Following the tradition to contrast
decentralized decisions with optimal management (e.g. Calvo and Rubio (2012),
Jorgensen et al. (2010), or Mäler (1989)), we analyze decentralized owners’ incen-
tives and the equilibrium behavior across those owners. In our theoretical model we
also solve for the socially-optimal control pattern across space and time. While we
think this is a contribution in its own right, we regard it primarily as a benchmark
case against which to compare decentralized equilibria across non-coordinating
property owners.

Aside from developing a tractable analytical framework for addressing mobile
public bads, our results make three main analytical contributions. First, we show
how the private trade-off between controlling the expansion of a public bad on
one’s own property and eradicating it depends on the characteristics of its spread.
Furthermore, whether global eradication over the entire domain emerges in the
decentralized system depends on features such as the degree of patch connectivity.
Second, in general we find the intuitive result that non-cooperative property owners
will provide too little control of the public bad. This result accords with Fenichel
et al. (2014) and is intuitive because private property owners will consider only
their local costs and benefits of control, but will disregard the consequences of
their actions on adjacent owners. We also show analytically how the extent of this
externality is driven by heterogeneity and other features of the problem.

Our third main contribution involves involves inducing cooperation across landown-
ers. Landowner behavior in this model depends both on the current marginal costs
of damage and control, and on the discounted future costs; we will refer to the sum
of these effects as the marginal dynamic cost; it is what drives marginal control
decisions for landowners in our model. If the marginal dynamic cost inflicted by
the stock is low, neither the sole owner nor the non-cooperative private property
owners will engage in much control, so little is to be gained from cooperation
among private owners. In that case, private property delivers a near first-best
outcome. But as the marginal dynamic cost increases, private property owners in-
crease their control, but not as much as the sole owner of all properties would have

6



liked. Thus, as the marginal dynamic cost grows, so does society’s benefit from
cooperation among property owners. This intuitive finding suggests that as the
size of the externality grows, so does the importance of government intervention
(or private ordering) to internalize the externality. But we find that this result
holds only for moderate levels of the marginal dynamic cost. If these costs grow
enough, then private property owners will eradicate on their own property; for ex-
ample, you do not tend to observe poison ivy or rattlesnakes in urban backyards,
nor do most industrialized countries tolerate flare-ups of infectious diseases such as
measles or malaria. These public bads tend to be eradicated even without regard
for others’ welfare. We show that when eradication arises in the non-cooperative
game, then it is also socially efficient. Thus, if the marginal dynamic cost is suf-
ficiently large, the cooperative and non-cooperative solutions converge, and there
is no additional value from government intervention or costly cooperative mecha-
nisms across landowners. This finding suggests that government intervention may
be justified (to coordinate the actions of private land owners), but only in cases
of intermediate marginal dynamic costs. Thus, our third main contribution is to
completely characterize the gains from inducing cooperative behavior among the
non-cooperative property rights holders. Naturally, to the extent that properties
are heterogeneous, the side payments required to achieve cooperation will differ
across space. We derive the magnitude of these side payments as a function of
damage, cost, spread, and growth.

That eradication may emerge on some, or even all, properties is not just a
theoretical curiosity. Numerous examples exist of successful eradications of inva-
sive species on iconic island chains such as the Galapagos or Channel Islands. In
New Zealand, Norway rats (which are both ecologically and economically dam-
aging) have been eradicated at relatively small cost (Pimentel, 2011). Among
infectious diseases, the most famous global eradication was smallpox in 1980, but
country-specific eradications of diseases such as malaria and ebola are numerous.
The American West undertook a massive and successful wolf eradication in the
early 20th century (which has since been deliberately reversed). And closer to
home, most families with school-age children have confronted local eradications of
headlice or bedbugs. Some of these eradications required the coordination across
individual landowners.4 In other cases, the individual incentives for eradication
were sufficient to obviate the need for contracting solutions or government coordi-
nation efforts. These casual observations will be formally treated in our analysis.

We organize the paper as follows: The analytical model is introduced in Section
2 and we derive the equilibrium strategies of non-cooperative property owners
in Section 3. The sole owner’s problem is introduced and solved in Section 4,

4For headlice, a “landowner” could be the individual on whose head the lice have taken hold.

7



which puts us in a position to compare the decentralized solution with the sole
owner’s in Section 5. We then calculate the gains from cooperation and discuss
the cooperation-inducing side payments in Section 6. We conclude in Section 7.
All proofs are found in the Appendix.

2. A spatially-connected model of a renewable public bad

The stock of a renewable public bad is spatially distributed. Space is divided
into a set I = {1, ..., N} of mutually exclusive and exhaustive “properties,” each of
which is assumed to be owned by a single cost minimizing owner. Properties may
be heterogenous with respect to biological and economic characteristics, but all
economic and ecological characteristics are homogenous within a property. Using
a discrete-time model, the stock residing on property i at the beginning of time
period t is given by xit and control efforts undertaken on property i will reduce the
stock over the course of that time period. We denote the amount of stock removed
(or “controlled”) on property i by hit, which leaves a “residual stock” at the end of
the period of eit ≡ xit− hit. The residual stock grows according to a stock growth
function g(eit),5 and the resource stock is distributed across the landscape. The
fraction of the property j resource stock that moves from property j to property
i in a single period is given by Dji, where

∑
iDji ≤ 1.6 The resulting equation of

motion of the resource stock is:

xit+1 =
N∑
j=1

Djig(ejt); (1)

Equation (1) is consistent with continuous-time metapopulation models in bioe-
conomics (e.g. Sanchirico andWilen (1999)), except that because ours is in discrete
time, we must specify the timing of growth and spread. In our model growth oc-
curs prior to spread (for example, a plant might produce seeds before the wind
disperses them). Thinking of spread D as an NxN matrix with typical element
Dij, the diagonal term Dii is self-retention (the fraction of stock produced in i
that remains in i the following period), the other N − 1 terms in column i (terms

5Without spread or stock removal, eit+1 = g(eit) and we assume the usual conditions: g(0) =
0, g′(e) > 0, g′′(e) < 0.

6This follows the recent literature from the natural sciences (see, e.g., Nathan et al. (2002), or
Siegel et al. (2003)) who model dispersal of passive “Lagrangian particles.” An endogenous spread
parameter may be a relevant alternative to account for density-dependent process, or situations
where agents can affect that process. The latter case introduces an additional control variable
(as in Rowthorn et al. (2009)), which has the benefit of introducing the containment policy to
keep the bad within some specified area. While this has appeal in some settings, we focus instead
on the problem of controlling (or eradicating) the stock of the bad on one’s property.
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like D3i or D7i) capture immigration from other properties into i, and the other
N−1 terms in row i (terms like Di1 or Di5) capture emigration out of i to the other
properties. Owner i starts period t by observing the stock xit. The owner can then
control the bad on her property, where the cost of control may be property-specific
(for example removing invasive mussels may be simpler in shallower water). The
marginal cost of control in a property will also depend on the stock size in that
property. This captures the so-called stock effect for which the marginal abate-
ment cost is a decreasing function of the stock. When the stock size is s, then
the marginal control cost is ci(s), where c′i(s) < 0. If the stock at the beginning
of the period is xi, then the total cost of controlling down to level ei is given by∫ xi
ei
ci(s)ds. The residual stock on property i left after control imposes damage on

owner i, and the damage function may be property-specific (for example, a weed
may cause more damage in an agricultural area than in an industrial area). We
assume convex damages, so the marginal damage caused by the sth unit of stock is
ki(s), where k′i(s) > 0. Thus, for residual stock ei, the total damage that period is∫ ei

0 ki(s)ds. Taking all relevant economic variables into account, the period-t cost
to owner i of stock, xit, and control, hit is:∫ xit−hit

0
ki(s)ds+

∫ xit

xit−hit

ci(s)ds. (2)

Following the identity eit ≡ xit − hit, we can re-write Expression (2) as:

Φi(xit, eit) =
∫ eit

0
ki(s)ds+

∫ xit

eit

ci(s)ds, (3)

which is the total period-t cost to property i. The first term on the right hand
side of Equation 3 is the total damage cost on property i during period t and the
second term is the total cost of control during period t. Figure 1 illustrates the
marginal control cost function (c(s)) and marginal damage cost function (k(s))
for a particular property in a single time step. If the initial stock in a period is
x and control efforts reduce the stock to level e, then the total cost of control in
that period is given by the light shaded area and the total damage cost in that
period is given by the dark shaded area. Management of the public bad will involve
choosing the level of control to minimize the sum of control costs and damages,
taking all dynamics into account. While the cost to owner i depends only on the
stock and control on property i, the stock itself will depend on past decisions in
all other properties because the resource can move across space (see Equation 1).
Thus, all properties are linked together and this is the sense in which we call this
resource a public bad.
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Figure 1: Illustration of marginal control cost (c(s)) and marginal damage cost (k(s)), for a
particular property, as a function of the current stock of the public bad, s. Shaded regions
represent total control cost (light) and total damage cost (dark) of controlling from x down to e
over the course of a single period.

3. Property owners’ strategies

Here we assume that each of the N property owners makes her own privately
optimal decision about how much control to engage in each period. This is a
complicated decision for owner i for two reasons. First, owner i’s strategy about
how much to control may depend on all current stocks of the public bad and on
the strategies applied by all other owners. Second, because the resource grows
and moves, owner i’s strategy must account for the fact that less control today
implies higher growth and thus higher damage (even on her own property) in future
periods. This latter observation allows for a spectrum of management options
for owner i, from doing nothing to full eradication. In this setting all owners
simultaneously choose their level of control, hit ≥ 0. Equivalently, owner i can
choose eit ≥ 0 (since eit ≡ xit−hit and xit is known at the time of the decision) in
order to minimize her present value cost V̂it:7

V̂it(xt) = min
eit≥0

(
Φi(xit, eit) + δV̂it+1(xt+1)

)
(4)

subject to Equation 1 which defines the state transitions as a function of all owners’
controls. We use bold variables to indicate a vector (so xt = (x1t, ..., xNt)) and

7It turns out to be more mathematically convenient to keep track of the residual stock, eit,
rather than the explicit control, hit, so we use eit as the control variable for property owner i.
The explicit amount of control, hit, can then simply be backed out.
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note that costs are convex in eit. The solution concept in this analysis is Markov
Perfect Nash Equilibrium (MPNE). The residual stock decision rule (e1t, ..., eNt) =
(f1t(xt), ..., fNt(xt)) is a MPNE if, given the vector of stock levels of the public bad
at the beginning of period t, at any period s ≥ t {fiτ (xτ ) , τ ≥ s}i∈I is a solution to
the problem 4 above.8 As explained in several contributions (see Reinganum and
Stokey (1985) among others) there is no commitment issue regarding the owners’
decisions, since there is no implicit assumption of agents’ binding commitment
about actions they will take at future dates when relying on the MPNE concept.

In the following sections, we characterize the owners’ optimal management
strategies in order to derive the system-wide management outcomes, stock levels,
and equilibrium payoffs in the decentralized system. We especially focus on the
emergence of control and eradication as equilibrium outcomes. We use the term
control to refer to a situation in which a landowner controls some, but not all,
of the stock (so 0 < eit < xit). When discussing eradication, we will distinguish
between two important cases: (1) global eradication is a situation in which all
properties eradicate the bad, while (2) partial eradication is a situation in which
some properties eradicate and others do not.

3.1. The strategy of control
We first derive the conditions under which property owners optimally choose

to control, but do not eradicate, the public bad. We thus focus on an interior
equilibrium (êit > 0 ∀i, t), which is characterized as follows:

Proposition 1. The interior equilibrium of the N-property public bad dynamic
game is characterized by residual stock on property i (êit) given as follows:

ki(êit) = ci(êit)− δci(x̂it+1)Diig
′(êit) (5)

where x̂it+1 = ∑N
j=1Djig(êit) denotes the equilibrium stock level at period t + 1 in

property i. Moreover, this interior equilibrium is state independent: êit is indepen-
dent of x̂t for all i.

