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Abstract

We consider analytically the non-cooperative behavior of many private prop-
erty owners who each controls the stock of a public bad such as an invasive
weed species, fire, or agricultural pest. The stock of the public bad can grow
and disperse across a spatial domain of arbitrary size. In this setting, we
characterize the conditions under which private property owners will control
or eradicate, and determine how this decision depends on property-specific
environmental features and on the behavior of other landowners. We show
that high mobility or lower control by others result in lower private control.
But when the marginal dynamic cost of the bad is sufficiently large, we
find that complete eradication may be privately optimal (despite the lack
of consideration of others’ welfare) – in these cases, eradication arises in
the non-cooperative game and is also socially optimal so there is, in effect,
no externality. Finally, when property harboring the bad is not owned, or
is owned in common, we derive the side payments required to efficiently
control the mobile public bad.
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1 Introduction
The management of public bad resources represents a ubiquitous challenge with
real-world policy implications. Applications are numerous and include diverse re-
sources such as fire, invasive species, antibacterial resistance, air pollution, noxious
advertising, cyberspace viruses, aquaculture pathogens, infectious diseases, among
other common nuisances. The problem is worsened by the mobility and renewa-
bility of these resources, since they grow and disperse to surrounding properties in
subsequent periods, thus imposing future damages in other locations. While the
literature often focuses on socially-optimal management,1 issues that arise when
individual property owners each make decentralized decisions has received little
attention. Indeed, spatial connectivity induced by the mobility of the resource
influences private decisions, which collectively can have important consequences
for control or eradication across the spatial domain.2

This paper concerns the private management of spatially-distributed, mobile
public bads. We focus on deriving the biological and economic conditions under
which private property owners will find it privately optimal to control or eradicate
the public bad; and how those decentralized decisions depend on property-specific
features and on the control decisions of others. The entire analysis is analytical,
so we seek general insights that can inform both positive and normative aspects
of this empirically-extensive class of challenges.

A disparate literature contributes to the issue of public bad management from
the spatial perspective. The literature on optimal control of infectious diseases
commonly introduces a transmission parameter to capture the rate of spread, but
typically does not model the spatial dimension of disease transmission (exceptions
are noted in the review by Arino and den Driessche (2006)). The resource eco-
nomics literature provides the closest related setting. First, it has become common
recently to examine the optimal management of an exotic species that is spatially
distributed across the landscape. A sole owner accounts for all spatial connections
and optimizes her control efforts across space to characterize the optimal design of
policies. In this setting some authors focus on the question of prevention vs. con-
trol: Leung et al. (2002) find, for zebra mussels, that ex-ante prevention is more
efficient than ex-post control, while Burnett et al. (2008) use the real-world case of
the Brown Tree snake in Hawaii, after having theoretically characterized the paths

1Among others, Lichtenberg and Zilberman (1986) and Archer and Shogren (1996) seek to
optimally control a pest population, other biological invasions (Shogren 2000; Olson and Roy
2002) or infectious diseases (Wiemer 1987; Gersovitz and Hammer 2004). Adda (2015) provides
an evaluation of health-related policies relying on cost-benefit analysis.

2For instance, Brito et al. (1991) or Geoffard and Philipson (1997) focus on the
economics of vaccination (but not eradication) and abstract from issues raised by
strategic interactions and heterogeneity.
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of expenditures and damages, to analyze the optimal integrated management of
prevention and control. Others contrast long-run solutions from an optimal con-
trol system and solutions from a static optimization problem (Finnoff et al. 2010),
or uniform vs spatially-optimized policy (Albers et al. 2010). Epanchin-Niell and
Wilen (2012) numerically examine optimal policies over a range of spatial and eco-
logical configurations, and emphasize the influence of these qualitative character-
istics on policies. While some purely theoretical works exist (e.g. Blackwood et al.
(2010)), most papers conduct numerical simulations either in stylized systems or
in systems loosely parameterized by empirical observations because analysis tends
to grow in complexity with the spatial domain. These focused numerical applica-
tions help establish insights in the settings they explore, but they also raise more
general hypotheses that can be addressed by theory.

A second strand of literature explicitly introduces the non-cooperative nature
of private property owners, and emphasizes mechanisms that can be used to induce
cooperation. Grimsrud et al. (2008) show that coordination is more likely with
low levels of invasion in a two-agent dynamic model. Epanchin-Neill and Wilen
(2015) examine how different degrees of cooperation affect invasion and find that
the degree of cooperation is related to control costs: less cooperation is required
to achieve high control when costs are low relative to damages. Our analysis
follows this line of research, but we rather provide a game-theoretical approach
with many economic agents instead of conducting numerical analysis of particular
system. Moreover, we focus on the role of heterogeneous landowners, for example
with respect to costs, damages, and dispersal rates. We find that these sources of
heterogeneity can significantly alter individual landowner incentives over control or
eradication, suggesting that heterogeneity can play an important role in economic
outcomes. Our theoretical approach allows us to home-in on the effects of different
patterns of dispersal and infestation on non-cooperative outcomes.3 This helps to
generalize previous numerical results.

Broadly speaking, the literature on network games provides interesting insights
highlighting that players’ behaviors are influenced by those around them (Jackson
and Zenou 2014). Indeed, dispersal rates of a resource, disease transmission pa-
rameters, or a network structure represent an adjacency matrix linking agents and
serve as a vector to impact their payoffs. This literature helps to characterize how
individuals’ decisions may depend on interactions across players. For example, bi-
ological invasions are often considered a “weakest-link” public good where the level
of control is determined by the weakest contributor (Burnett 2006). Our theoreti-
cal framework also has ramifications for “reputation” spillovers, since reputations
depend on networks of social relations between economic agents. Winfree and Mc-

3A decentralized model of global disease eradication is analyzed in Barrett (2003)
within a static and homogeneous setting.

3



Cluskey (2005) analyze reputation as a dynamic common-property resource. They
adopt the structure introduced by Shapiro (1982) to capture the spread of learning
on firm quality. However, this literature largely uses experimental approaches (e.g.
Palfrey and Prisbrey (1996)), and ignores the spatial dimension (an exception is
Brandt et al. (2003)). Although informative, and suggestive of mechanisms that
may be applied more broadly, these papers lack theoretical findings so general
lessons, and the conditions under which they arise, are difficult to ascertain. The
objective of this paper is therefore to provide a general analysis of decentralized
public bad management in a spatial setting.

In particular, the aim of this paper is to analyze the private management of a
spatially-distributed mobile public bad, and to examine the game theoretical in-
teractions among non-cooperative property owners. We employ this apparatus to
derive general results such as the conditions under which control and eradication
will emerge, those under which non-cooperation results in a socially optimal pat-
tern of control, and the effects of system characteristics (e.g. the rate of spread) on
non-cooperative outcomes. Part of the literature stresses that there exists a spec-
trum of policy options to manage public bads: prevention and cure (Leung et al.
2002), detection and control (Kaiser and Burnett 2010), but very few focuses on
eradication (Olson and Roy 2002; Burnett et al. 2006). This policy option is often
considered to be too expensive or too complex (Gersovitz and Hammer 2005; Re-
gan et al. 2006). We address this possibility by characterizing the conditions under
which eradication is either socially optimal, or is an outcome of non-cooperative
behavior across all spatially connected properties.

