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Spatial concessions with limited tenure

Nicolas Quérou∗, Agnes Tomini†, and Christopher Costello‡

Abstract

We examine theoretically a system of spatially-connected natural resource
concessions with limited tenure. The resource migrates around the system
and thus induces a spatial externality, so complete decentralization will not
solve the tragedy of the commons. We analyze a system in which conces-
sions can be renewed, but only if their owners maintain resource stocks
above a pre-defined target. We show that this instrument improves upon
the decentralized property right solution and can replicate (under general
conditions) the socially optimal extraction path in every patch, in perpetu-
ity. The duration of tenure and the dispersal of the resource play pivotal
roles in whether this instrument achieves the socially optimal outcome, and
sustains cooperation of all concessionaires.

Key words: Concessions; natural resources; spatial externalities; dynamic games

1 Introduction
Diverse forms of property rights are increasingly employed to help overcome the
tragedy of the commons in natural resource use. Because governments are usually
unable or unwilling to relinquish all control to private owners, limited-duration
“concessions,” where property rights are allocated for a fixed duration, have been
implemented in many countries to manage myriad resources (Costello and Kaffine
(2008)). This system grants rights to exploit the resource for a determined period
of time to a concessionaire, who is typically free to choose how to manage the
resource during the tenure period. While these concessions are commonly awarded
over a specific geographical area, there is mounting scientific evidence that many
natural resources previously thought of as aspatial are in fact mobile: fish swim,
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birds migrate, pollen drifts, and water flows. This movement of the resource stock
induces an externality and calls into question the ability of spatially allocated
concessions to appropriately address the tragedy of the commons. Here, we analyze
whether concessions can be used within a system of spatial property rights to
correct spatial externalities that are pervasive for mobile natural resources.

Concessions are used in various sectors of the economy, including infrastruc-
ture, construction, and extractive industries; they feature prominently in natural
resource settings such as oil, gas, minerals, forests, and fisheries (Manh Hung et al.
2006; Karsenti et al. 2008; Smith et al. 2003). Previous authors have focused on
features of concession contracts such as the specific design of concession agreements
(Dasgupta et al. (1999), Leffler and Rucker (1991)), the awarding process (Klein
(1998)) and the choice of royalties (or fees) for extraction rights (Gray (2000),
Hardner and Rice (2000), Vincent (1990), Giudice et al. (2012)), and issues of
imperfect enforcement (Guasch et al. (2004)). But this literature is often agnostic
about the sector being managed. A more focused literature specifically addresses
the use of concessions for natural resource management. Vincent (1990) empha-
sizes the failure of royalty systems because of undervaluation, and analyzes how
the inefficiency of this system affects forest management. Kolstad and Soreide
(2009) and Amacher et al. (2012) analyze how corruption impacts key features
of concessions, from the awarding process to royalties rates, land size, or forest
logging. Amacher et al. (2001), Clarke et al. (1993) and Smith et al. (2003) ana-
lyze illegal exploitation within forest concessions, and finally Barbier and Burgess
(2001) focus on tenure insecurity.

In this paper, we build on this foundation by focusing attention on the design
of concessions to efficiently manage a spatially-connected resource in which spatial
externalities generate a market failure. To do so, we must account for spatial and
temporal resource dynamics, as well as the incentives of interconnected property
owners. Indeed, the spatial mobility of natural resources may challenge incentives
for efficient resource use, since part of the resource left in situ may disperse else-
where, which implies that the resource stock will now depend on strategic decisions
of adjacent owners. This is a feature shared by many resources: game, waterfowl,
forest due to migratory processes (e.g., Albers (1996)), or fire movement (e.g.,
Konoshima et al. (2008)), or even water because of the existence of flux processes
(e.g., Brozovic et al. (2010)).

A central characteristic of our analysis is the assignment of spatial property
rights, which is an issue with great contemporary policy appeal, which has given
rise to a large and quickly growing literature.1 Many natural resources man-
agement approaches have spatial features. Forests, game, waterfowl, and water
are some of the terrestrial examples of resources governed and extracted by pri-

1Wilen et al. (2012) provides an informative review of spatial property rights in fisheries.
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vate owners who posess some degree of spatial ownership over the resource stock.
Even in the ocean, which has traditionally been viewed as non-excludable, spatial
property rights are emerging. For example, the Chilean coast contains over 700
territorial user right fisheries (TURFs) where firms manage and extract fishery
resources in a spatial property rights system (Wilen et al. 2012); more broadly
the world’s oceans consist of about 200 spatial exclusive property right assign-
ments (the exclusive economic zones) that are traversed by migratory species such
as tuna, sharks, and whales (White and Costello 2014). Resource mobility entails
spatial externalities since harvest in one patch-area inherently affects harvests, and
thus incentives, in other patch-areas. While various spatial property rights systems
are employed to manage a wide array of resources, the fishery is perhaps the best
example of a resource for which property rights will lead to spatial externalities.
The economics literature in this context is growing (see Kapaun and Quaas (2013)
and Costello et al. (2015) for recent contributions) but analyses on concessions
are scarce. An exception is Costello and Kaffine (2008) who explore the effects
of limited-tenure property rights for a single, aspatial resource. They find that
limiting tenure weakens the incentive to steward one’s own resource, but that fully
efficient extraction may still be possible under this weakened right. But because
they did not consider the possibility of resource mobility or multiple spatially con-
nected concessions, spatial externalities were absent, so they could not examine
the effects of limited tenure on efficiency for the class of resources considered here.