Here, êit and x̂it denote the residual stock and resource stock on property i,
respectively.9 The level of control is simply ĥit = x̂it − êit. Proposition 1 shows
that the equilibrium residual stock arises from a trade-off between the current
marginal damage (on the LHS) and the marginal dynamic control cost (on the

8We will use the associated Bellman equations to find such equilibria in several proofs.
9The hat indicates the non-cooperative game equilibrium. Sufficient existence conditions

are: for any i ∈ I ki(0) < (1− δDiig
′(0)) ci(0) and ki(xi0)− ci(xi0) + δDiig

′(xi0)ci(Diig(xi0) +∑
j 6=iDjig(xj0)) ≥ 0 hold and êit satisfy g′(êit) ≥ 1

δDii
. The proof is provided in supplementary

material.
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RHS). Owner i will control the bad until the current marginal damage is equal to
the current marginal cost of removing one additional unit of the stock, mitigated
by the discounted future cost implied by an increased stock.

We note also that the strategy of owner i depends on x̂it+1 (because x̂it+1
affects future control costs)10 which suggests that owner i’s decision will depend
on current decisions of other owners j for whom Dji 6= 0 (see Equation 1). If an
adjacent owner engages in less control (and so leaves a larger êjt), how will owner i
respond? We find a kind of “race to the bottom” emerges, in which less control by
owner j implies less control by all connected owners. This consequence of strategic
dynamic interactions11 among property owners is formalized as follows:

Proposition 2. Provided that all owners control (but do not eradicate) the bad,
i.e. êit > 0, a larger residual stock in one property causes an increase in the
optimal residual stock in all connected properties: ∂êit

∂ejt
> 0, where Dji 6= 0.

Proposition 2 show that the incentive to control the public bad increases with
the control effort of other owners. The main driver of the result is the stock effect.
Owner imust balance current costs of control against current and future benefits of
control. The larger is the stock she will inherit from other properties next period,
the smaller are her marginal control costs (because c′ < 0); this effect reduces the
incentive to aggressively control today. Thus, as one property owner reduces the
stock of public bad on her property, adjacent (or otherwise spatially connected)
owners will follow suit. Public bad control is thus a strategic complement, and
the strategic reaction to each others’ decisions may induce a kind of domino effect.
Consequently, this particular game of strategic complements is a spatial analog of
the “weaker-link” problem (Cornes, 1993): The level of control in the entire spatial
domain is not determined by the lowest individual level effort, but lower control
by a single owner will trigger the spread of a spatially mobile public bad. This
eventually leads to a loss in welfare across the entire spatial domain. Whether
these strategic interactions can lead to eradication remains to be seen. As we will
subsequently show, there are cases where full or partial eradication will emerge,
even from non-cooperative management.

10Proposition 1 shows that owner i’s strategy in period t does not depend on x̂t (intuitively
as stock levels at the beginning of the period do not affect the marginal decisions over residual
stock), which implies that open loop and feedback rules are identical. The notion of a state
independent control strategy is similar to “state separability,” a concept used in differential
games (Dockner et al. (1985)).

11Interactions among properties are strategic because a given owner accounts for other owners’
choices when choosing her own privately optimal level of control. The aggregate behavior then
impacts the future state of the bad via the equation of motion. In this sense we refer to these as
strategic dynamic interactions.
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3.2. The emergence of eradication
Will private owners ever eradicate the public bad? The majority of the litera-

ture focuses on control, and thus neglects whether it is optimal for private agents to
eradicate. Indeed, eradication is often considered unrealistic (Simberloff (2009)).
For instance, vaccination efforts by some agents may reduce incentives for others
to immunize (Anderson and May, 1991), even though it may be socially desirable.
Naturally, though, the decision of whether to globally eradicate a public bad will
depend on adjacent owners’ actions because if they lack control on their property,
the likelihood of future infestation may be very high. We thus expect strategic
interactions to play an important role in individual eradication decisions.

In order to proceed, we will dissect the optimality condition in Equation (5).
That Euler equation defines the first order condition for an interior dynamic op-
timum. The term ki(êit) − ci(êit) + δci(x̂it+1)Diig

′(êit) can be thought of as the
marginal dynamic cost of the public bad to property owner i. Naturally, the
property owner would like to set the marginal dynamic cost equal to zero (thus
minimizing total cost). But nontrivial corner solution cases exist when it is not
possible for that expression to equal zero. We use this fact to analyze the cir-
cumstances under which eradication is an outcome of decentralized decisions by
property owners.12 For example, if even very small stocks impose large damage
costs, it turns out that the optimal decision for owner i can be to completely erad-
icate the stock on her property. If this is the case for all property owners, then
global eradication across the entire spatial domain will arise from non-cooperative
behavior. These results are summarized as follows:

Proposition 3. Global eradication across the entire spatial domain arises from
non-cooperative behavior of property owners if and only if:

min
i∈I

[ki(0)− (1− δDiig
′(0)) ci(0)] ≥ 0. (6)

Realistic cases exist in which global eradication in fact does arise, as is suggested
by Proposition 3. Global eradication requires that [ki(0)− (1− δDiig

′(0)) ci(0)] ≥
0 for all properties, i.13 To gain some intuition, first consider the case in which
marginal damage from a small stock (ki(0)) is large, assuming that k′i(0) − c′i(0)
is positive and sufficiently large so that the second order conditions are satisfied.
Provided it is not too costly to eradicate the last units of the stock (so ci(0) is not

12In the remainder of the analysis, when we mention eradication outcomes, we refer to sit-
uations where the public bad is eradicated starting at time t = 0. We will briefly discuss the
implicit role of initial conditions at the end of the analysis.

13The proof of Proposition 3 shows that strategies {fi(.)}i∈I defined by êit = fi(xt) = 0 form
a MPNE. Since they are time and state independent, there is no difference between open loop
and feedback control rules.
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too large), eradication will be optimal (this seems to have been the case, e.g., for
black and Norway rats in New Zealand). But even if marginal damage from a small
stock is small (so the stock must build up before it inflicts any significant damage),
it may still be privately optimal to eradicate. To see that, suppose ki(0) = 0. Then
eradication emerges provided that 1 < δDiig

′(0), so decentralized eradication is
more likely when self-retention (Dii) is large, intrinsic growth is large (g′(0)), or
the discount factor is large (δ). This interesting result is a consequence of the
foresight by the property owner. If she fails to eradicate now, the stock will grow
and cause much more damage in subsequent periods; this seems to have been the
case, for example, in Australia after some efforts to eradicate mesquite, which has
continued to grow and reinvade.14

Remark 1. Simple conditions ensure that global eradication and control equilibria
do not co-exist.15 First, Footnote 9 provides conditions such that the global erad-
ication does not constitute an equilibrium outcome, while the interior equilibrium
exists. Second, if for any j ∈ I kj(0) > (1− δDjjg

′(0)) cj(0) while there is i ∈ I
such that ci(

∑
j 6=iDjig(xj0)) ≥ ci(0)−ki(0)

δDiig′(0) an interior equilibrium does not exist,
while global eradication is an equilibrium outcome. This requires that the initial
stock level in most properties is not too high. We qualify this feature in Section 5
(see Footnote 19).

Cases also exist in which eradication arises on some properties, but not on
others; we refer to this as “partial eradication.” For example, if property A has high
marginal damage from a weed infestation (perhaps it is a native plant nursery) and
property B has low marginal damage (perhaps it is rangeland), then this analysis
suggests that owner A may find it privately optimal to eradicate the weed on her
property while owner B does not. To characterize the conditions under which
partial eradication emerges as an equilibrium outcome, we separate the owners
into two distinct groups: A group E of ne > 0 owners who eradicate on their own
properties, and a group of remaining owners who optimally choose to only control
(but not eradicate) on their properties. As long as some owners fail to eradicate,
the public bad will still reside in some of the areas because of growth and spread
originating from the control-only properties. The emergence of partial eradication
as an equilibrium of non-cooperative behavior is characterized as follows:

Proposition 4. Partial eradication arises from non-cooperative behavior if and

14For more details, see the Australian government’s website: www.environment.gov.au/
biodiversity/invasive/weeds/publications/guidelines/wons/pubs/prosopis.pdf.

15The proof of Proposition 3 shows that global eradication Pareto dominates the interior
equilibrium. Thus co-existence is not an issue.

14

www.environment.gov.au/biodiversity/invasive/weeds/publications/guidelines/wons/pubs/prosopis.pdf
www.environment.gov.au/biodiversity/invasive/weeds/publications/guidelines/wons/pubs/prosopis.pdf


only if there exists a group of owners E ⊂ I such that, in any period t:

min
i∈E

[ki(0)− ci(0) + δDiig
′(0)ci(x̂it+1)] ≥ 0 (7)

and the remaining property owners control the public bad such that:

kj(êjt) = cj(êjt)− δcj(x̂jt+1)Djjg
′(êjt) ∀j /∈ E. (8)

Proposition 4 can be dissected to extract interesting results on inter-property
heterogeneity. For example, properties are more likely to eradicate (not just con-
trol) locally if they happen to have higher marginal damage (ki(0)), lower marginal
control cost functions, or higher self-retention rates. Note that for any owner i ∈ E
the corresponding stock level x̂it+1 = ∑

j /∈E Djig(eejt) is positive as long as it is con-
nected to another property whose owner only controls the public bad. Intuitively,
it is possible that the partial eradication situation described in Proposition 4 leaves
room for self-consistent transfer payments, where (some) owners from group E are
willing to compensate owners from the other group to eradicate the bad. However,
this intuition relies on the assumption that global eradication would be socially
optimal, which we now analyze.

4. Socially optimal management of a mobile public bad

In the spatial dynamic game, property owners consider only the payoffs on
their own properties when making privately optimal decisions. By contrast, a
sole owner must account for the entire spatial domain when managing the public
bad. The sole owner must optimize the spatial and temporal control to minimize
the present value of the sum of costs to all properties, subject to the resource
dynamics. Written as a dynamic programming equation, the sole owner’s problem
is to minimize the present value cost Vt, and the problem is defined as follows:

Vt(xt) = min
{e1t,e2t,...,eNt}≥0

∑
i

Φ(xit, eit) + δVt+1(xt+1) (9)

subject to the Equation 1. This appears to be an incredibly complicated problem
to solve, particularly as N gets large, because it involves an N dimensional decision
where each decision is connected over time via the spread and growth dynamics.
But it turns out that this problem can be solved analytically, and that the optimal
spatial-temporal control policy can be completely characterized. The convexity of
costs in et ensure a unique solution.

4.1. Control as a socially optimal management strategy
We first consider the case in which control (but not eradication) is optimal on

all properties for the sole owner. We denote the vector of socially optimal controls
by ēt ≡ [ē1t, ē2t, ..., ēNt]. The socially optimal control policy is given by:
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Proposition 5. The sole owner’s optimal control strategy has residual stocks,
ēt > 0, characterized as follows

ki(ēit) = ci(ēit)− δ
∑
j

cj(x̄jt+1)Dijg
′(ēit). (10)

In a manner similar to the decentralized result (Proposition 1), the sole owner’s
optimal residual stock results from a trade-off between marginal damage (on the
LHS) and the marginal control cost (on the RHS). Again, the marginal control cost
is composed of the current marginal control cost and the sum (over properties) of
the discounted marginal control cost in the future.