We develop an analytical model with an arbitrary number of spatially-distinct
properties and discrete-time resource dynamics to analyze decentralized owners’
incentives and the equilibrium behavior across those owners. In our theoretical
model we also solve for the social planner’s optimal control pattern across space
and time. While we think this as a contribution in its own right, we regard it
primarily as a benchmark case against which to compare decentralized equilib-
ria across non-coordinating property owners. Aside from developing a tractable
analytical framework for addressing mobile public bads, our results make three
main analytical contributions. First, we show that the private trade-off between
controlling the expansion of a public bad on one’s own property and eradicating
it depends on the magnitude of its spread. Furthermore, whether complete erad-
ication over the entire domain emerges in the decentralized system depends on
features such as the magnitude of patch connectivity. Second, in general we find
the intuitive result that non-cooperative property owners will provide too little
control of the public bad. This result accords with Fenichel et al. (2014) and
is intuitive because private property owners will consider only their local costs
and benefits of control, but will disregard the consequences of their actions on
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adjacent owners. We also show analytically how the extent of this externality is
driven by heterogeneity and other features of the problem. When the marginal
dynamic cost inflicted by the stock is low, neither the social planner nor the non-
cooperative private property owners will engage in much control, so little is to
be gained from cooperation among private owners. In that case, private property
delivers a near first-best outcome. But as the size of the dynamic cost increases,
private property owners increase their control, but not as much as the social plan-
ner would have liked. Thus, as the marginal dynamic cost grows, so does society’s
benefit from cooperation among property owners. This intuitive finding suggests
that as the size of the externality grows, so does the importance of government
intervention (or private ordering) to internalize the externality. But we find that
this result only holds for moderate levels of dynamic cost. If dynamic cost grows
enough, then private property owners will eradicate on their own property; for
example, you do not tend to observe poison ivy in urban backyards. We show
that when eradication arises in the non-cooperative game, then it is also socially
efficient. Thus, if marginal dynamic cost is sufficiently large, the cooperative and
non-cooperative solutions converge, and there is no additional value from govern-
ment intervention. This contribution suggests that government intervention may
be justified (to coordinate the actions of private land owners), but only in cases
of intermediate dynamic cost. Our third main contribution is to completely char-
acterize the gains from inducing cooperative behavior among the non-cooperative
property rights holders. Naturally, to the extent that properties are heterogeneous,
the side payments required to achieve cooperation will differ across space. We de-
rive the magnitude of these side payments as a function of damage, cost, spread,
and growth.

We organize the paper as follows: The analytical model is introduced in Section
2 and we derive the equilibrium strategies of non-cooperative property owners in
Section 3. The social planner’s problem is introduced and solved in Section 4,
which puts us in a position to compare the decentralized solution with the social
planner’s in Section 5. We then calculate the gains from cooperation and discuss
the cooperation-inducing side payments in Section 6. We conclude in Section 7.
All proofs are found in the Appendix.

2 A spatially-connected model of a renewable
public bad

The stock of a renewable public bad is spatially distributed. Space is divided into a
set of I mutually exclusive and exhaustive “properties,” each of which is assumed to
be owned by a single profit maximizing owner. Properties may be heterogenous in
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biology, and economics, but intra-property characteristics are homogenous. Using
a discrete-time model, the stock residing on property i at the beginning of time
period t is given by xit and control efforts undertaken on property i will reduce
the stock over the course of that time period. We denote the amount of stock
removed on property i by hit, which leaves a “residual stock” at the end of the
period of eit ≡ xit − hit. The residual stock grows according to a growth function
g(eit),4 and the resource stock is distributed across the landscape. The fraction of
the resource stock that moves from property j to property i is given by Dji, so∑
iDji ≤ 1.5 The equation of motion of the resource stock is:

xit+1 =
I∑
j=1

Djig(ejt); (1)

The resource stock on property i imposes damage on owner i, and the damage
function may be property-specific (for example, a weed may cause more damage
in an agricultural area than in an industrial area). We assume that damage is a
function of post-harvest residual stock. If the residual stock in i is ei, the marginal
damage in i is ki(ei), where k′i(ei) > 0.

The cost of control may also be property-specific (for example removing invasive
mussels may be simpler in shallower water). The marginal cost of control in a
property will also depend on the stock size in that property. This captures the so-
called stock effect for which the marginal abatement cost is a decreasing function of
the stock. We model the marginal control cost as ci(xi), where c′i(xi) < 0. Taking
all relevant economic variables into account, the period-t cost to owner i of stock,
xit, and control, hit is:

Φi(xit, hit) =
∫ xit−hit

0
ki(s)ds+

∫ xit

xit−hit

ci(s)ds. (2)

Following the identity eit ≡ xit − hit, we can re-write Equation 3 as:

Φi(xit, eit) =
∫ eit

0
ki(s)ds+

∫ xit

eit

ci(s)ds (3)

The first term on the right hand side of Equation 3 is the total damage cost
on property i during period t and the second term is the total cost of control.

4We assume the usual conditions: g(0) = 0, g′(e) > 0, g′′(e) < 0.
5This follows the recent literature from the natural sciences (see, e.g., Nathan et al. (2002),

or Siegel et al. (2003)) who model dispersal of passive “Lagrangian particles.” An endogenous
dispersion parameter may be a relevant alternative to account for density-dependent process, or
situations where agents can affect that process. The latter case introduces an additional control
variable (as in Rowthorn et al. (2009)), which has the benefit of introducing the containment
policy to keep the bad within some specified area. While this has appeal in some settings, we
focus instead on the problem of controlling (or eradicating) the stock of the bad on one’s property.
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Management of the public bad will involve choosing the level of control to minimize
the sum of control costs and damages. While the payoff to owner i depends only on
the stock and control on property i, the stock itself will depend on past decisions
in all other properties because the resource can move across space (see Equation
1). Thus, all properties are linked together and this is the sense in which we call
this resource a public bad.

Figure 1: Illustration of marginal control cost (ci(s)) and marginal damage cost
(ki(s)), for property i, as a function of the current stock of the public bad, s.

3 Property owners’ strategies
We assume that each of the I property owners makes her own privately optimal
decision about how much control to engage in each period. This is a complicated
decision for owner i for two reasons. First, owner i’s strategy about how much to
control may depend on all current stocks of the public bad and on the strategies
applied by all other owners. Second, because the resource grows and moves, owner
i’s strategy must account for the fact that less control today implies higher growth
and thus higher damage (even on her own property) in future periods. This latter
observation allows for a spectrum of management options for owner i, from doing
nothing to full eradication. In this setting all owners simultaneously choose their
level of control, hit ≥ 0. Equivalently, owner i can choose eit ≥ 0 (since eit ≡
xit − hit and xit is known at the time of the decision) in order to minimize her
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present value cost V̂it (taking all other variables as given) as follows:6

V̂it(xit) = min
eit≥0

(
Φi(xit, eit) + δV̂it+1(xit+1)

)
(4)

subject to Equation 1 which defines the state transitions as a function of all owners’
controls.

In the following sections, we characterize the owners’ optimal management
strategies in order to derive the system-wide management outcomes, stock lev-
els, and equilibrium payoffs in the decentralized system. We especially focus on
the emergence of control and (partial or complete) eradication as equilibrium out-
comes.