Despite the apparent ubiquity with which limited-duration concessions are
used to manage spatial natural resources, this issue has never been addressed
by economists. To the best of our knowledge, this is the first paper to analyze
the design of limited-tenure concessions in a spatial property rights system. The
well-studied spatially-connected concessions used to manage fisheries on the Pa-
cific coast of Baja California, Mexico are expanding: In 2000, a 10th TURF was
granted to several cooperatives for a 20 year duration with the possibility of re-
newal. The EU Commission has suggested introducing Transferable Fishing Con-
cessions (TFCs) under which limited user rights are granted to exploit the mobile
resources. McCay et al. (2014) examine a case study from the Pacific coast of
Mexico, where a community-oriented fisheries management has been implemented
based on fish species concessions. For instance, each cooperative has exclusive ac-
cess and user rights to certain species like abalone, lobster or turban snail. And in
2011, the government of Indonesia implemented a moratorium on new forest con-
cessions in an attempt to pursue other resource management reforms. Thus, while
common around the world for myriad resources, important policy decisions regard-
ing spatial concessions are being made with little input from economic theory. An
applied contribution of our work is to help inform that policy discussion.

Our analysis is entirely theoretical, but is focused on contributing to key con-
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temporary policy questions. We begin by developing a model of spatial economic
behavior among a set of spatially-distinct resource patches, taking as given that
resources can be mobile. Precisely owing to the spatial connections, each owner’s
extraction imposes an externality on the other owners. On the flip side, an owner’s
conservation efforts spill over to other owners; no owner is a sole residual claimant
of his conservation behavior. Thus, spatial connectivity weakens property rights
and suggests that each owner will extract the resource at too-rapid a rate. To
make matters worse, if production functions or spillovers are spatially heteroge-
neous, then the socially-optimal level of extraction will differ across space. Kaffine
and Costello (2011) noted this externality and suggested a private “unitization”
instrument to correct the market failure. The theoretical idea was for profit shar-
ing to induce all owners to cooperate over spatial extraction; they showed that
following this instrument could induce first-best harvesting behavior among all
owners. While it is theoretically attractive, and helps to frame the challenge of
coordinating spatial property owners, its application to real-world resource con-
flict is limited because: (1) It requires all property owners to be aware of the
full spatial and economic dynamics of the entire system, (2) It requires the re-
source manager to devolve all management responsibility, in perpetuity, to the
spatial property rights holders, (3) it requires the sharing of profit (not revenue),
which may be costly to credibly measure, and (4) It requires all harvesters to con-
tribute 100% of profits to a common pool, which is later redistributed based on
property-specific characteristics. Furthermore, while some profit-sharing arrange-
ments have been observed empirically, concessions are much more commonly used.
In this paper we propose a simple limited-tenure concession instrument that aims
to achieve economically-efficient spatial resource use and overcome the limitations
noted above.

The instrument we propose involves assigning limited-duration tenure of each
patch to a private concessionaire. Under this set of spatial concessions with limited
tenure, each concessionaire then faces an interesting, and to our knowledge unex-
plored, set of incentives. At first glance the instrument we propose would seem to
exacerbate the problem. First, the spatial externality has not been internalized, so
each concessionaire will have a tendency to overexploit the resource. Second, the
limited-duration tenure induces each concessionaire to extract the resource more
rapidly than is socially optimal so as to extract the rents prior to the terminal
date of his tenure. Both incentives appear to work in the wrong direction, leading
to excessive harvest rates in all patches, which is socially inefficient.

To counteract this tendency toward overharvest, we implement two refinements
commonly observed in real concession contracts; these dramatically alter the in-
centives of the concessionaires. First, the regulator will announce for each patch a
“minimum stock,” below which the concessionaire should never harvest. Second,
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the regulator commits to renewing the concession of any concessionaire who ad-
heres to the minimum stock requirement every period. Indeed, this is a stylized
version of how many concessions are implemented in practice.2 If the concession-
aire maintains the stock above the (pre-announced) minimum level for the duration
of his tenure, his tenure will be renewed for another tenure block. If not, he loses
his concession and it is allocated to another user.

Under this setup, a concessionaire must decide whether to comply with the
minimum stock requirement (in which case he cannot extract as much profit under
the current tenure block, but he is assured of retaining ownership over multiple
tenure blocks) or to defect (and harvest in way that maximizes his profit over the
current tenure block only). Naturally, because the patches are interconnected, the
payoffs under either strategy will depend on the strategy adopted by the other
concessionaires. Thus, this system represents a spatial-temporal game.