4.2. Is eradication socially optimal?
In a manner similar to the decentralized property owners, we can determine

the conditions under which global eradication is socially optimal. Intuitively, if
damage is very high, or if eradication costs are very low, then it may pay to bear
the one-time costs of eradication rather than bear a stream of damages (and costs)
in perpetuity. If Condition (10) cannot be met for any ēit > 0, then it is optimal
to eradicate the entire resource stock on all properties. There are also conditions
under which it is socially optimal to eradicate on some properties but not all.
These results are formalized below:

Proposition 6. (a) Global eradication is socially optimal if and only if:

min
i∈I

ki(0)− (1− δDiig
′(0)) ci(0) + δg′(0)

∑
j 6=i

Dijcj(0)
 ≥ 0. (11)

(b) Eradication across part of the spatial domain is socially optimal if and only
if there exists a set of properties Ē ⊂ I such that, in any period

min
i∈Ē

ki(0)− ci(0) + δg′(0)
∑
j

Dijcj(x̄it+1)
 ≥ 0 (12)

and the remaining property owners control the public bad such that, for some
ējt > 0

kj(ējt) = cj(ējt)− δ
∑
k

ck(x̄kt+1)Djkg
′(ējt) ∀j /∈ Ē. (13)

The result on global eradication (Proposition 6a) is similar to the case of decen-
tralized management except that here, spatial externalities between all properties
are accounted for by the sole owner. Proposition 6b characterizes conditions under
which it is socially optimal to only partially eradicate. Again, notice that, in any
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property i ∈ Ē, the stock level x̄it+1 = ∑
j /∈Ē Djig(ējt) is positive at the beginning

of period t+ 1 provided that it is connected to a property in which it was socially
optimal to only control the public bad. While the residual stock level is the same
under both management regimes for properties where the public bad is eradicated,
it may differ in others.

The results obtained in Sections 3 and 4 imply an interesting dependence of
spatial connectivity on the differences between decentralized and socially optimal
management; this is further explored in what follows.

5. Tragedy of the commons, inefficient coordination and spatial connec-
tivity

The literature on decentralized common pool resource management often em-
phasizes its shortcomings compared to socially optimal management, and these
comparisons are often restricted to quantitative comparisons of outcomes. By
contrast, we adopt two lines of comparison. First, we analyze the conditions un-
der which the tragedy of the commons emerges (where each owner chooses positive,
yet suboptimally low control of the public bad). Second, we characterize cases in
which property owners fail to coordinate on the socially-optimal strategies: For
example, if they only control, while the sole owner would fully eradicate the mo-
bile public bad. Inspecting Conditions (5) and (10) or Conditions (6) and (7), it is
intuitive that spatial connectivity will play an important role in these comparisons.

We first assess how “spread” may exacerbate the tragedy of the commons
beyond the deleterious effects arising from strategic interactions, which we have
already examined. When no spatial externality exists, Dii = 1 (so Dji = 0 for
all j 6= i), and we would expect the decentralized solution, êit > 0, to equal the
socially optimal solution, ēit > 0. If an externality exists, Dji 6= 0, and we find
that control levels differ under decentralized management, as is summarized below:

Proposition 7. In any period t:
(a) In the absence of spread (so Dij = 0 ∀i 6= j), the decentralized equilibrium is
equivalent to the socially optimal policy for all properties, êit = ēit.
(b) When property i is a pure source, i.e. Dii = 0, the decentralized level of resid-
uals stock is strictly higher than the sole owner’s residual stock for each property,
êit > ēit, when Dij > 0 for some property j.
(c) When Dii ∈ (0, 1), we have, for any property i, êit ≥ ēit.

Proposition 7 confirms that the tragedy of commons emerges under private
management, except (intuitively) in the limiting case when there is no spatial
connectivity. When a property that harbors the bad is spatially connected to
another property, laissez-faire tends to yield a suboptimal level of control; this
echoes Fenichel et al. (2014), among others. Moreover, the specifics of spatial
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connectivity do affect owner i’s optimal choice. In the presence of spread, the
degree to which owner i’s strategy depends on decisions by owner j will depend
both on strategic interactions and on spatial features such as the connectivity.
Here we examine the impact of the spread parameters in order to identify how
changes in residual stock on property i are driven by changes in the self-retention
rates and off-property spread rates. For instance, assume a two-property sink-
source system, where property A is the source (so DAA = 0 and DAB > 0) and
property B a sink (so 1 ≥ DBB > 0 and DBA = 0). Owner A will thus optimize
her control within her property ignoring the mobility of the public bad towards
the second property, and thus under control the amount of public bad. On the
contrary, owner B will behave like a sole-owner disconnected from her neighbor.
By extrapolation to a system with multiple sources and multiple sinks, we may
conjecture that the noncooperative outcome should entail larger stock of the public
bad than the optimal policy for sources, but that outcomes should be similar in
sinks. This special case of unidirectional flow has the advantage that higher control
effort levels occur where the spread of contamination is high.

To sharpen intuition, we continue with the two-property case (N = 2) and
focus on the case where control emerges as the decentralized equilibrium. In that
case, there are two self-retention parameters: DAA, and DBB, and two spread
parameters: DAB, and DBA. The impact of self-retention on property A, DAA,
and the emigration from property B to A, DBA can both be interpreted as a higher
quantity of the public bad so intuition on their effects will be straightforward
to garner. A more nuanced question is: How will owner A’s optimal strategy
depend on emigration to, and self-retention on, property B (that is, how does êA
depend on DAB and DBB)? These parameters affect stock on property B, and
thus due to strategic interactions, will indirectly affect residual stock on property
A. If Venezuela knows that Colombia is stuck with the Zika virus, how does that
influence Venezuela’s control efforts? More specifically, if B responds by engaging
in less control, then by Proposition 2, owner A may also respond by engaging in
less control. All results on the dependence of owner A’s residual stock on the
spread of the public bad are summarized as follows:

Proposition 8. Consider the two-property case (A and B) and assume an interior
solution. There exist 0 ≤ D̄A < 1 and 0 ≤ D̄B < 1 such that, if either DAA ≥ D̄A

or DBB ≥ D̄B, an increase in immigration or emigration (either DBA or DAB),
results in a larger residual stock level on property A:

∂êAt
∂DBA

> 0; ∂êAt
∂DAB

> 0.

A higher value of self-retention, respectively DAA and DBB, results in a lower
residual stock level on property A if and only if the respective marginal cost is
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inelastic:

∂êAt
∂DAA

< 0⇔ 1 > ε1 with ε1 = −DAAg(êAt)
c′A(x̂At+1)
cA(x̂At+1) > 0

∂êAt
∂DBB

< 0⇔ 1 > ε2 with ε2 = −DBBg(êBt)
c′B(x̂Bt+1)
cB(x̂Bt+1) > 0

Proposition 8 derives the equilibrium responses of property owner A to changes
in immigration (DBA), emigration (DAB), or self-retention to any property (DAA

or DBB). Because we have not required that DAA + DAB = 1, we can isolate
the effects of an increase in an element DAB without requiring a commensurate
decrease in DAA. Such an increase (say in emigration DAB) can be thought of as
a worsening of the public bad, since it implies that ceteris paribus a larger stock
of the bad will arrive on property B.

The first part of Proposition 8 shows that residual stock on property A is
increasing in both immigration (DBA) and emigration (DAB). The intuition is
that an increase in DBA is as if owner B now engages in less control, since more
resource moves toward property A. This consequently entices owner A to raise
the stock on her own property. The effect of higher DAB on optimal stock in A
is driven by the strategic interactions between owners, following Proposition 2, so
an increase in DAB causes owner A to raise the stock on her own property.

Behavior consistent with these results was observed during the Ebola outbreak
in 2014. The US Centers for Disease Control issued travel warnings to and from
West Africa in July, 2014, which effectively decreased both immigration and emi-
gration of the public bad. This partly motivated aggressive control of the outbreak.
By July 2015, new cases of Ebola had been reduced to less than 10% of the earlier
rate.16

Analyzing the effects of self-retention (DAA and DBB) also yields insights,
though this becomes more complicated. Here, whether êAt will increase or de-
crease in response to a rise in DAA (or DBB) will depend on the elasticity of
control costs. The net change is the sum of a direct (positive) effect, due to
a marginal increase cA(x̂At+1), and an indirect (negative) effect on next period
stock, DAAc

′
A(x̂At+1)g(êAt). If the marginal cost of control is relatively flat (so

c′(.) ≈ 0), then owner A will engage in more control if DAA is larger. This makes
intuitive sense: If a pest population is more likely to persist on one’s property,
then it seems intuitive that the owner would engage in more control compared to
a case in which it is likely to quickly move off of one’s property. As a consequence
of strategic dynamic interactions, a similar result emerges regarding owner A’s

16See the Center for Disease Control Ebola control timeline: http://www.cdc.gov/about/
ebola/timeline.html.
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response to an increase in DBB. But these results can be flipped if marginal cost
is sufficiently steep; the proof of Proposition 8 (in the Appendix) spells this out
in detail. When spread is such that ∑j Dij = 1 results remain largely consistent:
they may differ only for large values of marginal cost elasticities.17 A final remark
is that spatial parameters and growth affect control strategies in different ways.
For example, it can be shown that a faster resource growth rate on property A
gives rise to a lower non-cooperative residual stock on both A and B.18

If it is socially optimal to globally eradicate and global eradication emerges
under laissez-faire, then there is no tragedy of the commons. However, whether
another form of inefficiency may exist, where private owners under laissez-faire
coordinate on the “wrong” strategy (the suboptimal one), is an open question.
We now turn to the issue of comparing the type of optimal strategies induced
by decentralized and socially optimal management. We investigate the conditions
under which global eradication can emerge in both the decentralized and socially
optimal settings, and how these conditions depend on spatial connectivity. A
useful first result is summarized below:

Lemma 1. If global eradication emerges as a decentralized solution, then global
eradication is socially optimal.

Lemma 1 shows that it is possible that there is consistency between the con-
trol by decentralized private owners and the optimal control by a sole owner. If
decentralized property owners all find it privately optimal to locally eradicate the
public bad (e.g. because the damages they faced were sufficiently large to justify
the cost of eradication), then global eradication is also socially optimal. It turns
out that this will always be the case for sufficiently large values of Diig

′(0) (when
1 < δDiig

′(0)), summarized by the following corollary:

Corollary 1. If self retention is sufficiently high on all properties, that is:

min
i∈I

Dii ≥
1

δg′(0) , (14)

global eradication is socially optimal and emerges from non-cooperative behavior.

17A section is provided in the Appendix that spells out how Proposition 8 changes when we
restrict spread so

∑
j Dij = 1.

18To obtain this result, the equation of motion (1) can be amended as xit+1 =∑N
j=1Djig (ejt, αj) with αj patch-specific parameters reflecting resource growth (e.g. intrin-

sic rate of growth or carrying capacity). Assuming that ∂g(x,α)
∂α > 0 and ∂2g(x,α)

∂x∂α > 0 hold, the
reasoning in Proposition 8 yields ∂êAt

∂αA
< 0 and ∂êAt

∂αB
< 0, which both differ from the effects of

immigration or emigration and do not depend on the elasticity of marginal costs.
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Corollary 1 implies that if all self-retention parameters are sufficiently large, then
there will be no tension between socially optimal and private incentives.19 Con-
versely, it may often be the case that global eradication is socially optimal, but
does not arise from decentralized owners’ decisions. This could be the case either
if all owners privately choose control, or if eradication arises on some properties,
but not on others. For example, if property A has high marginal damage from an
invasive weed and property B has low marginal damage, then this analysis sug-
gests that owner A may find it privately optimal to exterminate the weed on her
property while owner B does not. But even in that case (when one decentralized
owner eradicates and another does not), it may be socially optimal to fully eradi-
cate on all properties (for example if A is downwind of B). This result could arise
because failing to eradicate on property B eventually causes damage on property
A, which diminishes social welfare. These results are summarized as follows:

Corollary 2. Assume that global eradication is socially optimal (Condition 11 is
satisfied), then it will never arise from decentralized management if:

max
i∈I

[ki(0)− ci(0) (1− δDiig
′(0))] < 0. (15)

Corollary 2 characterizes situations under which a tension arises between socially
optimal management and private incentives: while it is socially optimal to eradi-
cate in all regions, private owners may choose a different policy. This result will
enable us to delve into the cases for which eradication is biologically and/or eco-
nomically feasible; we focus on the role of spatial parameters:

Proposition 9. Suppose global eradication is socially optimal, and denote by i a
property with sufficiently low self-retention (Dii <

1
δg′(0)). Then the effect of spatial

parameters on the emergence of eradication is summarized as follows:
(a) An increase in spread Dij (where i 6= j) makes the emergence of global eradi-
cation less likely under decentralized management.
(b) Provided that self retention remains lower than 1

δg′(0) , an increase in self re-
tention makes the emergence of global eradication less likely under decentralized
management.