3.1 The strategy of partial control
First, we derive the conditions under which property owners optimally choose to
control, but may not eradicate, the public bad. We thus focus on an interior
equilibrium (êit > 0 ∀i, t), which is characterized as follows:
Proposition 1. The interior equilibrium of the I-property public bad dynamic
game is characterized by residual stock on property i (êit) given as follows:

ki(êit) = ci(êit)− δci(x̂it+1)Diig
′(êit) (5)

Moreover, this interior equilibrium is state independent: êit is independent of x̂it
for all i.

Here, êit and x̂it denote the residual stock and resource stock on property i,
respectively.7 The level of control is simply ĥit = x̂it − êit. Proposition 1 shows
that the equilibrium residual stock arises from a trade-off between the current
marginal damage (on the LHS) and the long-run marginal control cost (on the
RHS). Owner i will control the bad until the current marginal damage is equal to
the current marginal cost of removing one additional unit of the stock, mitigated
by the discounted future cost implied by an increased stock.

We note also that the strategy of owner i depends on x̂it+1 (via its effect on
future control costs), which suggests that owner i’s decision will depend on the
past decisions of other owners j for whom Dji 6= 0 (see Equation 1). If an adjacent
owner engages in less control (and so leaves a larger êjt−1), how will owner i
respond? We find a kind of “race to the bottom” emerges, in which less control by
owner j implies less control by all connected owners. This consequence of strategic
dynamic interactions among property owners is formalized as follows:

6Indeed, it turns out to be more mathematically convenient to keep track of the residual
stock, eit, rather than the explicit control, hit, so we use eit as the control variable for property
owner i. The explicit amount of control, hit, can then simply be backed out.

7The hat indicates the non-cooperative game equilibrium.
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Proposition 2. A larger residual stock in one property causes an increase in the
optimal residual stock in all connected properties: ∂êit

∂ejt
> 0, where Dji 6= 0.

Proposition 2 is consistent with results in Fenichel et al. (2014): The incentive
to control the public bad increases with the control effort of other owners. As
one property owner reduces the stock of public bad on her property, adjacent (or
otherwise spatially connected) owners will follow suit. Public bad control is thus
a strategic complement, and the strategic reaction to each others’ decisions may
induce a kind of domino effect. Consequently, this particular game of strategic
complements is a spatial analog of the “weaker-link” problem (Cornes 1993): The
level of control in the entire spatial domain is not determined by the lowest indi-
vidual level effort, but lower control by a single owner will trigger the spread of a
spatially mobile public bad. This eventually leads to a loss in welfare across the
entire spatial domain. These strategic interactions may suggest that eradication
is unlikely to emerge as an equilibrium outcomes. Yet, as highlighted in the next
section, there are cases where full or partial eradication will emerge from private
management.

3.2 The emergence of eradication
Will private owners ever eradicate the public bad? The majority of the literature
focuses on partial control, and thus neglects whether it is optimal for private
agents to eradicate. Indeed, eradication is often considered unrealistic (Simberloff
(2009)). For instance, vaccination efforts by some agents may reduce incentives
of others to immunize (Anderson and May 1991), even though it may be socially
desirable. Naturally, though, the decision of whether to completely eradicate a
public bad will depend on adjacent owners’ actions because if they lack control
on their property, the likelihood of future infestation may be very high. We thus
expect strategic interactions to play an important role in individual decisions.

In order to proceed, we will dissect the optimality condition in Equation 5.
That Euler equation defines the first order condition for an interior dynamic op-
timum. The term ki(êit) − ci(êit) + δci(x̂it+1)Diig

′(êit) can be thought of as the
marginal dynamic cost of the public bad to property owner i. Naturally, the
property owner would like to set the marginal dynamic cost equal to zero. But
nontrivial cases exist when it is not possible for that expression to equal zero. We
use this fact to analyze the circumstances under which eradication is an outcome
of decentralized decisions by property owners.8 For example, if even very small
stocks impose large damage costs, it turns out that the optimal decision for owner

8In the remainder of the analysis, when we mention eradication outcomes, we refer to sit-
uations where the public bad is eradicated starting at time t = 0. We will briefly discuss the
implicit effect of initial conditions at the end of the analysis.
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i can be to completely eradicate the stock on her property. If this is the case for all
property owners, then complete eradication across the entire spatial domain will
arise from non-cooperative behavior. These results are summarized as follows:
Proposition 3. Complete eradication across the entire spatial domain arises from
non-cooperative behavior of property owners if and only if:

min
i∈I

[ki(0)− (1− δDiig
′(0)) ci(0)] > 0. (6)

Realistic cases exist in which full eradication in fact does arise, as is suggested
by Proposition 3. Full eradication requires that [ki(0)− (1− δDiig

′(0)) ci(0)] > 0.
To gain some intuition, first consider the case in which marginal damage from a
small stock (ki(0)) is large. Provided it is not too costly to eradicate the last units
of the stock (so ci(0) is not too large), eradication will be optimal. But even if
marginal damage from a small stock is small (so the stock must build up before
it inflicts any significant damage), it may still be optimal to eradicate. To see
that, suppose ki(0) = 0. Then eradication emerges provided that 1 < δDiig

′(0), so
decentralized eradication is more likely when self-retention (Dii) is large, intrinsic
growth is large (g′(0)), or the discount factor is large (δ). This interesting result
is a consequence of the foresight by the property owner. If she fails to eradicate
now, the stock will grow and cause much more damage in subsequent periods.

Cases also exist in which eradication arises on some properties, but not on
others; we refer to this as “partial eradication.” For example, if property i has high
marginal damage from a weed infestation (perhaps it is a native plant nursery) and
property j has low marginal damage (perhaps it is rangeland), then this analysis
suggests that owner i may find it privately optimal to eradicate the weed on her
property while owner j does not. To characterize the conditions under which
partial eradication emerges as an equilibrium outcome, we separate the owners
into two distinct groups: A group E of ne > 0 owners who fully eradicate on their
own properties, and a group of remaining owners who optimally choose to only
partially control on their properties. As long as some owners fail to completely
eradicate, the public bad will still reside in some of the areas because of growth
and spread originating from the partially-controlled properties. The emergence of
partial eradication as an equilibrium of non-cooperative behavior is characterized
as follows:
Proposition 4. Partial eradication arises from non-cooperative behavior if and
only if there exists a group of owners E ⊂ I such that, in any period t:

min
i∈E

[ki(0)− ci(0) + δDiig
′(0)ci(x̂it+1)] > 0 (7)

and the remaining property owners control the public bad such that:

kj(êjt) = cj(êjt)− δcj(x̂jt+1)Djjg
′(êjt) ∀j /∈ E. (8)
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Note that for any owner i ∈ E the corresponding stock level x̂it+1 = ∑
j /∈E Djig(eejt)

is positive as long as it is connected to another property whose owner who only
partially controls the public bad. Intuitively, it is possible that the partial eradi-
cation situation described in Proposition 4 leaves room for self-consistent transfer
payments, where (some) owners from group E are willing to compensate (some)
owners from the other group to increase their levels of control. However, this intu-
ition relies on the assumption that complete eradication would be socially optimal,
which has yet to be analyzed.