Despite the complexity of this setup, we are able to derive explicit, analytically
tractable results. First, we derive the optimal defection strategy for any single
concessionaire, and use it to derive a set of conditions under which cooperation
can emerge as an equilibrium outcome and gauge whether this leads to fully effi-
cient resource use. We then focus in on the properties of the system that ensure
cooperation (or conversely, ensure defection). Importantly, the regulator in this
setup has only loose control over the actual harvest achieved in each patch. She
chooses only the minimum stock announced for each patch and the tenure length.
There we find an interesting, and somewhat counterintuitive result. We show that
longer (not shorter) tenure is more likely to lead to defection from the efficient har-
vest rate. This odd result seems to contradict the economic intuition that more
secure property rights (here, the longer the duration of tenure) give rise to more
efficient resource use. For instance, Boscolo and Vincent (2000) provide a numeri-
cal analysis of forest concessions. Among other features, they examine how tenure
length and performance-based renewal might affect logging incentives. They con-
clude that discounting tends to mediate the effects of tenure length, but that the
promise of renewal can motivate responsible behavior. Our model also has these
features, but all under the umbrella of strategic interactions owing to the mobility
of the resource. Thus, in our setting, a long tenure period implies that the regula-
tor essentially loses the ability to manipulate a concessionaire’s harvest incentives
via the promise of tenure renewal. In the extreme (with infinite-duration tenure),
the concessionaire has no incentive to abide by the minimum stock requirement.
Through this logic, we can show that for sufficiently long (but still finite) tenure
length, concessionaires will always have incentives to defect; thus tenure must not

2For example, many forest concessions contain environmental provisions that, if violated,
render the concessionaire ineligible for future concessions. And the TURF systems in Mexico
and Chile contain maximum harvest provisions, whose adherence is required for renewal.
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be too long.
Overall, we find that while strong (i.e. perpetual) property rights will not lead

to socially efficient resource use in spatially-connected systems, it will often be
possible to design limited-tenure property rights that will. The basic intuition is
to induce private owners to adhere to socially-optimal resource extraction rates by
promising renewed tenure if and only if they adhere to these guidelines. Under
certain circumstances, even this will not be a sufficient incentive because the gap
between what a private owner can capture through rapid overexploitation, and
what he can gain through a low extraction rate (even into perpetuity), is just too
great. In what follows we also consider a number of possible extensions, including
the application of trigger strategies to further induce cooperation.

The paper is structured as follows: In the next section we set up the model and
characterize concessionaires’ incentives under various property right regimes. In
Section 3 we highlight the conditions for cooperation with an emphasis on spatial
characteristics of the model and the tenure length. A discussion on the robustness
of the instrument is provided in Section 4. Section 5 summarizes and concludes
the paper. Most technical proofs are provided in an Appendix.

2 Model & strategies
We begin by introducing a spatial model of natural resource exploitation with
spatially-connected property owners. We then home-in on the incentives for dif-
ferent harvest strategies corresponding to three property right regimes: the so-
cial planner’s spatially-optimized benchmark, the decentralized perpetual property
right holders, and the case of decentralized limited-tenure concessions. Versions of
the social planner’s benchmark and the case of perpetual property right holders
have been analyzed in Costello and Polasky (2008) and in Kaffine and Costello
(2011), which is why we only briefly state the corresponding properties. The last
case introduces the instrument on which we focus in this paper.

2.1 The model
We follow the basic setup of Kaffine and Costello (2011) and Costello et al. (2015)
where a natural resource stock (denoted by x) is distributed heterogeneously across
a discrete spatial domain consisting ofN patches. Patches may be heterogeneous in
size, shape, economic, and environmental characteristics, and resource extraction
can occur in each patch. The resource is mobile and can migrate around this
system. In particular, denote by Dij ≥ 0 the fraction of the resource stock in
patch i that migrates to patch j in a single time period. Since some fraction of the
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resource may indeed flow out of the system entirely, the dispersal fractions need
not sum to one: ∑iDji ≤ 1.3

The resource may grow, and the growth conditions may be patch-specific de-
noted by the parameter αj. This patch-specific parameter reflects resource growth
and has many possible interpretations including intrinsic rate of growth, carrying
capacity, and the sheer size of the patch. Assimilating all of this information, the
equation of motion in patch i, in the absence of harvest, is given as follows:

xit+1 =
N∑
j=1

Djig(xjt, αj). (1)

Here g(xjt, αj) is the period-t production in patch j. Following the literature,
we require that ∂g(x,α)

∂x
> 0, ∂g(x,α)

∂α
> 0, ∂2g(x,α)

∂x2 < 0, and ∂2g(x,α)
∂x∂α

> 0. We also
assume that extinction is absorbing, g(0;αj) = 0, and that the growth rate is
finite, ∂g(x,α)

∂x
|x=0 < ∞.4 All standard biological production functions are special

cases of g(x, α).
Harvest in patch i, period t is given by hit and we follow the literature by

defining the residual stock, or escapement, left for reproduction which is given by
eit ≡ xit − hit. This gives rise to the patch-i equation of motion as follows:

xit+1 =
N∑
j=1

Djigj(ejt). (2)

Thus, the timing of the process is as follows: In the beginning of period t
the resource stock is observed. Harvest then takes place (resulting in residual
stock levels eit for any patch i), and the residual stock grows and disperses across
the spatial domain: some fraction stays within patch i, and some flows to other
patches. By the identity eit ≡ xit−hit, there is a duality between choosing harvest
and choosing residual stock as the decision variable. We use residual stock because
it turns out to overcome many technical issues that arise when one uses harvest

3This follows the recent literature from the natural sciences (see, e.g., Nathan et al. (2002),
or Siegel et al. (2003)) who model dispersal of passive “Lagrangian particles.” An endogenous
dispersion parameter may be a relevant alternative to account for density-dependent dispersal
processes, or situations where agents can affect that process. While this has appeal in some
settings, we focus instead on the potential performance of the described instrument. Moreover,
we believe that this alternative assumption is unlikely to change the main qualitative results of
our study.