The effect of emigration is straightforward. Using (15), global eradication is
not a decentralized outcome when for instance ci(0) > ki(0)

1−δDiig′(0) holds for prop-
erty owner i. An increase in emigration does not alter this condition, which means

19Corollary 1 qualifies the conditions of Remark 1 as follows. If there is a property i ∈ I
such that either ci(0) ≤ ki(0) or

∑
j 6=iDjig(xj0) ≤ c−1

i (ci(0)− ki(0)) is satisfied, then an
interior equilibrium does not exist. This is so if there is a property i such that xk0 ≤

g−1
(

1∑
j 6=i

Dji
(ci)−1 (ci(0)− ki(0))

)
holds with xk0 = maxj 6=i xj0.
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that the incentives of decentralized property owners do not change. However, such
an increase in emigration increases the incentive for the sole owner to eradicate.
Thus, this enlarges the set of cases where a tension arises between the two types
of management. But the effect of self retention is harder to intuit. Corollaries 1
and 2 allow to deduce that when all properties except one (say i) are characterized
by sufficiently high values of self retention, then an increase in the value of self
retention on property i may have two opposing effects. If the increase is such that
self retention is now higher than the threshold value, then Corollary 1 implies that
it has a positive effect as it removes the potential tension between socially optimal
and private incentives. However, if the initial value is so low that the increase is
not sufficient to move it over the threshold, then the effect is negative as it enlarges
the set of cases where global eradication fails to emerge under decentralized man-
agement. This can be deduced from Condition 15 in Corollary 2. These results
can be used to assess whether we might expect strong consistency between socially
and decentralized management or tensions arising due to strategic behavior.

6. Cooperation with side-payments

So far, we have analyzed the decentralized decisions of property owners who
are harmed by a public bad that moves across space, and we have contrasted that
case with the optimal solution of a sole owner who can perfectly anticipate the
spatial migration of the public bad, and who can perfectly target control efforts
across space. An obvious result is that there are cases in which a tension arises
between these two types of management. We first provide general insights on the
potential gains from cooperation:

Proposition 10. (a) If for all i ∈ I ki(0) ≥ ci(0) [1− δDiig
′(0)] (large marginal

dynamic costs) the gains from cooperation are equal to zero;

(b) If for all i ∈ I we have −δg′(0)∑j 6=iDijcj(0) < ki(0)−ci(0)+δDiig
′(0)ci(0) <

0 (moderate marginal dynamic costs), the gains from cooperation are greater
than

1
1− δ

[
N∑
i=1

êi{ki(0)− ci(0) + δg′(0)
[
N∑
l=1

Djlcl(0)
]
}
]

; (16)

(c) If for all i ∈ I ki(0) − ci(0) + δDiig
′(0)ci(0) < −δg′(0)∑j 6=iDijcj(0) (low

marginal dynamic costs), the gains from cooperation are smaller than

1
1− δ

N∑
i=1

(êi − ēi) [ci(0)− ki(0)] , (17)

Where êi (ēi) denote the interior equilibrium strategies (socially optimal con-
trols) corresponding to the different cases.
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Proposition 10 highlights an interesting link between the marginal dynamic
cost and the potential gains from cooperation. When the marginal dynamic cost
is large (case (a)), there are no gains from cooperation because there is no difference
between the “best” equilibrium outcome and the social optimum. In cases (b) and
(c) these gains correspond to the saving in present value costs between interior
equilibrium outcomes and the social optimum. For given values of êi and ēi the
(lower) bound in (16) would be larger than the (upper) bound in (17): gains
are relatively larger in the second case than in the third one. They get small
(in absolute value) in the third case if either ci(0) and ki(0) or êi and ēi get
close for any i ∈ I. Gains get larger (in absolute value) in the second case as
ki(0) − ci(0) + δg′(0)∑j Dijcj(0) gets larger. This suggests that the gains from
cooperation might be larger for moderate values of the marginal dynamic costs.

Looking at the gains from cooperation naturally raises the question of what in-
stitutions can help transition from the decentralized solution to the socially optimal
solution.20 The case where partial eradication arises from decentralized behavior,
but where global eradication is socially optimal, provides a convenient case to as-
sess the potential of monetary transfers to achieve the socially-optimal outcome.
Indeed, in that case, we need only provide incentives to a restricted set of owners.
The focus of this section is to assess the impact of spatial characteristics on the
size of the benefit from cooperation.

To sharpen the findings, we return to the case of two properties (A and B). We
ask when a monetary transfer from owner A to owner B is Pareto-Improving, that
is, it makes both owners better off compared to the (no-transfer) decentralized
management outcome. While we have not explicitly modeled transaction costs, it
seems reasonable to assume that the larger is the potential benefit from coopera-
tion, the more likely it is that transaction costs can be overcome (Demsetz, 1967).
Thus, we would like to explore the conditions under which we might expect a large,
or small, benefit from global cooperation over the control of this spatially-mobile
public bad.

We first re-write Conditions (7) and (8) for partial eradication to occur in the
case of two regions. The stock will be eradicated only on property A if and only
if:

kA(0)− cA(0) + δg′(0)DAAcA (DBAg(êBt)) ≥ 0 (18)
where êBt > 0 is characterized implicitly by the following equation:

kB(êBt)− cB(êBt) + δDBBg
′(êBt)cB (DBBg(êBt)) = 0. (19)

Condition (19) means that owner B chooses to control, leaving a residual stock

20One mechanism that holds promise for public goods (but to our knowledge has never been
analyzed for public bads) is “unitization” (Kaffine and Costello, 2011).
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êBt > 0. Condition (18) means that owner A eradicates the public bad each time
period.21 Since c′A(·) < 0 and DBA > 0, the incentives of owner A are weaker than
under eradication defined by Condition (6).

If Equations (18)-(19) hold, owner A eradicates every time period, while owner
B only controls the public bad on her property. Since this holds every time period,
the corresponding infinite horizon payoffs Π̂A and Π̂B for owners A and B are
defined as follows:

Π̂A = −
[∫ 0

0
kA(s)ds+

∫ xA0

0
cA(s)ds+ δ

1− δ

(∫ 0

0
kA(s)ds+

∫ DBAg(êB)

0
cA(s)ds

)]
(20)

Π̂B = −
[∫ êB

0
kB(s)ds+

∫ xB0

êB

cB(s)ds+ δ

1− δ

(∫ êB

0
kB(s)ds+

∫ DBBg(êB)

êB

cB(s)ds
)]
(21)

Conversely, as the socially optimal outcome is characterized by global eradica-
tion, the corresponding payoffs of each owner are defined as follows:

Π̄A = −
∫ xA0

0
cA(s)ds (22)

Π̄B = −
∫ xB0

0
cB(s)ds (23)

Now, consider the possibility of owner A making a payment to owner B to
reduce the residual stock in her property. The transfer will be feasible if there
exist positive gains from cooperation, that is, if the sum of payoffs (22) and (23)
resulting from cooperation exceeds the sum of payoffs (20) and (21) resulting from
decentralized management. This is indeed the case, as highlighted by:

Proposition 11. Consider the two-property case (A and B). Assume that global
eradication is socially optimal (that is, the cooperative outcome) and that Condi-
tions 18 and 19 are satisfied. Then, there are positive gains from cooperation:

S = Π̄A + Π̄B − Π̂A − Π̂B > 0, (24)

where S is the overall surplus or gain from cooperation. Proposition 11 shows
that, under certain conditions with decentralized management, the overall surplus
is positive, but only property owner A gains from cooperation, while property
owner B loses from it. The owner of property A has incentives to compensate
the owner of property B, considered as the weakest-link, to reduce the residual

21The re-writing follows from Proposition 4. Due to the expressions (18) and (19) and the fact
that economic costs, growth and spread are time independent, the optimal choice of owner B is
time and state independent (see Proposition 1). In other words êBt can simply be written êB .
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stock on her property. Thus, an appropriate transfer payment might be used to
induce owner B to engage in additional control, thus lowering her residual stock
level, because it would benefit the adjacent owners. Here a straightforward side-
payment can implement the socially optimal outcome, as the following Proposition
shows.

Proposition 12. Consider the two-property case (A and B). Assume that global
eradication is socially optimal (that is, the cooperative outcome) and that Con-
ditions 18 and 19 are satisfied. Consider the following side-payment scheme: at
period t = 0, owner A makes a (one-shot) fixed payment γ to owner B, and in
all periods t ≥ 0 there is an additional variable transfer (from A to B) τ(eAt, eBt)
defined by

τ(eAt, eBt) = [kA(0)− cA(0) + δDAAg
′(0)cA(0)] eAt + (kB(0)− cB(0)) eBt (25)

Then there exist values of γ such that this side-payment scheme induces global
eradication.

As Proposition 12 highlights, the form of appropriate side-payment schemes is
quite simple. The proof of this Proposition shows several features of the scheme.
First, there is a one-shot payment from owner A to owner B in the initial period.
Second, the variable side-payment does play a role by ensuring that the owners
have appropriate incentives to adhere to strategies that yield the global eradication
outcome. Finally, there is an interval of feasible values of the fixed payment. For
example, within that range, one that would satisfy fairness properties would result
in equal sharing of the surplus:

γ =

(
Π̄A − Π̂A

)
−
(
Π̄B − Π̂B

)
2 (26)

Other values of the fixed payment are feasible. For example, γ = Π̂B − Π̄B is the
smallest payment that would satisfy the owners’ participation constraints. The
actual amount to be transferred depends on the spatial characteristics. The next
proposition examines how the surplus from cooperation and the fixed payment
depend on these features.

Proposition 13. Consider the two-property case (A and B). Assume that global
eradication is socially optimal (that is, the cooperative outcome) and that Condi-
tions (18) and (19) are satisfied. Then, the following conclusions hold:
(a) The gains from cooperation are increasing in emigration from property B to
property A (DBA).
(b) The gains from cooperation are increasing in self-retention (DBB) provided
marginal cost is elastic.
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(c) The fixed payment, γ characterized by (26), is increasing in emigration from
property B to property A (DBA).
(d) The fixed payment, γ characterized by (26), is decreasing in self-retention
(DBB) provided marginal cost is in elastic, otherwise the effect is ambiguous.

Proposition 13 shows that the gains from cooperation and the fixed payment in-
crease in spread (DBA). An increase in DBA affects property A, as a larger invasion
arises on this property (which results in a higher stock in the long run), while the
situation in property B remains unchanged. Non-cooperative control costs thus
marginally increase in the long run in property A, which increases the difference
between cooperation and non-cooperation on that property. This effect increases
the gains from cooperation overall, and the incentives to make a transfer to achieve
global eradication. Second, an increase in self-retention (DBB) has a slightly more
complicated effect, as it impacts control costs in both properties. There is a direct
effect on property B, because a higher fraction of the public bad remains on that
property, while the same fraction emigrates out of it. This results in higher non
cooperative control costs. Property A is also indirectly affected due to the spread
from B. Indeed, higher self-retention DBB results in a higher residual stock in
property B when the marginal cost is elastic (see Proposition 8), and a fraction
of this larger residual stock is then transported to property A. This increases
marginal control costs in property A in the long run. Consequently, the difference
between cooperative gains and non-cooperative gains is higher for both properties
and overall. Regarding the fixed payment, when the marginal cost is inelastic (see
Proposition 8), the impact of a higher self-retention DBB is negative, reducing the
impact in area A, which reduces owner A’s incentives to compensate owner B.
Under a quite elastic marginal cost, the effect becomes ambiguous, depending on
the balance between the impact on the difference between cooperation and non-
cooperation on property A versus the impact on this same difference on property
B. When the effect on property A is the largest, an increase in self-retention
(DBB) intuitively increases the fixed payment, γ.