4 Socially optimal management of a mobile pub-
lic bad

In the spatial dynamic game, property owners consider only the payoffs on their
own properties when making optimal decisions. By contrast, a sole owner must
account for the entire spatial domain when managing the public bad. The sole
owner must optimize the spatial and temporal control to minimize the present value
of the sum of costs to all properties, subject to the resource dynamics. Written
as a dynamic programming equation, the sole owner’s problem is to minimize the
present value cost Vt, and the problem is defined as follows:

Vt(xt) = min
{e1t,e2t,...,eNt}≥0

∑
i

Φ(xit, eit) + δVt+1(xt+1) (9)

subject to the Equation 1, and where the bold notation xt indicates the vector
xt ≡ [x1t, x2t, ..., xNt]. This appears to be an incredibly complicated problem to
solve, particularly as I gets large, because it involves an I dimensional decision
where each decision is connected over time via the spread and growth dynamics.
But it turns out that this problem can be solved analytically, and that the optimal
spatial-temporal control policy can be completely characterized.

4.1 Control as a socially optimal management strategy
We first consider the case in which partial control is optimal for the social planner.
The socially optimal partial control policy is given as follows:

Proposition 5. The sole owner’s optimal partial control strategy has residual
stocks, ēt > 0, characterized as follows

ki(ēit) = ci(ēit)− δ
∑
j

cj(x̄jt+1)Dijg
′(ēit). (10)
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In a manner similar to the decentralized result (Proposition 1), the sole owner’s
optimal residual stock results from a trade-off between marginal damage (on the
LHS) and the marginal control cost (on the RHS). Again, the marginal cost of con-
trol is composed of the current marginal control cost and the sum of the discounted
marginal control cost in the future.

4.2 Is eradication socially optimal?
In a manner similar to the decentralized property owners, we can determine the
conditions under which complete eradication is socially optimal. Intuitively, if
damage is very high, or if eradication costs are very low, then it may pay to bear
the one-time costs of eradication rather than bear an infinite stream of damages
(and costs) in perpetuity. If Condition 10 cannot be met for any ēit > 0, then it
is optimal to eradicate the entire resource stock on all properties. There are also
conditions under which it is socially optimal to eradicate on some properties but
not all. These results are formalized below:

Proposition 6. (a) Complete eradication across the entire spatial domain is
socially optimal if and only if:

min
i∈I

ki(0)− (1− δDiig
′(0)) ci(0) + δg′(0)

∑
j 6=i

Dijcj(0)
 > 0. (11)

(b) Eradication across part of the spatial domain is socially optimal if and only
if there exists a set of properties Ē ⊂ I such that, in any period

min
i∈Ē

ki(0)− ci(0) + δg′(0)
∑
j

Dijcj(x̄it+1)
 > 0 (12)

and the remaining property owners control the public bad such that:

kj(ējt) = cj(ējt)− δ
∑
k

ck(x̄kt+1)Djkg
′(ējt) ∀j /∈ Ē. (13)

The result on full eradication (Proposition 6a) is similar to the case of decen-
tralized management except that here, spatial externalities between all properties
are accounted for by the social planner. Proposition 6b characterizes conditions
under which it is socially optimal to only partially eradicate. Again, notice that,
in any property i ∈ Ē, the stock level x̄it+1 = ∑

j /∈Ē Djig(ējt) is positive at the
beginning of period t + 1 provided that it is connected to a property in which it
was socially optimal to only partially control the public bad. While the residual
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stock level is the same under both management regimes for properties where the
public bad is eradicated, it may differ in others.

The results obtained in Sections 3 and 4 imply an interesting dependence of
spatial connectivity on the differences between decentralized and socially optimal
management; this is further explored in what follows.

5 Tragedy of the commons, inefficient coordina-
tion and spatial connectivity

The literature on decentralized common pool resource management often empha-
sizes its shortcomings compared to socially optimal management, and these com-
parisons are often restricted to quantitative comparisons of outcomes. By contrast,
we adopt two lines of comparison. First, we analyze the conditions under which
the tragedy of the commons emerges (where each owner chooses positive, yet sub-
optimally low control of the public bad). Second, we characterize cases in which
property owners fail to coordinate on the socially-optimal strategies: i.e. they only
partially control, while the social planner would fully eradicate the mobile public
bad. Inspecting Conditions 5 and 10 or Conditions 6 and 7, it is intuitive that
spatial connectivity will play an important role in these comparisons.

We first assess how “spread” may exacerbate the tragedy of the commons
beyond the deleterious effects arising from strategic interactions, which we have
already examined. When no spatial externality exists, Dii = 1 (so Dji = 0 for
all j 6= i), and we would expect the decentralized solution, êit > 0, to equal the
socially optimal solution, ēit > 0. If an externality exists, Dji 6= 0, and we find that
control levels differ under a decentralized management, as is summarized below:

Proposition 7. In any period t:
(a) In the absence of spread (so Dij = 0 ∀i 6= j), the decentralized equilibrium is
equivalent to the socially optimal policy for all properties, êit = ēit.
(b) When property i is a pure source, i.e. Dii = 0, the Nash equilibrium is strictly
higher than the optimal policy for each property, êit > ēit.
(c) When Dii ∈ (0, 1), we have, for any property i, êit ≥ ēit.

Proposition 7 confirms that the tragedy of commons emerges under private
management, except (intuitively) in the limiting case when there is no spatial
connectivity. When a property that harbors the bad is spatially connected to
another property, laissez-faire tends to yield a suboptimal level of control; this
echoes Fenichel et al. (2014). Moreover, the magnitude of spatial connectivity
does affect owner i’s optimal choice. In the presence of spread, the degree to which
owner i’s strategy depends on decisions by owner j will depend both on strategic
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interactions and on spatial features such as the magnitude of connectivity. Here
we examine the impact of the spread parameters in order to identify how changes
in residual stock on property i are driven by changes in the self-retention rates and
off-property spread rates. For instance, assume a two-patch sink-source system,
where patch i is the source (so Dii = 0 and Dij > 0) and patch j a sink (so
1 ≥ Djj > 0 and Dji = 0). Owner i will thus optimize her control within her
patch ignoring the mobility of the public bad towards the second patch, and thus
under control the amount of public bad. On the contrary, owner j will behave like
a sole-owner disconnected from her neighbor. By extrapolation to a system with
multiple sources and multiple sinks, we may conjecture that the Nash equilibrium
should be higher than the optimal policy for sources, but that outcomes should
be similar in sinks. This unidirectional flow system has the advantage that higher
control effort levels occur where the spread of contamination is high.

To sharpen intuition, we continue with the two-property case (N = 2) and
focus on the case where control emerges as the decentralized equilibrium. In that
case, there are two self-retention parameters: Dii, and Djj, and two dispersal
parameters: Dij, and Dji. The impact of self-retention on property i, Dii, and the
spread from property j to i, Dji can both be interpreted as a higher quantity of
the public bad so intuition on their effects will be straightforward to garner. A
more nuanced question is: How will owner i’s optimal strategy depend on spread
to, and self-retention on, property j (that is, how does êi depend on Dij and Djj)?
These parameters affect stock on property j, and thus due to strategic interactions,
will indirectly affect residual stock on property i. More specifically, if j responds
by engaging in less control, then by Proposition 2, owner i may also respond by
engaging in less control. All results on the dependence of owner i’s residual stock
on the spread of the public bad are summarized as follows:

Proposition 8. There exist 0 ≤ D̄i < 1 and 0 ≤ D̄j < 1 such that, if either
Dii ≥ D̄i or Djj ≥ D̄j, an increase in off-property spread (either Dji or Dij),
results in a larger residual stock level on property i:

∂êit
∂Dji

> 0; ∂êit
∂Dij

> 0.