4We will omit the growth-related parameter in most of what follows, except briefly before
Section 3.2 and in Section 3.3, where the effect of this parameter will be analyzed. Thus, we will
use the notation g′i(x) and g′′i (x) instead of (respectively) ∂g(x,αi)

∂x and ∂2g(x,αi)
∂x2 in most parts of

the paper.
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as the decision variable (though the two are formally identical).5 Specifically,
by adopting residual stock as the control, we are able to fully characterize the
optimal policy (in both centralized and decentralized cases); one can then back
out the optimal harvest.

We assume that both price and marginal harvest cost are constant in a patch,
though they can differ across patches. The resulting net price is given by pi. 6

Profit in patch i, time t is given by:

Πit = pi (xit − eit) . (3)

We will employ this framework to compare the outcome and welfare impli-
cations of three different property right systems: (1) a benevolent social planner
who seeks to maximize aggregate social welfare, (2) a set of decentralized and non-
cooperative property rights owners, and (3) the same set of property right owners
who operate in a limited-tenure concession system we propose here.

2.1.1 Social Planner’s Problem

We begin with the social planner who must solve the complicated problem of
choosing the optimal spatial and temporal pattern of harvest to maximize the net
present value of profit across the entire domain given the discount factor δ. The
planner’s objective is:

max
{e1t,...,eNt}

∞∑
t=0

N∑
i=1

δtpi (xit − eit) , (4)

subject to the equation of motion (2) for each patch i = 1, 2, ..., N . Somewhat
surprisingly, this complicated spatial optimization problem has a tractable solu-
tion. Focusing on interior solutions, in any patch i, the planner should achieve a
residual stock level as follows:

g′i (e∗it) = pi
δ
∑
j Dijpj

(5)

Note, by inspection, that these optimal residual stock levels are time and state
independent. This implies that each patch has a single optimal residual stock level
that should be achieved every period into perpetuity satisfying, for any period t:

e∗it = e∗i . (6)
5This mathematical convenience was pointed out in Reed (1979) and has been adopted by

several subsequent contributions (Costello and Polasky (2008), Kapaun and Quaas (2013) among
others).

6This assumption is widely adopted in the mainstream literature, and is consistent with the
case where the market price is the same in all patches, while marginal costs might be patch-
specific (due to geographical locations, different costs of access). Moreover, we discuss in section
4.3 the robustness of the instrument for the case of stock-dependent costs.
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Since biological growth, dispersal, and economic returns are patch-specific, the
optimal policy will vary across patches.

2.1.2 Decentralized Perpetual Property Right Holders

The second regime is the case in which each patch is owned in perpetuity by a
single owner who seeks to maximize the net economic value of harvest from his
patch. We assume that the owner of patch i makes her own decisions about harvest
in patch i, with complete information about the stock, growth characteristics, and
economic conditions present throughout the system. In that case owner i solves:

max
{eit}

∞∑
t=0

δtpi (xit − eit) . (7)

subject to the equation of motion (2). Naturally, because owner i’s stock, xit+1,
depends on owner j’s residual stock, ejt, this induces a game across the N players.
Kaffine and Costello (2011) solve for the subgame perfect Nash equilibrium of this
game by analytical backward induction on the Bellman equation for each owner i,
and prove (in their lemma 1) that, at a given period t, owner i will always harvest
down to a residual stock level ēit that satisfies:

g′i(ēit) = 1
δDii

(8)

It is a straightforward matter to show that ēit ≤ e∗it (with strict inequality as
long as Dii 6= 1), and thus that achieving social efficiency in a spatially connected
system will require some kind of intervention or cooperation. Moreover, Equation
(8) implies that ēit = ēi for any time period.7 In order to make the exposition
of our results as simple as possible, we rule out corner solutions (cases where the
entire stock is harvested or where there is no harvest).8

2.1.3 Decentralized, Limited-Tenure Property Rights

The final regime, and the one we focus on in this paper, is similar to the perpetual
property rights case above, except that the property rights are of limited duration.
Under this regime, ownership over patch i is granted to a private concessionaire for
a duration of T periods, to which we will refer as the “tenure block.” All conces-
sionaires have the possibility of renewal for a second tenure block, a third tenure
block, and so forth. Indeed, it is the possibility of renewal that will ultimately

7This result actually implies that the open loop and feedback control rules are identical.
8Technically, this is equivalent to assuming lower-bound conditions on marginal growth gi(0)

when stock nears exhaustion and an upper-bound condition when there is no harvest.