Even in the absence of side-payments, there are likely other mechanisms that,
under the right circumstances, could lead to cross-property cooperation. Barrett
(1994) provides the seminal analysis on international environmental agreements
(IEAs) and finds that unless the welfare wedge between full cooperation and non-
cooperation is small, IEAs are unlikely to be self-enforcing for more than a handful
of countries. Kaffine and Costello (2011) define a unitization mechanism where
property owners who extract a mobile renewable resource can share profits such
that even an arbitrarily large number of owners may voluntarily adhere to the
cooperative agreement, though they rely heavily on harsh punishment strategies
for defectors. One of the key findings of this paper is that even in the absence
of any coordination scheme, owners may find it privately optimal to undertake a
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socially optimal eradication of the public bad.

7. Conclusion

We have developed and analyzed a model of a renewable public bad resource,
such as an invasive species or infectious disease that can move across space. Decen-
tralized property owners undertake costly control to reduce damage on their own
properties, and because the resource is mobile, this control has consequences for all
other property owners. The resulting externality induces a spatial-temporal game
between the property owners who will each act strategically given the behavior of
other owners. Our first contribution is to completely characterize the equilibrium
strategy of each owner and the resulting effects on stock and control of the public
bad across space. We also solve for the socially optimal level of control across
space and show that it always (weakly) exceeds the level of control undertaken by
decentralized owners.

A key focus of our analysis is on the conditions under which eradication is
undertaken by decentralized owners and/or is desired by the sole owner. We find
that there is often consistency between these - realistic cases exist in which all
decentralized owners will eradicate the stock on their properties; in these cases the
sole owner would also choose to eradicate, so no policy intervention is warranted.
But cases also exist in which one or more decentralized owner fails to locally
eradicate (even though it is socially desirable). In such cases, side-payments can
induce appropriate control, and we characterize the features of the problem that
lead to large or small potential gains from this kind of side payment.

Our results also imply an interesting role of initial conditions on decentralized
and optimal control of a spatially-connected public bad. If the initial invasion is
sufficiently large on all properties, then all property owners will control to their
optimal levels immediately and the resulting level of residual stock will be inde-
pendent of the initial invasion size. But if the initial invasion is large on some
properties but small on others, we can obtain a striking result. Consider the two-
property case and assume the initial invasion occurs only on property A (not on
property B). In that case, it will be efficient for A to control more than she would
have had the invasion also extended to property B.22 Thus, reasonable condi-
tions exist under which a sole owner would find it optimal to aggressively control
(or even eradicate) a “small” initial invasion, even though it would be optimal to
only weakly control a more spatially-extensive invasion. Similar dynamics play out
under laissez-faire.

22To see this, inspect Equation (10) for property A. Since there is no initial invasion on
property B, the next period’s stock xAt+1 is small. Because c′A(s) < 0, this drives down the
optimal residual stock in A. A formal statement is provided in the Appendix.
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To obtain sharp analytical results of this spatial-temporal game has required
making many simplifying assumptions. We modeled marginal damage on prop-
erty i as a function of resource stock on property i, which depends on the previous
period’s stock in all properties and the spread from those properties to property
i. A more complicated version of damage would allow for damage in period t to
depend on how much damage had been caused in previous periods, as it is often
modeled in the acid rain literature (see the survey of Calvo and Rubio (2012)).
We modeled the marginal control cost as a decreasing function of the stock. This
mirrors the approach taken in bioeconomics but differs from most contributions
in transboundary pollution management where control costs depend on emissions
flows. Here the higher is the local stock, the smaller is the marginal cost of abate-
ment. While our approach seems to fit most applications, an extension could allow
for marginal cost to also depend explicitly (not just implicitly) on the quantity re-
moved. Regarding the spread, we have assumed that the fraction of the stock
that spreads from property i to property j is constant. An extension could allow
for the spread to depend on the density of the stock in both areas. While these
changes would complicate the solution to our model, we think they are unlikely
to overturn the main findings of this paper. But these are fertile opportunities for
applications of this work.

Our approach fundamentally assumes that the resource is a public bad for all
property owners. An interesting extension would allow the resource to be a public
good for a subset of owners. For example, wolves may be a “bad” for ranchers
and a “good” for conservationists. This type of public good has been analyzed by
Weitzman (2015). This would enable us to consider conflicts of interest between
those who want to conserve the resource, and those who will impede the provision
of the public good. Moreover, at a first glance, we expect that the structure
of strategic interaction of the group benefiting from the public good might be
different, such that the control strategy (Proposition 2) might become a strategic
substitute, thus inducing interesting, and yet unexplored, dynamics. While we
have not explicitly analyzed public goods here, the structure of our existing model
should suffice in that case, where ki(s) < 0 for a property owner who places
positive value on the resource stock. The main derivations still carry through,
where properties with positive value simply do not ever remove any stock.

Overall, our results suggest an interesting general result about the gain from
coordination among decentralized property owners. If the marginal dynamic cost
of the public bad is small, then decentralized owners choose a level of control that
is lower than, but approximately equal to, the control that would be chosen by
a sole owner. In those cases, the gain from coordination of decentralized own-
ers is likely to be small. If the marginal dynamic cost is moderate, an interior
solution is likely to obtain under which some control will be undertaken by the
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decentralized property owners, but that this control will fall well short of what
would be chosen by the sole owner. In these cases, the gains from coordination
are large. But when marginal damage is large, decentralized owners will choose
to eradicate on their own property and in those cases, global eradication is also
socially optimal. In such cases, there is no gain from coordination, though this
hinges on eradication being a viable policy option. Taken together, these results
suggest that the gain from coordination among decentralized owners is largest for
an intermediate level of public bads, which may run counter to intuition and may
be suggestive of cases when government intervention or coordination schemes are
most economically relevant.
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9. Appendix

Proof of Proposition 1
Denoting xt and et the period t vectors of state and residual stock levels, and using the

Bellman equation (4) the optimality conditions require

− ki(eit) + ci(eit)− δ

 N∑
j=1

∂Vit+1(xt+1)
∂xjt+1

· ∂xjt+1

∂eit

 = 0 for i = 1, ..., N. (27)

The first two terms in (27) are independent of xt by inspection. The derivative of the value
function in period t + 1 depends on the period t + 1 state, but is independent of the period t
state. For an interior solution we have eit < xit and, using (1), we conclude that xit+1 depends
on eit but not on xit. Therefore, the terms in the bracket in condition (27) are independent of
xt. Thus the period t game problem has state independent strategies: êit does not depend on xt
for any i = 1, ..., N . Using (1) yields ∂xjt+1

∂eit
= Dijg

′(eit) for any j = 1, ..., N and we obtain

∂Vit+1(xt+1)
∂xit+1

= ci(xit+1), ∂Vit+1(xt+1)
∂xjt+1

= 0 for j 6= i.

Substituting this expression and that of ∂xjt+1
∂eit

into (27) we obtain (5). This necessary condition
is also sufficient provided the assumption of convexity of returns in the strategy (residual stock
level) is satisfied: the second order condition (SOCi) is

SOCi = k′i(êit)− c′i(êit) + δDii

[
g′′(êit)ci(x̂it+1) +Dii (g′(êit))

2
c′i(x̂it+1)

]
> 0. (28)

Finally, since the biological growth function is independent of time, as is spread, self retention
and economic costs, the optimal choice, êit, is independent of time for any i = 1, ..., N .

Proof of Proposition 2
Denote Ψi ≡ ki(eit) − ci(eit) + δci(xit+1)Diig

′(eit) = 0 the first order condition (FOC)
defining owner i’s best response and eit(ejt, ..., elt) owner i’s reaction function: we know that
Ψi[eit(ejt, ..., elt), ejt, ..., elt] ≡ 0. Differentiating (omitting the time argument), we get:

∂Ψi

∂ei

∂ei
∂ej

+ ∂Ψi

∂ej
= 0 ⇔ ∂ei

∂ej
= −

∂Ψi

∂ej

∂Ψi

∂ei

with ∂Ψi

∂ei
= k′i(êit)− c′i(êit) + δDii

[
ci(x̂it+1)g′′(êit) + c′i(x̂it+1)Dii (g′(êit))

2
]

= SOCi > 0

∂Ψi

∂ej
= δDiiDjic

′(xit+1)g′(eit)g′(ejt) < 0 since c′(.) < 0 and g′(.) > 0

Proof of Proposition 3
Due to the Bellman equation (4) the first order conditions for a corner solution require:

ki(0)− ci(0) + δ

 N∑
j=1

∂Vit+1(0)
∂xjt+1

· ∂xjt+1

∂eit

 ≥ 0 for i = 1, ..., N. (29)
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The first two terms in (29) are independent of xt by inspection. The derivative of the value
function in period t + 1 depends on the period t + 1 state, but is independent of the period t
state. For a corner solution we have êit = 0 < xit and, using (1), we conclude that xit+1 = 0
does not depend on xit. Therefore, the terms in the bracket in (29) are independent of xt. This
implies that the period t game problem has state independent strategies: êit = 0 does not depend
on xt for any i = 1, ..., N . Using (1) yields ∂xjt+1

∂eit
= Dijg

′(0) for any j = 1, ..., N and we obtain

∂Vit+1(xt+1)
∂xit+1

= ci(0), ∂Vit+1(xt+1)
∂xjt+1

= 0 for j 6= i.

Substituting this expression and that of ∂xjt+1
∂eit

into (29) we obtain condition (6). This necessary
condition is also sufficient provided the assumption of convexity of costs in the strategy (residual
stock level) is satisfied. The second order condition (SOCi) is:

k′i(0)− c′i(0) + δDii

[
g′′(0)ci(0) +Dii (g′(0))2

c′i(0)
]
> 0. (30)

Finally, the optimal choice êit = 0 is obviously time independent for any i = 1, ..., N . Now,
if global eradication and interior equilibria co-exist, global eradication is Pareto-dominant and
coordination will ensure its emergence. For any property i, denoting Πge

i and Πint
i the payoffs

resulting from global eradication and interior equilibria, we have:

Πge
i −Πint

i = 1
1− δ

[∫ êi

0
[ki(s)− ci(s)] ds+ δ

∫ ∑
j
Djig(êj)

0
ci(s)ds

]

and thus (since
∑
j Djig(êj) ≥ Diig(êi)):

Πge
i −Πint

i >

[∫ êi

0 [ki(s)− ci(s)] ds+ δ
∫Diig(êi)

0 ci(s)ds
]

1− δ

=
∫ êi

0 [ki(s)− ci(s) + δDiig
′(s)ci(Diig(s))] ds

1− δ .

Finally, since fi(s) = ki(s) − ci(s) + δDiig
′(s)ci(Diig(s)) is non-decreasing on [0, êi] by the

assumption of convexity of costs in the strategy:

Πge
i −Πint

i >

∫ êi

0 [ki(s)− ci(s) + δDiig
′(s)ci(Diig(s))] ds

1− δ ≥ êi
1− δ [ki(0)− ci(0) + δDiig

′(0)ci(0)] > 0.