A higher value of self-retention, respectively Dii and Djj, results in a lower residual
stock level on property i if and only if the respective marginal cost is inelastic:

∂êit
∂Dii

< 0⇔ 1 > ε1 with ε1 = −Diig(êit)
c′i(x̂it+1)
ci(x̂it+1) > 0

∂êit
∂Djj

< 0⇔ 1 > ε2 with ε2 = −Djjg(êjt)
c′j(x̂jt+1)
cj(x̂jt+1) > 0
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The first part of Proposition 8 shows that residual stock on property i is increasing
in both off-property spread parameters (Dji and Dij). The intuition is that an
increase in Dji is as if owner j now engages in less control, since more resource
moves toward property i. This consequently entices owner i to raise the stock on
her own property. The effect of higher Dij on optimal stock in i is more surprising
since it describes a higher movement from i to j which may suggest a decrease
in the residual stock of property i. But the strategic interactions between owners
outweighs this effect, following Proposition 2, so an increase in Dij causes owner i
to raise the stock on her own property.

Analyzing the effects of self-retention (Dii and Djj) also yield insights, though
this becomes more complicated. Here, whether êit will increase or decrease in
response to a rise in Dii (or Djj) will depend on the nature of control costs. If the
marginal cost of control is relatively flat (so c′(.) ≈ 0), then owner i will engage
in more control if Dii is larger. This makes intuitive sense: If a pest population
is more likely to persist on one’s property, then it seems intuitive that the owner
would engage in more control compared to a case in which it is likely to quickly
move off of one’s property. As a consequence of strategic dynamic interactions,
a similar result emerges regarding owner i’s response to an increase in Djj. But
these results can be flipped if marginal cost is sufficiently steep. The proof of
Proposition 8 (in the Appendix) spells this out in detail and also suggests that
they are likely to hold under conditions even more general than are considered
here.

If it is socially optimal to eradicate and eradication emerges under laissez-
faire, then there is no tragedy of the commons. However, whether another form
of the tragedy of the commons may exist, where private owners under laissez-faire
coordinate on the “wrong” strategy (the suboptimal one), is an open question.
We now turn to the issue of comparing the type of optimal strategies induced
by decentralized and socially optimal management. We investigate the conditions
under which eradication can emerge in both the decentralized and socially optimal
settings, and how these conditions depend on spatial connectivity. A useful first
result is summarized below:

Lemma 1. If complete eradication emerges as a decentralized solution, then com-
plete eradication is socially optimal.

Lemma 1 shows that it is possible that there is consistency between the control
by decentralized private owners and the optimal control by a social planner. If
decentralized property owners all find it privately optimal to eradicate the public
bad (e.g. because the damages they faced were sufficiently large to justify the cost
of eradication), then complete spatial eradication is also socially optimal. It turns
out that this will always be the case for sufficiently large values of Diig

′(0) (when
1 < δDiig

′(0)), summarized by the following corollary:

15



Corollary 1. If self retention is sufficiently high on all properties, that is:

min
i∈I

Dii ≥
1

δg′(0) , (14)

then complete eradication is socially optimal and will emerge from non-cooperative
behavior.

Corollary 1 implies that if all self-retention parameters are sufficiently large, then
there will be no tension between socially optimal and private incentives. Con-
versely, it may often be the case that complete eradication is socially optimal, but
does not arise from decentralized owners’ decisions. This could be the case either
if all owners privately choose partial control strategies, or if eradication arises on
some properties, but not on others. For example, if property i has high marginal
damage from an invasive weed and property j has low marginal damage, then this
analysis suggests that owner i may find it privately optimal to exterminate the
weed on her property while owner j does not. But even in that case (when one
decentralized owner eradicates and another does not), it may be socially optimal
to fully eradicate on all properties (for example if i is downwind of j). This result
could arise because failing to eradicate on property j eventually causes damage on
property i, which diminishes social welfare. These results are summarized in the
following proposition:

Proposition 9. Assume that complete eradication is socially optimal (Condition
11 is satisfied), then it will never arise from decentralized management if:

max
i∈I

[ki(0)− ci(0) (1− δDiig
′(0))] ≤ 0. (15)

Proposition 9 characterizes situations under which a tension arises between so-
cially optimal management and private incentives: while it is socially optimal to
eradicate in all regions, private owners may choose a different policy. This result
will enable us to delve into the cases for which eradication is biologically and/or
economically feasible; we focus on the role of spatial parameters, summarized as
follows:

Proposition 10. Suppose complete eradication is socially optimal, and denote by
i a property with sufficiently low self-retention (Dii <

1
δg′(0)). Then the effect of

spatial parameters on the emergence of eradication is summarized as follows:
(a) An increase in dispersal Dij (where i 6= j) makes the emergence of complete
eradication less likely under decentralized management.
(b) Provided that self retention remains lower than 1

δg′(0) , an increase in self re-
tention makes the emergence of complete eradication less likely under decentralized
management.
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The effect of off-property spread is straightforward. An increase in out-dispersal
increases the incentive for the social planner to eradicate, but does not alter the
incentives of decentralized property owners. Thus, this enlarges the set of cases
where a tension arises between the two types of management. But the effect of
self retention is harder to intuit. Corollary 1 and Proposition 9 imply that when
all properties except one (say i) are characterized by sufficiently high values of
self retention, then an increase in the value of self retention on property i may
have two opposing effects. First, if the increase is such that self retention is now
higher than the threshold value, then Corollary 1 implies that it has a positive
effect as it removes the potential tension between socially optimal and private
incentives. However, if the initial value is so low that the increase is not sufficient
to move it over the threshold, then the effect is negative as it enlarges the set of
cases where complete eradication fails to emerge under decentralized management.
These results can be used to assess whether we might expect strong consistency
between socially and decentralized management or tensions arising due to strategic
behavior among property owners.

6 Cooperation with side-payments
So far, we have analyzed the decentralized decisions of property owners who are
harmed by a public bad that moves across space, and we have contrasted that
case with the optimal solution of a social planner who can perfectly anticipate
the spatial migration of the public bad, and who can perfectly target control
efforts across space. An obvious result is that there are cases in which a tension
arises between these two types of management. This naturally begs the question of
what institutions can help transition from the decentralized solution to the socially
optimal solution.9 The case where partial eradication arises from decentralized
behavior, but where complete eradication is socially optimal, provides a convenient
case to assess the potential of monetary transfers to achieve the socially-optimal
outcome. Indeed, in that case, we need only provide incentives to a restricted set
of owners. The focus of this section is to assess the impact of spatial characteristics
on the size of the benefit from cooperation.

To sharpen the findings, we focus on the case of two properties (i and j).
The main point is to assess when a monetary transfer from owner i to owner j
is Pareto-Improving, that is, it makes both owners better off compared to the
(no-transfer) decentralized management outcome. While we have not explicitly
modeled transaction costs, it seems reasonable to assume that the larger is the
potential benefit from cooperation, the more likely it is that transaction costs can

9One mechanism that holds promise for public goods (but to our knowledge has never been
analyzed for public bads) is “unitization” (Kaffine and Costello 2011).
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be overcome (Demsetz 1967). Thus, we would like to explore the conditions under
which we might expect a large, or small, benefit from complete cooperation over
the control of this spatially-mobile public bad.