9



incentivize the concessionaire to deviate from her privately-optimal harvest rate;
this fact may be leveraged to induce efficient outcomes.

The instrument is designed as follows. At t = 0 the regulator offers to con-
cessionaire i a contract, which consists of two parameters: (1) A “target stock,”
Si, below which the concessionaire must never harvest and (2) a tenure period, Ti.
The regulator imposes only a single rule on the concessionaire: At the end of the
tenure block (i.e. at time Ti − 1, since the block starts at t = 0), the concession
will be renewed (under terms identical to those of the first tenure block) if and
only if the target stock condition has been met every period. Because eit ≤ xit,
this rule implies that concession i will be renewed if and only if:

eit ≥ Si ∀t ≤ Ti − 1 (9)

This setup confers a great deal of autonomy to the concessionaire - in ev-
ery period she is free to choose any harvest level that suits her. The regulator’s
challenge is to determine a set of target stocks {S1,S2, ...,SN} and tenure lengths
{T1, T2, ...TN} (i.e., a {Si, Ti} pair to offer each concessionaire) that will incentivize
all concessionaires to simultaneously, and in every period, deliver the socially op-
timal level of harvest in all patches.

We begin by defining an arbitrary set of instrument parameters, and we then
evaluate the manner in which each concessionaire would respond to that set of
incentives. Our proposed instrument is as follows:

Definition 1. The Limited-Tenure Spatial Concession Instrument is defined by
Si and Ti = T ∀i, where T is a fixed positive integer which we will derive below.9

The focus of our study is to highlight that spatial limited-tenure concessions,
if implemented with care, can be used to induce agents to manage resources effi-
ciently. As such, we assume that the only role of the regulator or resource manager
is to monitor and renew concessions. In particular, we do not consider explicitly
the regulator’s potential incentives in offering concessions.

Agents may, or may not, comply with the terms of the instrument. If all N
concessionaires choose to comply with the target stocks in every period of every
tenure block, we refer to this as cooperation. All owners will then earn an infinite
(albeit discounted) income stream. Instead, if a particular owner i fails to meet
the target stock requirement (i.e, in some period she harvests the stock below
Si), then, while she will retain ownership for the remainder of her tenure block

9Intuitively, since agents are heterogeneous, tenure lengths could well be heterogeneous as
well. In order to limit the complexity of the scheme, and because the use of a uniform tenure
length for renewal seems to be the norm for real-world cases of concessions-regulated resources,
we consider the longest tenure that is compatible with all agents’ incentives to cooperate. This
characterization is provided by expression 16 in Section 3.
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(and thus be able to choose any harvest over that period), she will certainly not
have her tenure renewed. In that case, owner i’s payoff will be zero every period
after her current tenure block expires. Thus, the instrument raises a trade-off for
each concessionaire who has to choose between cooperation and defection. In the
following, since an owner’s payoff depends on others’ actions, we assume that if
concessionaire i defects, then the concession is granted to a new concessionaire
in the subsequent tenure block. If all initial owners decide to defect and are not
renewed at the end of the current tenure, then the game ends.10

2.2 Cooperation vs. Defection
We want to derive the conditions under which the socially optimal policies emerge
as Nash equilibrium outcome (as in Kaffine and Costello (2011), the open loop and
feedback control rules are identical here). First, to analyze the tradeoff between
cooperation and defection for concessionaire i, we compute the payoffs that each
agent could achieve under both scenarios, and we characterize the optimal defection
strategies that could be pursued by any concessionaire.

We first assume that all N concessionaires cooperate and thus choose to comply
with the target stocks in every period of every tenure block. Provided they do
not exceed the target stock (so they do not over-comply), then concessionaire i’s
present value payoff would equal:

Πc
i = pi

[
xi0 − Si +

∞∑
t=1

δt (x∗i − Si)
]
. (10)

where xi0 is the (given) starting stock and x∗i = ∑
j Djig(Sj, αj).

Let us now turn to the characterization of the optimal defection strategies
pursued by concessionaires. Because this could happen during any tenure block,
we consider the case where defection occurs during an arbitrary tenure block, k.
If agent i defects during tenure block k, given all concessionaires, except i, follow
simple cooperative strategies (that is, they are unconditional cooperators), the
optimal defection strategy of concessionaire i is characterized as follows:

Proposition 1. The optimal defection strategy of concessionaire i in tenure block
k is given by:

ēikT−1 = 0
and, for any period (k − 1)T ≤ t ≤ kT − 2, we have ēit = ēi > 0 where:

g′i(ēi) = 1
δDii

with x̄i > ēi.

10This turns out to be irrelevant because, as we late show, if everyone defects, the natural
resource is driven extinct.
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Proposition 1 states that a concessionaire who decides she will defect sometime
during tenure block k, will decide to: (1) choose the non-cooperative level of
harvest (see Section 2.1.2) up until the final period of the tenure block and (2) then
completely mine the resource, leaving nothing for the subsequent concessionaire.11

Note that the optimal defection strategy does not depend on the tenure block, k.12

The finding that the defection strategy is independent of the tenure block greatly
simplifies the characterization of equilibrium strategies, and the corresponding
present value payoff under defection is given by:

Πd
i = pi

xi0 − Si +
(k−1)T−1∑

t=1
δt (x∗i − Si) + δ(k−1)T (x∗i − ēi) +

kT−2∑
t=(k−1)T+1

δt (x̄i − ēi) + δkT−1x̄i

 .
(11)

where x̄i = Diig(ēi) +∑
j 6=iDjig(Sj).