Proof of the claim in Remark 1
The first condition ensures that global eradication is optimal. The second condition implies

that, for any 0 < ej < xj0 (j 6= i) we have, for any e ∈]0, xi0[:

ki(e)− ci(e) + δDiig
′(e)ci(Diig(e) +

∑
j 6=i

Djig(ej)) > ki(e)− ci(e) + δDiig
′(e)ci(Diig(e) +

∑
j 6=i

Djig(xj0))

≥ ki(0)− ci(0) + δDiig
′(0)ci(

∑
j 6=i

Djig(xj0)) ≥ 0. (31)

Thus condition (5) cannot be satisfied by any e < xi0, which concludes the proof.
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Proof of Proposition 4
The strategies described in Proposition 4 form a MPNE by combining the proofs of Proposi-

tions 1 (for the interior choices) and 3 (for the corner solutions). Time and state independencies
follow similarly. We provide the description of the main arguments. Since (6) is not satisfied,
the convexity of the payoff functions implies that at least one property owner has incentives to
increase the residual stock level compared to full eradication (when other owners eradicate the
entire stock in their properties). Thus global eradication is not an equilibrium outcome. If the
owner of property j /∈ E decides at period t to increase the residual stock level (again when it
is zero in any property i ∈ E, and positive in any property l /∈ E) her optimal choice is êjt (as
characterized in (8)). Then (7) implies that the owner of property i ∈ E will keep the residual
stock level at zero (when the owner of property j /∈ E chooses êjt). Thus, at the equilibrium,
the residual stock level will be zero on property i ∈ E and positive on property j /∈ E.

Proof of Proposition 5
This follows from dynamic programming arguments similar to those in Proposition 1 (using

first order conditions related to the social welfare function ensuring an interior policy in any
property i).

Proof of Proposition 6
Condition 11 follows from dynamic programming arguments similar to those in Proposition 3

(using first order condition related to the social welfare function ensuring ēi = 0 in any property
i). The proof of case (b) follows from arguments similar to those of Proposition 4.

Proof of Proposition 7
If Dii = 1, then (5) and (10) are identical. If Dii = 0, then (5) becomes ci(êit)− ki(êit) = 0,

while (10) becomes ci(ēit) − ki(ēit) = δ
∑
j 6=iDijcj(x̄jt+1)g′(ēit) > 0. The LHS of (5) and (10)

are similar. Since c′i(eit)− k′i(eit) < 0, for these equalities to hold, we must have ēit < êit.

We now examine the case where Dii ∈ (0, 1) by comparing Equations 5 and 10. Rewriting gives:

ki(êit) = ci(êit)− δci(x̂it+1)Diig
′(êit) (32)

ki(ēit) = ci(ēit)− δci(x̄it+1)Diig
′(ēit)− δ

∑
j 6=i

cj(x̄jt+1)Dijg
′(ēit)︸ ︷︷ ︸

L

. (33)

The first two terms on the right hand side of (32) and (33) are identical. Since ki(.) is increasing
in e, and because L ≥ 0, it is clear that êit ≥ ēit, with equality only if Dij = 0 ∀ j 6= i.

Proof of Proposition 8
In a case with two properties A and B, assuming interior equilibria, we have:

kA(eA) = cA(eA)− δcA(xA)DAAg
′(eA) (34)

kB(eB) = cB(eB)− δcB(xB)DBBg
′(eB) (35)

We omit subscript t in (34) and (35). They imply that eA and eB are the solution to
the above system (since xk =

∑
lDlkg(el) for k = A,B) and are both functions of θ =

{DAA, DBB , DAB , DBA}. These first order conditions are functions of θ as ΨA(eA(θ), eB(θ), θ) ≡
0 and ΨB(eA(θ), eB(θ), θ) ≡ 0. We can thus totally differentiate both conditions:
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{
∂ΨA

∂eA

∂eA

∂θ + ∂ΨA

∂eB

∂eB

∂θ + ∂ΨA

∂θ = 0
∂ΨB

∂eA

∂eA

∂θ + ∂ΨB

∂eB

∂eB

∂θ + ∂ΨB

∂θ = 0 (36)

Solving this system, we get that ∂eA

∂θ (and symmetrically ∂eB

∂θ ):

∂eA
∂θ

=
−∂ΨA

∂θ
∂ΨB

∂eB
+ ∂ΨB

∂θ
∂ΨA

∂eB

∂ΨA

∂eA

∂ΨB

∂eB
− ∂ΨA

∂eB

∂ΨB

∂eA

(37)

with
∂ΨA

∂eA
= SOCA > 0, ∂ΨA

∂eB
= δDAADBAg

′(eA)g′(eB)c′A(xA) < 0
∂ΨB

∂eB
= SOCB > 0, ∂ΨB

∂eA
= δDBBDABg

′(eA)g′(eB)c′B(xB) < 0

Table 1: Partial derivatives

θ ∂ΨA

∂θ
∂ΨB

∂θ

DAA δg′(eA) [cA(xA) +DAAc
′
A(xA)g(eA)] 0

DBA δDAAg
′(eA)c′A(xA)g(eB) 0

DBB 0 δg′(eB) [cB(xB) +DBBc
′
B(xB)g(eB)]

DAB 0 δDBBg
′(eB)c′B(xB)g(eA)

The denominator of (37) is SOCASOCB−δ2DAADBBDABDBA (g′(eA))2 (g′(eB))2
c′A(xA)c′B(xB).

If either DAA or DBB is sufficiently large, it is positive. This is valid if either DAB or DBA is
sufficiently large and residual stocks remain positive, if the discount factor is small enough, or if
either cost function is linear (c′A(.) = 0 or c′B(.) = 0). Using Table 1, we deduce:

∂eA
∂DAA

= δg′(eA) [cA(xA) +DAAc
′
A(xA)g(eA)]SOCB

SOCASOCB − δ2DAADBBDABDBA (g′(êA))2 (g′(êB))2
c′A(x̂A)c′B(x̂B)

(38)

∂eA
∂DBA

= − δDAAg
′(eA)g(eB)c′A(xA)SOCB

SOCASOCB − δ2DAADBBDABDBA (g′(eA))2 (g′(eB))2
c′A(xA)c′B(xB)

(39)

∂eA
∂DBB

= δ2DAADBAg
′(eA)[g′(eB)]2c′A(xA) [cB(xB) +DBBc

′
B(xB)g(eB)]

SOCASOCB − δ2DAADBBDABDBA (g′(êA))2 (g′(êB))2
c′A(x̂A)c′B(x̂B)

(40)

∂eA
∂DAB

= δ2DAADBBDBAg
′(eA)[g′(eB)]2c′A(xA)c′B(xB)g(eA)

SOCASOCB − δ2DAADBBDABDBA (g′(êA))2 (g′(êB))2
c′A(x̂A)c′B(x̂B)

(41)

When the denominator is positive ∂eA

∂DBA
> 0 and ∂eA

∂DAB
> 0. When the marginal cost is

inelastic, i.e. 1 > −DAAg(eA) c
′(xA)
c(xA) > 0, then ∂eA

∂DAA
< 0. The sign of ∂eA

∂DBB
depends also on the

marginal cost elasticity. If it is inelastic, i.e. 1 > −DBBg(eB) c
′(xB)
c(xB) > 0, then ∂eA

∂DBB
< 0.
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Robustness of Proposition 8 when ∑j Dij = 1
Starting with DAA, keeping in mind DAB = 1−DAA and DBA = 1−DBB , we have:

∂êA
∂DAA

=
−δg′(êA)

[
(cA(x̂A) +DAAg(êA)c′A(x̂A))SOCB + δDAADBBDBA (g′(êB))2

g(êA)c′A(x̂A)c′B(x̂B)
]

SOCASOCB − δ2DAADBBDABDBA (g′(êA))2 (g′(êB))2
c′A(x̂A)c′B(x̂B)

.

The denominator of the right hand side term is positive for large values of either DAA or DBB .
When εA < 1 the term between brackets in the numerator is positive, and ∂êA

∂DAA
is negative.

When εA > 1 and DBB is large enough, the term between brackets in the numerator is negative,
and ∂êA

∂DAA
is positive. Results might differ only when εA > 1 and the value of DAA is sufficiently

large, while DBB is moderate:

(cA(x̂A) +DAAg(êA)c′A(x̂A))SOCB + δDAADBBDBA (g′(êB))2
g(êA)c′A(x̂A)c′B(x̂B) > 0.

About the effect of DBA, as DAB = 1−DAA and DBA = 1−DBB we have:

∂êA
∂DBA

= −
δDAAg

′(êA)c′A(x̂A)
[
g(êB)SOCB + δDBA (g′(êB))2

]
[DBBg(êB)c′B(x̂B) + cB(x̂B)]

SOCASOCB − δ2DAADBBDABDBA (g′(êA))2 (g′(êB))2
c′A(x̂A)c′B(x̂B)

.

The denominator of the right hand side term is positive for large values of either DAA or DBB .
When DBB is large, since DBA = 1−DBB is low , the term between brackets in the numerator is
positive, thus ∂êA

∂DBA
is positive. When DAA is large, provided εB < 1 the term between brackets

in the numerator is positive, and the same follows for ∂êA

∂DBA
. Results might differ only when

εB > 1 and DAA is sufficiently large. Moreover, it requires that DBB be neither too large nor
too small:

g(êB)SOCB + δ (g′(êB))2 (1−DBB) [DBBg(êB)c′B(x̂B) + cB(x̂B)] < 0.

Moving on to the effects of spread DAB and self-retention DBB , we deduce that

∂êA
∂DAB

= − ∂êA
∂DAA

; ∂êA
∂DBB

= − ∂êA
∂DBA

.

Concerning ∂êA

∂DAB
Proposition 8 is robust when DBB is sufficiently large, and are reversed in

cases when (1) DAA has sufficiently large values, (2) εA > 1 and (3) ∂êA

∂DAA
> 0 is satisfied. The

effect of DBB differs already when DBB is large: an increase in DBB always results in a larger
residual stock level in property A. When DAA is large, the effect is reversed when the following
conditions are satisfied: (1) DBB is neither too large nor too small, (2) εB > 1 and (3) ∂êA

∂DBA
< 0

is satisfied.

Proof of Lemma 1
If global eradication is a Nash equilibrium outcome, then for any i ∈ I, due to Proposition

3 and Condition (11) in Proposition 6 we have ki(0) − [1− δDiig
′(0)] ci(0) ≥ 0. Since g′(0) is

positive and all spread parameters are non negative, the following condition holds:

ki(0)− [1− δDiig
′(0)] ci(0) + δg′(0)

∑
j 6=i

Dijcj(0) ≥ ki(0)− (1− δDiig
′(0)) ci(0) ≥ 0.

Using Propositions 3 and 6 implies that global eradication is socially optimal.
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Proof of Corollary 1
The result follows from Condition 6 in Proposition 3 and Condition 11 in Proposition 6.

Proof of Corollary 2
The result follows from Condition 6 in Proposition 3 and Condition 11 in Proposition 6.

Proof of Proposition 9
From Corollary 2 the interval characterizing values of marginal abatement costs (on property

i) over which tensions arise is [ ki(0)
1−δDiig′(0) ,

ki(0)+δg′(0)
∑

j 6=i
Dijcj(0)

1−δDiig′(0) ], and its size is given by

∆i =
ki(0) + δg′(0)

∑
j 6=iDijcj(0)

1− δDiig′(0) − ki(0)
1− δDiig′(0) =

δg′(0)
∑
j 6=iDijcj(0)

1− δDiig′(0) .

First, we have ∂∆i

∂Dij
= δg′(0)cj(0)

1−δDiig′(0) > 0 since 1− δDiig
′(0) > 0 and provided cj(0) > 0, which

implies that the length of the interval increases as spread increases. Second, differentiating with

respect to the self retention rate, we obtain ∂∆i

∂Dii
=

(δg′(0))2
∑

j 6=i
Dijcj(0)

1−δDiig′(0) > 0 since 1−δDiig
′(0) >

0 and provided
∑
j 6=iDijcj(0) > 0. Thus, the length of the interval increases as self retention

increases (provided that self retention remains lower than 1
δg′(0) ).