We first re-write Conditions 7 and 8 for partial eradication to occur in the case
of two regions. The stock will be partially eradicated on property i if and only if:

ki(0)− ci(0) + δg′(0)Diici (Djig(êjt)) > 0 (16)

where êjt > 0 is characterized implicitly by the following equation:

kj(êjt)− cj(êjt) + δDjjg
′(êjt)cj (Djjg(êjt)) = 0. (17)

Condition 17 means that owner j chooses to control, leaving a residual stock
êjt > 0. Condition 16 means that owner i has incentives to eradicate the public
bad each time period.10 Since c′i(·) < 0 and Dji > 0, the incentives of owner i are
weaker than under complete eradication defined by Condition 6.

Since owner i eradicates every time period, while owner j only partially controls
the public bad on her property, the corresponding payoffs Π̂i and Π̂j for owners i
and j are defined as follows:

Π̂i = −
[∫ 0

0
ki(s)ds+

∫ xi0

0
ci(s)ds+ δ

1− δ

(∫ 0

0
ki(s)ds+

∫ Djig(êj)

0
ci(s)ds

)]
(18)

Π̂j = −
[∫ êj

0
kj(s)ds+

∫ xj0

êj

cj(s)ds+ δ

1− δ

(∫ êj

0
kj(s)ds+

∫ Djjg(êj)

êj

cj(s)ds
)]
(19)

Conversely, as the socially optimal outcome is characterized by complete erad-
ication, the corresponding payoffs of each owner are defined as follows:

Π̄i = −
∫ xi0

0
ci(s)ds (20)

Π̄j = −
∫ xj0

0
cj(s)ds (21)

Now, consider the possibility of owner i making a payment to owner j to
reduce the residual stock in her property. The transfer will be feasible if there
exist positive gains from cooperation, that is, if the sum of payoffs (20) and (21)
resulting from cooperation exceeds the sum of payoffs (18) and (19) resulting from
decentralized management. This is indeed the case, as highlighted by the following
proposition:

10The re-writing follows from Proposition 4. Due to the expressions 16 and 17 and the fact
that economic costs, growth and dispersal are time independent, the optimal choice of owner j
is time and state independent (see Proposition 1). In other words êjt can simply be written êj .
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Proposition 11. Assume that there are two properties (i and j), that complete
eradication is socially optimal (that is, the cooperative outcome), and that Condi-
tions 16 and 17 are satisfied. Then, there are positive gains from cooperation.

Proposition 11 shows that, under certain conditions with decentralized manage-
ment, the owner of property i has incentives to compensate the owner of property j
to reduce the residual stock on her property. The actual amount to be transferred
depends on the spatial characteristics. The next result examines how the surplus
from cooperation depends on these features.

Proposition 12. Assume that there are two properties (i and j), that complete
eradication is socially optimal (that is, the cooperative outcome), and that Condi-
tions 16 and 17 are satisfied. Then, the following conclusions hold:
(a) The gains from cooperation are increasing in dispersal from property j to prop-
erty i (Dji).
(b) The gains from cooperation are increasing in self-retention (Djj) provided
marginal cost is elastic.

Proposition 12 seems to suggest that compensation should be oriented toward the
weakest-link, that is, the property j for which:

kj(0)− (1− δDjjg
′(0)) cj(0) = min

l∈I
kl(0)− (1− δDllg

′(0)) cl(0).

Indeed, using Equations 16 and 17, it follows that:

ki(0)− ci(0) + δg′(0)Diici(0) ≥ ki(0)− ci(0) + δg′(0)Djici (Djig(êj)) > 0

and

kj(0)− [1− δDjjg
′(0)] cj(0) < kj(êj)− cj(êj) + δDjjg

′(êj)cj (Djjg(êj)) = 0.

An appropriate transfer payment might be used to induce owner j to engage in
additional control, thus lowering her residual stock level, because it would benefit
the adjacent owners. Moreover, the larger is dispersal from property j to others,
the larger is the surplus resulting from potential cooperation, thus potentially
increasing the willingness of others to compensate the weakest-link.

7 Conclusion
We have developed and analyzed a model of a renewable public bad resource,
such as an invasive species, antibacterial resistance, or aquaculture disease, that
can move across space. Decentralized property owners undertake costly control to

19



reduce damage on their own properties, and because the resource is mobile, this
control has consequences for all other property owners. The resulting externality
induces a spatial-temporal game between the property owners who will each act
strategically given the behavior of other owners. Our first contribution is to com-
pletely characterize the equilibrium strategy of each owner and the resulting effects
on stock and control of the public bad across space. We also solve for the socially
optimal level of control across space and show that it always (weakly) exceeds the
level of control undertaken by decentralized owners.

A key focus of our analysis is on the conditions under which eradication is
undertaken by decentralized owners and/or is desired by the social planner. We
find that there is often consistency between these - realistic cases exist in which
all decentralized owners will eradicate the stock on their properties; in these cases
the social planner would choose the same level of control, so no policy intervention
is warranted. But cases also exist in which one or more decentralized owner fails
to completely eradicate (even though it is socially desirable). In such cases, side-
payments can induce appropriate control, and we have characterized the features
of the problem that lead to large or small potential gains from this kind of side
payment.

Our results also imply an interesting result about the role of initial conditions
on decentralized and optimal control of a spatially-connected public bad. If the
initial invasion is sufficiently large on all properties, then all property owners will
control to their optimal levels immediately and the resulting level of residual stock
will be independent of the initial invasion size. But if the initial invasion is large
on some properties and small on others, we can obtain a striking result. Consider
the two-property case and assume the initial invasion occurs only on property A
(not on property B). In that case, owner A will control more than she would have
had the invasion also extended to property B. Thus, reasonable conditions exist
under which it is optimal to aggressively control (or eradicate) a “small” initial
invasion, even though it would be optimal to only weakly control a “large” invasion.
The same result can be obtained in under laissez-faire.

To obtain sharp analytical results of this spatial-temporal game has required
making some simplifying assumptions. We modeled marginal damage on property
i as a function of resource stock on property i, which depends on the previous
period’s stock in all properties and the spread from those properties to property
i. A more complicated version of damage would allow for damage in period t
to depend on how much damage had been caused in previous periods; though
we do not analyze that case here. We modeled the marginal control cost as a
decreasing function of the stock of the bad; the higher is the local stock of the bad,
the smaller is the marginal cost of abatement. While this follows the literature
and seems to fit most applications, an extension could allow for marginal cost to
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also depend explicitly (not just implicitly) on the quantity removed. Regarding
the spread of the stock, we have assumed that the fraction of the stock that
spreads from property i to property j is constant. An extension could allow for
the spread to depend on the density of the stock in both areas. While these changes
would complicate the solution to our model, we think they are unlikely to overturn
the main findings of this paper. But these are fertile opportunities for empirical
applications of this work.