The payoff when patch owner i defects during tenure block k is given by (1)
profit obtained while abiding by the target stock prior to the kth tenure block,
and (2) profit from non-cooperative harvesting during tenure block k, until finally
extracting all the stock in the final period of the kth tenure block, kT − 1. We will
make extensive use of the defection strategy in what follows. We next turn to the
conditions that give rise to cooperation.

3 Conditions for Cooperation
Here we derive the conditions under which all N concessionaires willingly choose to
cooperate in perpetuity. We will proceed in three steps. First, we derive the target
stocks that must be announced (S1, ...,SN) by the regulator who wishes to replicate
the socially optimal level of extraction in every patch at every time. Second, we
derive necessary and sufficient conditions for cooperation to be sustained, as a
function of the patch-level parameters. Finally, we will assess the influence of
the tenure duration T on the emergence of cooperation, and provide comparative
statics results.

3.1 The emergence of cooperation
Can the Limited Tenure Spatial Concessions Instrument ever lead to cooperation?
Clearly, if the announced target stocks are sufficiently low (e.g. if Si = 0 ∀i),

11Note that if only one concessionaire defects, the entire stock will not be driven extinct because
patch i can be restocked via dispersal from patches with owners who cooperated.

12Regarding the block in which defection occurs, patch owner i’s optimal defection strategy in
period t is independent of period t choices by other patch owners, and patch owner i’s optimal
defection in period t+ 1 is independent of choices made by any owner prior to period t.
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then ”cooperation” is easily achieved.13 But this is of little use because low target
stocks result in low resource stocks and commensurately low social welfare. Our
interest is in designing the instrument to replicate the socially-optimal harvest in
each patch at every time. Given the goal of achieving the socially optimal spatial
extraction, we first prove that the regulator must announce, as a patch-i target
stock, the socially-optimal residual stock for that patch.

Lemma 1. A necessary condition for social optimality is that the regulator an-
nounces as target stocks: S1 = e∗1, S2 = e∗2,...,SN = e∗N , where e∗i is given in
Equation 5.

The proof for Lemma 1 makes use of two main results from above. First,
because ēi ≤ e∗i , if the regulator announces any Si < e∗i , then the concessionaire
will find it optimal to drive the stock below e∗i , which is not socially optimal.
Second, if the regulator sets a high target, so Si > e∗i , then the concessionaire will
either comply with the target (in which case the stock is inefficiently high) or will
defect and reach an inefficiently low target stock. Either way, this is not socially
optimal, so Lemma 1 provides the target stocks that must be announced.

Thus, we can restrict attention to the target stocks Si = e∗i ∀i. In that case,
compliance by concessionaire i requires that eit ≥ e∗i ∀t, so she must never harvest
below that level. Our next result establishes that, while concessionaire i is free to
choose a residual stock that exceeds e∗i , she will never do so.

Proposition 2. If concessionaire i chooses to cooperate, she will do so by setting
eit = e∗i ∀i, t.

Proposition 2 establishes that, if it can be achieved, cooperation will involve each
concessionaire leaving precisely the socially-optimal residual stock in each period.
To analyze conditions under which cooperation may emerge, we proceed by as-
suming that concessionaires follow simple strategies: They adopt unconditional
cooperative strategies which are characterized by Proposition 2. This allows us
to assume compliance by N − 1 concessionaires and to explore the incentives of
an arbitrary concessionaire i to cooperate or defect. Specifically, this allows us
to assess the potential of the instrument to induce efficient resource management.
Indeed, this situation (where N−1 concessionaires adopt strategies such that they
fully commit to the scheme) corresponds to the case where the last agent might
have the largest incentives to defect.14 In any given tenure block, the basic de-
cision facing concessionaire i is whether or not to comply with the target stock
requirement in each period. Under the assumption of unconditional cooperation,

13Recall, a concessionaire is said to “cooperate” if her residual stock is at least as large as the
announced target.

14We will consider the case where agents might follow punishment strategies in Section 4.1.