Proof of Proposition 10
For large marginal dynamic costs, global eradication is an equilibrium. From Proposition 3

it solves the coordination problem (if there is any). As global eradication is also socially optimal
(by lemma 1), the gains from cooperation equal zero. For moderate dynamic marginal costs,
the global eradication equilibrium does not exist, while global eradication is socially optimal.
Provided that an equilibrium is interior, the gains from cooperation are then:

∆c =
N∑
i=1

(
Π̄i − Π̂i

)
= 1

1− δ

N∑
i=1

[∫ êi

0
[ki(s)− ci(s)] ds+ δ

∫ ∑
j
Djig(êj)

0
ci(s)ds

]

Function Ψ(e1, ..., eN ) =
∑N
i=1

[∫ ei

0 [ki(s)− ci(s)] ds+ δ
∫∑

j
Djig(ej)

0 ci(s)ds
]
is convex due to

the convexity of costs in the vector of residual stock levels, thus Ψ(ê1, ..., êN ) ≥ Ψ(0)+
∑N
i=1

∂Ψ
∂ei

(0)êi,
or ∆c ≥ 1

1−δ

(∑N
i=1 êi{ki(0)− ci(0) + δg′(0)

[∑N
l=1Djlcl(0)

]
}
)
. For low marginal dynamic

costs, the socially optimal and decentralized outcomes are interior. The gains from cooperation

are ∆c = 1
1−δ

∑N
i=1

[∫ êi

ēi
[ki(s)− ci(s)]ds+ δ

∫∑
j
Djig(êi)∑

j
Djig(ēi)

ci(s)ds
]
or ∆c = 1

1−δ [Ψ(ê)−Ψ(ē)],

and there is (e1, ..., eN ) such that ei ∈]ēi, êi[ for any i ∈ I and Ψ(ê)−Ψ(ē) =
∑N
i=1 (êi − ēi) ∂Ψ

∂ei
(e1, ..., eN ).

We deduce (since Ψ(.) is increasing in ei and decreasing in other arguments) that ∂Ψ
∂ei

(e1, ..., eN ) <
∂Ψ
∂ei

(êi, ē−i) and so:

∂Ψ
∂ei

(e1, ..., eN ) < δg′(êi)
N∑
j=1

Dijcj

Dijg(êi) +
∑
l 6=i

Dljg(ēl)

 < δg′(0)
N∑
j=1

Dijcj(0).

Thus ∆c < 1
1−δ

∑N
i=1 (êi − ēi)

[
δg′(0)

∑N
j=1Dijcj(0)

]
< 1

1−δ
∑N
i=1 (êi − ēi) [ci(0)− ki(0)], where

the second inequality follows from the assumption.
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Proof of Proposition 11
We compute the gains from cooperation by the following expression:

S = Π̄A + Π̄B − Π̂A − Π̂B

= δ

1− δ

[∫ DBAg(êB)

0
cA(s)ds+

∫ êB

0
kB(s)ds+

∫ DBBg(êB)

êB

cB(s)ds
]
−
∫ êB

0
cB(s)ds+

∫ êB

0
kB(s)ds,

which is positive by inspection. Moreover, it is easily checked that:

Π̄A − Π̂A = δ

1− δ

∫ DBAg(êB)

0
cA(s)ds > 0

Π̄B − Π̂B = −
∫ êB

0
cB(s)ds+

∫ êB

0
kB(s)ds+ δ

1− δ

[∫ êB

0
kB(s)ds+

∫ DBBg(êB)

êB

cB(s)ds
]

(42)

Using Expression (42) and the convexity of costs, we conclude that

Π̄B − Π̂B <
êB

1− δ [kB(êB)− cB(êB) + δDBBg
′(êB)cB(DBBg(êB))] . (43)

The right hand side of (43) equals zero by (19): owner A (B) gains (loses) from cooperation.
As gains are positive overall, owner A is willing to induce B to lower her residual stock.

Proof of Proposition 12
The scheme induces global eradication if the owners’ payoffs under side payments are at least

those without side-payment. When transfers are allowed, we have:

Π̃A(xAt, eAt, eBt) = −
[∫ eAt

0
kA(s)ds+

∫ xAt

eAt

cA(s)ds+ τ(eAt, eBt) + Γt
]

Π̃B(xBt, eAt, eBt) = −
[∫ eBt

0
kB(s)ds+

∫ xBt

eBt

cB(s)ds− τ(eAt, eBt)− Γt
]

where Γ0 = γ and Γt = 0 for t ≥ 1. Using the Bellman equations, the optimality conditions
correspond to one outcome: global eradication. One can check that it is the equilibrium when:

k′A(e)− c′A(e) + δDAAg
′′(e)cA(DAAg(e)) + δ (DAA)2 (g′(e))2

c′A(DAAg(e)) > 0. (44)

If B deviates, he chooses a decision rule stipulating eB > 0 when stock level is xB0 (otherwise
the game ends at t = 0). This cannot be profitable. We first consider a deviation stipulating
eB > 0 when stock level is xB0, and to eradicate otherwise: B deviates at t = 0 only. We have:

Π̃B(0, 0)− Π̃d
B =

∫ eB

0
kB(s)ds−

∫ eB

0
cB(s)ds− (kB(0)− cB(0)) eB + δ

∫ DBBg(eB)

0
cB(s)ds

=
∫ eB

0
[kB(s)− cB(s) + δDBBg

′(s)cB(DBBg(s))] ds− (kB(0)− cB(0)) eB .

Noticing that δDBBg
′(e)cB(DBBg(e)) > 0 for any e ≥ 0 we deduce∫ eB

0
[kB(s)− cB(s) + δDBBg

′(s)cB(DBBg(s))] ds >
∫ eB

0
[kB(s)− cB(s)] ds.
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As φB(e) =
∫ e

0 [kB(s)− cB(s)] ds is strictly convex (since k′B(e) > 0 and c′B(e) < 0):∫ eB

0
[kB(s)− cB(s)] ds− (kB(0)− cB(0)) eB > (kB(0)− cB(0)) eB − (kB(0)− cB(0)) eB = 0,

which proves our claim. Now it suffices to notice that any strategy stipulating positive residual
stocks at t = 0 (say e′B) and at subsequent periods is dominated by a unique deviation at t = 0
stipulating residual stock e′B . If now A deviates, he chooses a decision rule stipulating eA > 0
when stock level is xA0. This cannot be profitable. We first consider the deviation stipulating
eA > 0 when stock level is xA0, and to eradicate otherwise: A deviates at t = 0 only. We have:

Π̃A(0, 0)− Π̃d
A =

∫ eA

0
kA(s)ds−

∫ eA

0
cA(s)ds+ δ

∫ DAAg(eA)

0
cA(s)ds+ [kA(0)− cA(0) + δDAAg

′(0)cA(0)] eA

=
∫ eA

0
[kA(s)− cA(s) + δDAAg

′(s)cA(DAAg(s))] ds+ [kA(0)− cA(0) + δDAAg
′(0)cA(0)] eA.

By (44) φA(e) =
∫ e

0 [kA(s)− cA(s) + δDAAg
′(s)cA(DAAg(s))] ds is convex, and

Π̃A(0, 0)−Π̃d
A ≥ [kA(0)− cA(0) + δDAAg

′(0)cA(0)] eA+[kA(0)− cA(0) + δDAAg
′(0)cA(0)] eA > 0,

which follows since (18) holds. This proves our claim. As for B, any strategy stipulating positive
residual stocks at t = 0 and at subsequent periods is dominated by a deviation at t = 0 only.
We now show that both owners can be (weakly) better off compared to the case of no transfer.
Due to (18) and (19) the outcome of the game without side-payment is partial eradication and
payoffs Π̂A and Π̂B are defined by (20) and (21). Define KA = Π̃A(0, 0) − Π̂A = Π̄A − γ − Π̂A

and KB = Π̃B(0, 0) − Π̂B = Π̄B + γ − Π̂B the difference between owners’ payoffs when they
exchange payments, and when no transfer is allowed. Proposition 11 shows that Π̄A − Π̂A > 0
while Π̄B − Π̂B < 0. Global eradication is induced when Ki ≥ 0 for i = A,B, that is:

Π̄A − Π̂A ≥ γ and γ ≥ Π̂B − Π̄B =⇒ Π̂B − Π̄B ≤ γ ≤ Π̄A − Π̂A.

Since Π̂B − Π̄B −
(

Π̄A − Π̂A

)
= Π̂A + Π̂B −

(
Π̄A + Π̄B

)
< 0 by Proposition 11, any value of

γ ∈ [Π̂B − Π̄B , Π̄A − Π̂A] makes both owners (weakly) better off with side payments.

Proof of Proposition 13
We obtain (keeping in mind that ∂êB

∂DBA
= 0):

∂S

∂DBA
= δ

1− δ g(êB)cA (DBAg(êB)) > 0.

∂S

∂DBB
= δ

1− δ

[
DBAg

′(êB)cA (DBAg(êB)) ∂êB
∂DBB

+ g(êB)cB (DBBg(êB))
]
,

with
∂êB
∂DBB

= −δg
′(êB) [g′(êB)DBBc

′
B (DBBg(êB)) + cB (DBBg(êB))]
SOCB

.

As in Proposition 8 ∂êB

∂DBB
> 0 if and only of the marginal cost is elastic. Third, we differentiate

(26) with respect to DBA, and we obtain (keeping in mind that ∂êB

∂DBA
= 0):

∂γ

∂DBA
= 2δ

1− δ g(êB)cA (DBAg(êB)) > 0.
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Finally, we differentiate (26) with respect to DBB :

∂γ

∂DBB
= δ

2(1− δ)

[
δ

1− δ

[
DBAg

′(êB)cA (DBAg(êB)) ∂êB
∂DBB

− g(êB)cB (DBBg(êB))
]
,

]
By Proposition 8 ∂êB

∂DBB
< 0 if and only of the marginal cost is inelastic, so ∂γ

∂DBB
< 0. Otherwise

∂êB

∂DBB
< 0, and the sign of ∂γ

∂DBB
is ambiguous and depends on ∂(Π̄A−Π̂A)

∂DBB
T

∂(Π̂B−Π̄B)
∂DBB

.

The impact of a “small” initial invasion
We focus on the case of N = 2 to keep the exposition simple. A first result will be useful:

Proposition 14. Consider two properties, A and B, in which xA0 > ēA and xB0 = 0 < ēB,
where ēA and ēB are characterized by (5). Moreover, assume that condition (11) does not hold
(for both properties), and denote eA0 ∈]0, xA0[ the solution to:

kA(e)− cA(e) + δg′(e) [DAAcA (DAAg(e)) +DABcB (DABg(e))] = 0. (45)

Then, if DAAg(eA0) > ēA and DABg(eA0) > ēB hold, the socially optimal outcome is:

ēA0 = eA0, ēB0 = 0; ∀t ≥ 1 ēAt = ēA, ēBt = ēB . (46)

We now state formally the claim made in Section 7.

Proposition 15. Assume that there are two properties, A and B, and consider: (1) Case 1,
which is consistent with Proposition 14; (2) Case 2, in which xA0 > ēA and xB0 > ēB, where
ēA and ēB are characterized by (5). Then the socially optimal outcome in both cases is identical
starting at t = 1, while at t = 0:

ē2
A0 = ēA > eA0 = ē1

A0, (47)

where ēiA0 denotes the socially optimal residual stock level at the initial period in case i = 1, 2.

Compared to case 1, the invasion is more spatially-extensive in case 2: initial stock in A
is identical in both cases, and is lower in B in case 1. Yet, the overall control strategy at
t = 0 is more aggressive in case 1: the residual stocks in t = 0 are lower in both properties. A
similar result obtains under non-cooperative management. The proofs highlight that assumptions
DAAg(eA0) > ēA andDABg(eA0) > ēB in Proposition 14 are not crucial. The exposition is simple
since the socially optimal outcomes are identical starting from t = 1. Weakening this assumption
would result in more aggressive socially optimal controls in case 1 for at least t = 0 and t = 1.