Our approach fundamentally assumes that the resource is a public bad for all
property owners. An interesting extension would allow the resource to be a public
good for a subset of owners. For example, wolves may be a “bad” for ranchers
and a “good” for conservationists. This type of public good has been analyzed by
Weitzman (2015). This will enable us to consider conflicts of interest between those
who want to conserve the resource, and those who will impede the provision of the
public good. Moreover, at a first glance, we expect that the structure of strategic
interaction of the group benefiting from the public good might be different, such
that the control strategy (Proposition 2) might become a strategic substitute, thus
inducing interesting, and yet unexplored, dynamics.

Overall, our results suggest an interesting general result about the gain from
coordination among decentralized property owners. If the marginal dynamic cost
of the public bad is small, then decentralized owners choose a level of control that
is lower than, but approximately equal to, the control that would be chosen by a
social planner. In those cases, the gain from coordination of decentralized owners
is likely to be small. If the marginal dynamic cost is moderate, an interior solution
is likely to obtain under which some control will be undertaken by the decentral-
ized property owners, but that this control will fall well short of what would be
chosen by the social planner. In these cases, the gains from coordination are large.
But when the marginal dynamic cost is sufficiently large, decentralized owners will
choose to eradicate on their own property. We proved that in those cases, complete
eradication is also socially optimal. In such cases, there is no gain from coordina-
tion. Taken together, these results suggest that the gain from coordination among
decentralized owners is largest for an intermediate public bads, which may run
counter to intuition and may be suggestive of cases when government intervention
or coordination schemes are most economically relevant.
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8 Appendix

Proof of Proposition 1
The first result follows from the first order conditions. To prove state independence, use Equation
4. Then the necessary conditions for an interior solution to agent i’s problem yields Expression
5. The necessary condition is also sufficient given the assumption of convexity of returns in the
strategy (residual stock level). The term on the left hand side in Expression 5 does not depend
on the vector of stock levels xt by inspection. The right hand side in Expression 5 depends on
the period t+ 1 state, but is independent of the period t state. For an interior solution we have
eit < xit and, using the equation of motion 1, we can conclude that xit+1 depends on eit but not
on xit. Thus, the right hand side in Expression 5 does not depend on the vector of stock level xt.
This implies that the period t game problem has state independent strategies. Moreover, since
economic costs, growth and dispersal do not vary with time, eit will not depend on time (but
does depend on spatial fundamentals).

Proof of Proposition 2
Denote Ψi ≡ ki(eit) − ci(eit) + δci(xit+1)Diig

′(eit) = 0 the first order condition (FOC) which
defines the best response of the owner of property i, i.e. the set of best responses for different
residual stock levels of the other owners in the other properties. Let eit(ejt, ..., elt) denote owner
i’s reaction function. According to the FOC, we know that Ψi[eit(ejt, ..., elt), ejt, ..., elt] ≡ 0.

Total differentiating this expression (omitting the time argument), we get:

∂Ψi

∂ei

∂ei
∂ej

+ ∂Ψi

∂ej
= 0 ⇔ ∂ei

∂ej
= −

∂Ψi

∂ej

∂Ψi

∂ei

with ∂Ψi

∂ei
= k′i(êit)− c′i(êit) + δDii

[
ci(x̂it+1)g′′(êit) + c′i(x̂it+1)Dii (g′(êit))

2
]

= SOCi > 0

∂Ψi

∂ej
= δDiiDjic

′(xit+1)g′(eit)g′(ejt) < 0 since c′(.) < 0 and g′(.) > 0

So ∂eit

∂ejt
> 0.

Proof of Proposition 3
The result follows from the first order conditions ensuring a corner solution êi = 0 for any
property i.

Proof of Proposition 4
Since Condition 6 is not satisfied, we can deduce from the convexity of the payoff functions that
there exists at least one property for which the owner has incentives to increase the residual
stock level compared to full harvest (provided that other owners harvest the entire stock in
their properties). This rules out complete eradication as a non cooperative equilibrium outcome.
Now, if the owner of property j /∈ E decides at period t to increase the residual stock level
(again assuming that the residual stock level is zero in any property i ∈ E, and positive in
any other property l /∈ E) her optimal choice is given by êjt (as characterized in Expression 8).
Then Condition 7 implies that the owner of property i ∈ E will find it optimal to maintain the
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residual stock level in her property at zero (assuming that the owner of property j /∈ E chooses
êjt). Thus, at the Nash equilibrium, the residual stock level will be zero on property i ∈ E and
positive on property j /∈ E.

Proof of Proposition 5
The characterization follows from the first order conditions ensuring an interior policy in any
property i.

Proof of Proposition 6
The characterization of full eradication (Condition 11) follows from the first order conditions
ensuring a corner policy ēi = 0 in any property i.
The proof of the characterization of partial eradication as a socially optimal outcome is similar
than that of Proposition 4.

Proof of Proposition 7
If Dii = 1, then Equations 5 and 10 are identical. If Dii = 0, then Equation 5 becomes
ci(êit)−ki(êit) = 0, while Equation 10 becomes ci(ēit)−ki(ēit) = δ

∑
j 6=iDijc(x̄jt+1)Dijg(ēit) >

0. We observe that the LHS of these two equalities are similar. Since c′i(eit) − k′i(eit) < 0, for
these two equalities to hold, we must have ēit < êit.

We now examine the case where Dii ∈ (0, 1) by comparing Equations 5 and 10. Rewriting gives:

ki(êit) = ci(êit)− δci(x̂it+1)Diig
′(êit) (22)

ki(ēit) = ci(ēit)− δci(x̄it+1)Diig
′(ēit)− δ

∑
j 6=i

cj(x̄jt+1)Dijg
′(ēit)︸ ︷︷ ︸

L

. (23)

The first two terms on the right hand side of Equations 22 and 23 are identical. Since ki(.) is
increasing in e, and because the underbraced term L > 0, it is clear that êit ≥ ēit.

Proof of Proposition 8
In a case with two properties i and j, assuming interior equilibria, we have:

ki(ei) = ci(ei)− δci(xi)Diig
′(ei) (24)

kj(ej) = cj(ej)− δcj(xj)Djjg
′(ej) (25)

We omit subscript t in Expressions 24 and 25. They imply that ei and ej are the solution to
the above system (since xk =

∑
lDlkg(el) for k = i, j), which in turn implies that ei and ej are

both functions of θ = {Dii, Djj , Dij , Dji}. These two first order conditions can thus be written
as a function of the parameter, θ, as Ψi(ei(θ), ej(θ), θ) ≡ 0 and Ψj(ei(θ), ej(θ), θ) ≡ 0. We can
thus totally differentiate both conditions:

{
∂Ψi

∂ei

∂ei

∂θ + ∂Ψi

∂ej

∂ej

∂θ + ∂Ψi

∂θ = 0
∂Ψj

∂ei

∂ei

∂θ + ∂Ψj

∂ej

∂ej

∂θ + ∂Ψj

∂θ = 0
(26)
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Solving this system, we get that ∂ei

∂θ (and symmetrically ∂ej

∂θ ):

∂ei
∂θ

=
−∂Ψi

∂θ
∂Ψj

∂ej
+ ∂Ψj

∂θ
∂Ψi

∂ej

∂Ψi

∂ei

∂Ψj

∂ej
− ∂Ψi

∂ej

∂Ψj

∂ei

(27)

with
∂Ψi

∂ei
= SOCi > 0, ∂Ψi

∂ej
= δDiiDjig

′(ei)g′(ej)c′i(xi) < 0
∂Ψj

∂ej
= SOCj > 0, ∂Ψj

∂ei
= δDjjDijg

′(ei)g′(ej)c′j(xj) < 0

And the following derivatives:

Table 1: Partial derivatives
θ ∂Ψi

∂θ

∂Ψj

∂θ

Dii δg′(ei) [ci(xi) +Diic
′
i(xi)g(ei)] 0

Dji δDiig
′(ei)c′i(xi)g(ej) 0

Djj 0 δg′(ej)
[
cj(xj) +Djjc

′
j(xj)g(ej)

]

Dij 0 δDjjg
′(ej)c′j(xj)g(ei)

Observe that for any θ the denominator of Equation 27 is

SOCiSOCj − δ2DiiDjjDijDji (g′(ei))
2 (g′(ej))

2
c′i(xi)c′j(xj).