13



she simply calculates her payoff from the optimal defection strategy (character-
ized by Proposition 1) and compares it to her payoff from the optimal cooperation
strategy. Thus, each concessionaire must trade off between a mining effect, in
which she achieves high short-run payoffs from defection during the current tenure
block, and a renewal effect, in which she abides by the regulator’s announced target
stock, and thus receives lower short-run payoff, but ensures renewal in perpetuity.
This comparison turns out to have a straightforward representation, given in the
following result:

Proposition 3. Complete cooperation emerges as an equilibrium outcome if and
only if, for any concessionaire i, the following condition holds:

δx∗i − e∗i >
(
1− δT−1

)
(δx̄i − ēi) . (12)

Here we assume that defection entails at least some harvest (i.e. that the stock
is x̄i = ∑

j 6=iDjig(e∗j) + Diig(ēi) ≥ ēi) again in order to avoid corner solutions.
Proposition 3 shows two things. First, since condition 12 depends explicitly on the
tenure length T corresponding to the concession system considered, the incentives
to cooperate or defect depend on this parameter as well. Second, the gains from
cooperation to concessionaire i (δx∗i − e∗i ) must be sufficiently large compared to
those corresponding to defection (δx̄i − ēi). In such cases, we get full cooperation
forever. Note that this is possible, e.g. consider case when δ = 1, so the right-hand
side of condition 12 is equal to zero, and the left-hand side is equal to x∗i − e∗i ,
so as long as we have an interior solution to the optimal spatial problem, then
this holds. This case is used just as an example: there are cases (depending on
spatial parameters) where condition 12 will hold generically without relying on the
assumption of sufficiently patient agents.

We have thus shown that the instrument considered can lead to efficient har-
vesting behavior across space and time indefinitely. But this relied on a relatively
strict enforcement system (an owner who decides to defect is not renewed). Because
the welfare gains from cooperation vs. non-cooperation were potentially large, it
is possible that less stringent punishments would also lead to efficient behavior.
Yet, the renewal process adopted here is consistent with the main characteristics
of real-world cases of concessions-regulated resources (for instance, Territorial Use
Rights Fisheries), and financial penalties are frequently used as a complementary
tool to manage local issues. In a sense, our analysis highlights that, even without
accounting for this additional incentive (financial penalties), spatial limited-tenure
concessions have attractive appeal. Moreover, the present instrument (and the in-
duced punishment) has some advantages over alternative forms of punishment. For
instance, the use of temporary exclusion would imply that some concessions would
remain unused during a certain amount of time, which can be socially unaccept-
able if other people might be interested by the opportunity to enter the system.
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A final remark is due. This instrument relies on monitoring and enforcement, the
costs of which have not been included in the analysis. Yet real-world cases sug-
gest that monitoring has been drastically improved with the implementation of
territorial rights, and thus may be less burdensome for the resource manager. For
instance, in the Punta Allen lobster fishery (Mexico), all catch of a given area must
be processed through a given facility, which drastically reduces the complexity of
monitoring (Sosa-Cordero et al. (2008)).

3.2 Effects of Patch-Level Characteristics
Naturally, patch-level characteristics such as price, growth rates, and dispersal
will affect a concessionaire’s payoffs and may therefore play a role in the decision
of whether to defect or cooperate. The fact that patch-level characteristics may
also affect the announced target stocks further complicates the analysis. In this
subsection we examine the effects of price, growth, and dispersal on the cooperation
decision. Because the cooperation decision boils down to Πc

i ≥ Πd
i , we define agent

i’s willingness-to-cooperate by:

Wi ≡ Πc
i − Πd

i (13)

The variableWi has an important implication, even when cooperation is strictly
ensured by the model. For example, consider two concessionaires (A and B) who
both cooperate and for whom WA >> WB > 0. Then we might have the intuitive
idea that concessionaire A is more likely to continue cooperating under, for exam-
ple, elevated transaction costs than is concessionaire B.15 We next explore how Wi

depends on various parameters of the problem. Naturally, as a parameter changes,
we must trace its effects through the entire system, including how it alters others’
decisions. Assuming as above that the willingness to cooperate is initially positive,
we summarize our findings in the following proposition:

Proposition 4. Concessionaire i’s willingness-to-cooperate, Wi, is:
(1) Increasing in its own economic parameter, pi, and in growth rate and out-

property of other patches, αj, and Dji,
(2) Decreasing in off-property dispersal, Dij.

To help build intuition for the conclusions provided in Proposition 4,16 we will
call out a few special cases. First, consider the effects of an increase in productivity
of connected patches (αj). Since defection implies harvesting one’s entire stock,

15Such as bargaining, negotiating, or enforcement costs not explicitly captured by our model.
16Note that the effects of other parameters (pj , αi, and of self-retention Dii) are difficult to

sign and often ambiguous. In the Appendix we show that Wi can be increasing or decreasing in
pj and αi, while we provide cases where it is increasing in Dii.
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there is little opportunity (under defection) to take advantage of one’s neighbor’s
high productivity. But under cooperation, a larger αj implies larger immigration,
which translates into higher profit. A similar logic explains the result on Dji. In
contrast, consider the effect of a higher emigration rate (Dij). It turns out that
this reduces the incentive to cooperate. The intuition is that defection incentives
are not altered much (since concessionaire i harvests the entire stock under defec-
tion), but cooperation incentives are reduced because the regulator will instruct
concessionaire i to reduce her harvest under a larger Dij.

The results above provide insight about how the strength of the cooperation
incentive for i depends on parameters of the problem. But whether this incentive
is sufficiently strong to induce cooperation (i.e. whether Wi > 0) remains to be
seen. We focus on resource dispersal, which plays a pivotal role in our story. If the
resource was immobile, the patches would not be interconnected, so no externality
would exist and private property owners with secure property rights would har-
vest at a socially optimal level in perpetuity. It is dispersal that undermines this
outcome and induces a spatial externality which leads to overexploitation and mo-
tivates the need for regulation. Naturally, then, the nature and degree of dispersal
will play an important role in the cooperation decisions of each concessionaire.