10. Supplementary material

Proof of the claim in Footnote 9
The first condition (and the convexity of present value costs) and the second condition imply

respectively that, for any ej ∈]0, xj0] (j 6= i), we have:

ki(0)− ci(0) + δDiig
′(0)ci(

∑
j 6=i

Djig(ej)) < ki(0)− ci(0) + δDiig
′(0)ci(0) < 0, (48)

ki(xi0)− ci(xi0) + δDiig
′(xi0)ci(Diig(xi0) +

∑
j 6=i

Djig(ej)) > ki(xi0)− ci(xi0)

+δDiig
′(xi0)ci(

∑
j∈I

Djig(xj0)) ≥ 0 (49)
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The first inequality follows from c′i(.) < 0 while the second follows from assumptions. Conditions
(48) and (49) imply that there is ei ∈]0, xi0[ such that

ki(ei)− ci(ei) + δDiig
′(ei)ci(Diig(ei) +

∑
j 6=i

Djig(ej)) = 0.

With continuously differentiable functions, the Brouwer fixed point theorem implies that there
is 0 < êi < xi0 such that (ê1, ..., êN ) is characterized by the optimality conditions. Provided
g′(êi) ≥ 1

δDii
for any i ∈ I, this vector is such that x̂i =

∑
j Djig(êj) > êi and this concludes

the proof by using Proposition 1. If this is not the case, there is j ∈ I such that x̂j ≤ êj : thus
cj(x̂j) ≥ cj(êj) and then, using the optimality condition characterizing êj , we have:

cj(êj) ≤ cj(x̂j) ≤ δDjjg
′(êj)cj(x̂j) = cj(êj)− kj(êj) < cj(êj),

which is a contradiction. This concludes the proof. We provide sufficient existence conditions: if
g′(e) ≥ 1 (which holds for logistic functions) then the condition on g′(êi) is not required.

Proof of the claim in Footnote 19
Assume that the assumptions of Corollary 1 are satisfied. If there is i ∈ I such that either

ci(0) ≤ ki(0) or
∑
j 6=iDjig(xj0) ≤ c−1

i (ci(0)− ki(0)) holds, then an interior equilibrium does
not exist. Indeed, a sufficient condition for non existence is that there is a property (say i) for
which:

ki(0)− ci(0) + δDiig
′(0)ci(

∑
j 6=i

Djig(xj0)) ≥ 0. (50)

Thus we obtain, for any (e1, ..., eN ) such that 0 < ei < xi0 for any i:

ki(ei)− ci(ei) + δDiig
′(ei)ci(Diig(ei) +

∑
j 6=i

Djig(ej)) > ki(ei)− ci(ei) + δDiig
′(ei)ci(Diig(ei))

+
∑
j 6=i

Djig(xj0)) ≥ ki(0)− ci(0) + δDiig
′(0)ci(

∑
j 6=i

Djig(xj0)) ≥ 0.

The first inequality follows from c′i(.) < 0 and the second one from the convexity of costs. Coming
back to condition 50 and rewriting, we obtain δDiig

′(0) ≥ ci(0)−ki(0)
ci(
∑

j 6=i
Djig(xj0))

. If ci(0)− ki(0) ≤ 0

then this inequality is satisfied, and this concludes the proof of the first case. Second, using Corol-
lary 1 a sufficient condition is then 1 ≥ ci(0)−ki(0)

ci(
∑

j 6=i
Djig(xj0))

or
∑
j 6=iDjig(xj0) ≤ c−1

i (ci(0)− ki(0))

and this concludes the proof, since a sufficient condition here is that there is a property i such

that xk0 ≤ g−1
(

1∑
j 6=i

Dji
(ci)−1 (ci(0)− ki(0))

)
is satisfied, with xk0 = maxj 6=i xj0.

Proof of Proposition 14 (Stated in Appendix)
Using the dynamic programming equation and deriving the optimality conditions for an

interior policy starting at period t = 1, we obtain:

kA(ēA1)−cA(ēA1)+δg′(ēA1)[DAAcA (DAAg(ēA1) +DBAg(ēB1))+DABcB (DBBg(ēB1) +DABg(ēA1))] = 0,

kB(ēB1)−cB(ēB1)+δg′(ēB1)[DBBcB (DBBg(ēB1) +DABg(ēA1))+DBAcA (DAAg(ēA1) +DBAg(ēB1))] = 0.

Convexity of costs in the vector of residual stock levels ensures that they are necessary and
sufficient: an interior solution at t = 1 results in ēA1 = ēA and ēB1 = ēB . Since at t = 1 we
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have DAAg(eA0) > ēA and DABg(eA0) > ēB , such residual stocks are feasible and constitute the
interior solution. Provided conditions of Proposition 1 are satisfied x̄i = Diig(ēi)+Djig(ēj) > ēi
for i, j = A,B and i 6= j. The choice of ēA and ēB is thus interior at any t ≥ 1 and satisfies the
optimality condition: ēit = ēi for any i = A,B and any t ≥ 1. Now at t = 0: For B, the optimal
residual stock is obviously ēB0 = 0 = xB0. Regarding A, accounting for the interior policy path
starting at t = 1, if the optimal residual stock at t = 0 is interior (xA0 > ēA0 > 0) we have:

kA(ēA0)− cA(ēA0) + δg′(ēA0) [DAAcA(DAAg(ēA0)) +DABcB(DABg(ēA0))] = 0,

which is also sufficient by the convexity of costs: thus ēA0 = eA0. We now show that 0 < eA0 <
xA0. First, eA0 > 0 since kA(0) − cA(0) + δg′(0) [DAAcA(0) +DABcB(0)] < 0. Second, since
xA0 > ēA the convexity of costs implies:

kA(xA0)− cA(xA0) + δg′(xA0) [DAAcA(DAAg(xA0)) +DABcB(DABg(xA0))]
> kA(xA0)− cA(xA0) + δg′(xA0) [DAAcA(DAAg(xA0) +DBAg(ēB)) +DABcB(DABg(xA0) +DBBg(ēB))]
≥ kA(ēA)− cA(ēA) + δg′(ēA) [DAAcA(DAAg(ēA) +DBAg(ēB)) +DABcB(DABg(ēA) +DBBg(ēB))] = 0,

where the first inequality follows from c′i(.) < 0, the second from the convexity of costs, and the
final one from the characterization of ēA. Combined with the convexity of costs and continuity
of damage and cost functions, it implies that eA0 exists, is unique, and satisfies 0 < eA0 < xA0.

Proof of Proposition 15 (Stated in Appendix)
The socially optimal policy in both cases follow from Propositions 6 and 14. We show that

ēA > eA0 holds: for a given residual stock eA:

kA(eA)− cA(eA) + δg′(eA) [DAAcA(DAAg(eA) +DBAg(ēB)) +DABcB(DABg(eA) +DBBg(ēB))]
< kA(eA)− cA(eA) + δg′(eA) [DAAcA(DAAg(eA)) +DABcB(DABg(eA))] .

This inequality follows from c′A(.) < 0 and this implies that, now taking eA = ēA:

f(ēA) := kA(ēA)− cA(ēA) + δg′(ēA) [DAAcA(DAAg(ēA)) +DABcB(DABg(ēA))] > 0.

Since we have by definition of eA0 that f(eA0) = 0, we deduce the inequality f(ēA) > f(eA0),
which implies ēA > eA0 as f(.) is increasing by the assumption of convexity of costs.

Is global eradication Pareto-dominant?
The proof of Proposition 3 shows that global eradication Pareto dominates an interior equi-

librium; the arguments apply to partial eradication outcomes too. Pareto-dominance of global
eradication holds generically, a sufficient condition is: for any i ∈ I we have

ki(0) ≥ ci(0)max
(

1
1 + δ

,
1 + δ − δDiig

′(0)
1 + δ

)
(51)

This condition is stronger than condition ki(0)−ci(0)+δDiig
′(0)ci(0) > 0 for any i ∈ I (more or

less depending on the discount factor and the self retention parameter). The proof is as follows.
If (51) holds for any i ∈ I then, considering another MPNE, it necessarily results in a positive
residual stock at t = 0, otherwise the game ends and global eradication obtains. If ei0 denotes
the residual stock in property i corresponding to this MPNE:

Πge
i −Πi =

∫ ei0

0
[ki(s)− ci(s)] ds+ δ

[∫ ei1

0
[ki(s)− ci(s)] ds+

∫ ∑
j
Djig(ei0)

0
ci(s)ds+ δVi2(x2)

]
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where ei1 ≥ 0 denotes the period-1 residual stock level related to this MPNE, and Vi2(x2) ≥ 0
its present-value cost starting at t = 2 (which is non-negative). This implies that

Πge
i −Πi ≥

∫ ei0

0
[ki(s)− ci(s)] ds+ δ

∫ ∑
j
Djig(ej0)

0
ci(s)ds+ δ

∫ ei1

0
[ki(s)− ci(s)] ds (52)

=
∫ ei0

0
[ki(s)− ci(s)] ds+ δ

[∫ ∑
j
Djig(ej0)

0
ci(s)ds−

∫ ei1

0
ci(s)ds

]
+ δ

∫ ei1

0
ki(s)ds

And since ei1 ≤ xi1 =
∑
j Djig(ej0) by definition and ci(e) > 0 for any e ∈ [0,

∑
j Djig(ej0)]

(assuming ci(e) is well behaved at e = 0, that is ci(0) <∞) we deduce:

Πge
i −Πi ≥

∫ ei0

0
[ki(s)− ci(s)] ds+ δ

∫ ei1

0
ki(s)ds.

Now since functions fi(s) = ki(s)− ci(s) and ki(s) are increasing, this inequality implies:

Πge
i −Πi > ei0 [ki(0)− ci(0)] + δei1ki(0)

When ei1 ≥ ei0 we deduce Πge
i − Πi > ei0 [(1 + δ) ki(0)− ci(0)] ≥ 0 by condition (51). Now, if

0 ≤ ei1 < ei0 is satisfied, coming back to (52) we have, since
∑
j Djig(ej0) ≥ Diig(ei0):

Πge
i −Πi ≥

∫ ei0

0
[ki(s)− ci(s)] ds+ δ

∫ Diig(ei0)

0
ci(s)ds+ δ

∫ ei1

0
[ki(s)− ci(s)] ds

Finally, since fi(s) = ki(s)− ci(s) and mi(s) = ki(s)− ci(s) + δDiig
′(s)ci(Diig(s)) are increasing

(mi(.) is increasing due to the convexity of costs in the strategy), we have:

Πge
i −Πi > ei0 [ki(0)− ci(0) + δDiig

′(0)ci(0)] + δei1 [ki(0)− ci(0)]

When ki(0) < ci(0) (otherwise the conclusion is straightforward) we deduce, since ei1 < ei0:

Πge
i −Πi > ei0 (ki(0)− ci(0) + δDiig

′(0)ci(0) + δ [ki(0)− ci(0)]) = ei0 [(1 + δ) [ki(0)− ci(0)] + δDiig
′(0)ci(0)]

and the right hand side of the inequality is positive by (51), which concludes the proof when
ei1 < ei0 is satisfied. To conclude the proof overall, notice that, if a property owner j finds it
optimal to choose ej0 = xj0 at t = 0, then Πge

j > Πj holds necessarily. Indeed, using the general
expression of the owner’s payoff, and rewriting condition (52) we obtain:

Πge
j −Πj ≥

∫ xj0

0
[kj(s)− cj(s)] ds+δ

[∫ ∑
l 6=j

Dljg(el0)+Djjg(xj0)

0
cj(s)ds−

∫ ej1

0
cj(s)ds

]
+δ
∫ ej1

0
kj(s)ds

and the reasoning above yields that Πge
j −Πj > 0 holds again.
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