If either Dii or Djj is sufficiently large, the denominator is positive. Notice that this condition is
sufficient, but not necessary. For instance, if either Dij or Dji is sufficiently large while optimal
residual stock levels remain positive, then the denominator is positive too. The same conclusion
follows if the discount factor is small enough or, obviously, if either cost function is linear (that
is, if either c′i(.) = 0 or c′j(.) = 0).

Using derivatives in Table 1, we deduce the following derivatives:

∂ei
∂Dii

= δg′(ei) [ci(xi) +Diic
′
i(xi)g(ei)]SOCj

SOCiSOCj − δ2DiiDjjDijDji (g′(êi))2 (g′(êj))2
c′i(x̂i)c′j(x̂j)

(28)

∂ei
∂Dji

= − δDiig
′(ei)g(ej)c′i(xi)SOCj

SOCiSOCj − δ2DiiDjjDijDji (g′(ei))2 (g′(ej))2
c′i(xi)c′j(xj)

(29)

∂ei
∂Djj

=
δ2DiiDjig

′(ei)[g′(ej)]2c′i(xi)
[
cj(xj) +Djjc

′
j(xj)g(ej)

]
SOCiSOCj − δ2DiiDjjDijDji (g′(êi))2 (g′(êj))2

c′i(x̂i)c′j(x̂j)
(30)

∂ei
∂Dij

=
δ2DiiDjjDjig

′(ei)[g′(ej)]2c′i(xi)c′j(xj)g(ei)
SOCiSOCj − δ2DiiDjjDijDji (g′(êi))2 (g′(êj))2

c′i(x̂i)c′j(x̂j)
(31)
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Now in cases where the denominator is positive, we conclude that ∂ei

∂Dji
> 0 and ∂ei

∂Dij
> 0.

When the marginal cost is quite inelastic, i.e. 1 > −Diig(ei) c
′(xi)
c(xi) > 0, then ∂ei

∂Dii
< 0. The sign

of ∂ei

∂Djj
depends also on the marginal cost elasticity. If the marginal cost is quite inelastic, i.e.

1 > −Djjg(ej) c
′(xj)
c(xj) > 0, then ∂ei

∂Djj
< 0.

Proof of Lemma 1
If complete eradication is a Nash equilibrium outcome, then for any property i, due to Proposition
3 and Condition 11 in Proposition 6 we have ki(0) − [1− δDiig

′(0)] ci(0) > 0. Since g′(0) is
positive and all dispersal parameters are non negative, this implies that the following condition
holds:

ki(0)− [1− δDiig
′(0)] ci(0) + δg′(0)

∑
j 6=i

Dijcj(0) ≥ ki(0)− (1− δDiig
′(0)) ci(0) > 0.

Using Propositions and 3 and 6 implies that complete eradication is socially optimal.

Proof of Corollary 1
The result follows immediately from Condition 6 in Proposition 3 and Condition 11 in Proposition
6.

Proof of Proposition 9
The result follows immediately from Condition 6 in Proposition 3 and Condition 11 in Proposition
6.

Proof of Proposition 10
From proposition 9 we deduce that the length of the interval characterizing values of marginal
abatement costs (on property i) over which tensions arise between socially optimal and decen-
tralized management is given by

∆i =
ki(0) + δg′(0)

∑
j 6=iDijcj(0)

1− δDiig′(0) − ki(0)
1− δDiig′(0) =

δg′(0)
∑
j 6=iDijcj(0)

1− δDiig′(0) .

This implies the following conclusions:

1. We have ∂∆i

∂Dij
= δg′(0)cj(0)

1−δDiig′(0) > 0 since 1 − δDiig
′(0) > 0 and provided cj(0) > 0, which

implies that the length of the interval increases as dispersal increases. This concludes the
proof of the first claim.

2. Again, differentiating with respect to the self retention rate, we obtain:

∂∆i

∂Dii
=

(δg′(0))2∑
j 6=iDijcj(0)

1− δDiig′(0) > 0

since 1 − δDiig
′(0) > 0 and provided

∑
j 6=iDijcj(0) > 0, which implies that the length

of the interval increases as self retention increases (provided that self retention remains
lower than the threshold value 1

δg′(0) ). This concludes the proof of the second claim.
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Proof of Proposition 11
We compute the gains from cooperation by the following expression:

S = Π̄i + Π̄j − Π̂i − Π̂j (32)

= δ

1− δ

[∫ Djig(êj)

0
ci(s)ds+

∫ êj

0
kj(s)ds+

∫ Djjg(êj)

êj

cj(s)ds
]
−
∫ êj

0
cj(s)ds+

∫ êj

0
kj(s)ds,

which is positive by inspection. Moreover, it is easily checked that:

Π̄i − Π̂i = δ

1− δ

∫ Djig(êj)

0
ci(s)ds > 0 (33)

Π̄j − Π̂j = −
∫ êj

0
cj(s)ds+

∫ êj

0
kj(s)ds+ δ

1− δ

[∫ êj

0
kj(s)ds+

∫ Djjg(êj)

êj

cj(s)ds
]

(34)

Using Expression 34 and the convexity of the payoff function, we conclude that

Π̄j − Π̂j <
êj

1− δ [kj(êj)− cj(êj) + δDjjg
′(êj)cj(Djjg(êj))] . (35)

The right hand side of Condition 35 is equal to zero by Condition 17, which enables us
to conclude that the difference on the left hand side is negative. Thus, owner i gains from
cooperation, while owner j would lose from it. Since gains from cooperation are positive overall,
this implies that owner i would be willing to compensate owner j, so that he would lower her
residual stock level. This concludes the proof of the first statement of the proposition.

Proof of Proposition 12
We first differentiate the Expression 32 with respect to parameter Dji, and we obtain (keeping
in mind that ∂êj

∂Dji
= 0):

∂S

∂Dji
= δ

1− δ g(êj)ci (Djig(êj)) > 0,

which concludes the proof of the first statement of the proposition.
Second, differentiating with respect to Djj , we obtain:

∂S

∂Djj
= δ

1− δ

[
Djig

′(êj)ci (Djig(êj))
∂êj
∂Djj

+ g(êj)cj (Djjg(êj))
]
, (36)

with

∂êj
∂Djj

=
−δg′(êj)

[
g′(êj)Djjc

′
j (Djjg(êj)) + cj (Djjg(êj))

]
SOCj

.

Now, as in Proposition 8, we deduce that ∂êj

∂Djj
> 0 if and only of the marginal cost is quite

elastic. This concludes the proof.
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