In this model, dispersal is completely characterized by the NxN matrix whose
rows sum to something less than or equal to 1 (∑j Dij ≤ 1). Thus, in theory, there
are N2 free parameters that describe dispersal, so at first glance it seems difficult
to get general traction on how dispersal affects cooperation. But Proposition 1
provides a useful insight: If concessionaire i decides to defect, she will optimally
do so by considering only Dii, thus totally ignoring all other N2 − 1 elements of
the dispersal matrix. This insight allows us first to show that a high degree of
self-retention (Dii) in all patches is sufficient to ensure cooperation.

Proposition 5. Let patch i be the patch with smallest self-retention parameter.
For sufficiently large Dii, complete cooperation over all N concessions can be sus-
tained as an equilibrium outcome.

The basic intuition underlying Proposition 5 is that if all patches have suffi-
ciently high self-retention, then the externality is relatively small, which (we show)
implies that the renewal effect outweighs the mining effect in all patches. That is,
when spatial externalities are not too large, the concession instrument overcomes
the externality caused by strategic interaction. The inverse is also intuitive: If
self-retention is very low, then a large externality exists, and it may be more dif-
ficult to sustain cooperation. Naturally, formalizing this intuition is not quite as
straightforward because Dii also plays a role in e∗j for all patches j, and thus affects
defection incentives in all patches. After accounting for all of these dynamics, we
arrive at the following result:
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Proposition 6. Let patch i be the patch with the largest self-retention parameter.
For sufficiently small Dii, cooperation will not emerge as an equilibrium outcome
provided the following condition is satisfied:∑

j 6=i
Djig(e∗j) <

∑
j 6=i

Dij
pj
pi
g′(e∗i )e∗i . (14)

Proposition 6 establishes that if any patch has sufficiently low self-retention, then
cooperation might be destroyed. This result relies on an additional condition
on the interplay between spatial characteristics and economic returns. Condition
(14) may be interpreted (for a given patch) as a comparison between the present
value resulting from the incoming resource and the present value of the outgoing
resource. On one hand, the externality has a positive impact because the owner in
the patch earns extra profit since he obtains a share of stocks from other patches;
on the other hand, this owner “loses” a share of potential profits resulting from
the dispersal of part of the resource (assessed at the market value where this part
of the resource will be harvested).

3.3 Effect of tenure duration
Thus far we have focused on inherent features of patches and the system as a whole
that affect a concessionaire’s incentives to cooperate or defect. We have derived
sufficient conditions for full cooperation and for defection, and have assumed an
exogenously given (arbitrary) tenure period. But, in reality, the time horizon is a
policy choice that interacts with other model parameters to affect the cooperation
decision. Recall that the regulator assigns to concessionaire i a target stock (Si =
e∗i by Proposition 1) and a tenure duration (Ti = T ). This subsection focuses on
the optimal determination of T .

A basic tenet of property rights and resource exploitation is that more secure
property rights lead to more efficient resource use. Apropos of this observation,
Costello and Kaffine (2008) found that longer tenure duration indeed increased the
likelihood of cooperation in limited-tenure (though aspatial) fishery concessions.
So at first glance, we might expect a similar finding here. In fact, we find the
opposite, summarized as follows:

Proposition 7. For sufficiently long tenure duration, T , cooperation cannot be
sustained as an equilibrium outcome.

Proposition 7 seems to contradict basic economic intuition; it states that if tenure
duration is long, it is impossible for the regulator to induce socially-optimal extrac-
tion of a spatially-connected resource, at least using the instrument analyzed here.
But upon deeper inspection this result accords with economic principles. Consider
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the case of very long tenure duration - in the extreme, when tenure is infinite, the
promise of renewal has no effect on incentives, so each concessionaire acts in his
own best interest, which involves the defection path identified in Proposition 1.17

This result obtains precisely because the spatial externality of resource dispersal
drives a wedge between the privately optimal decision and the socially optimal
one.

Proposition 7 makes it clear that long tenure durations can never reproduce the
socially optimal spatial and temporal pattern of harvest in a spatially-connected
renewable resource. On the other hand, short tenure duration harbors two in-
centives for cooperation: First, when tenure is short, the payoff from defection
is relatively small because the concessionaire has few periods in which to defect.
Second, the renewal promise is significant because it involves a much longer future
horizon that does the current tenure block. In fact, it can be shown that there
exists a threshold tenure length for which cooperation is sustained if and only if
T is smaller than the threshold value, which we summarize as follows
Proposition 8. Assume the following holds for concessionaire i:

δx∗i − e∗i > (1− δ) (δx̄i − ēi) ; (15)
Then there exists a threshold value T̄ > 1 such that cooperation is sustained as an
equilibrium outcome if and only if T ≤ T̄ .

The condition in Proposition 8 is a restatement of the result of Proposition 3
for a tenure period of T = 2. Thus, by Proposition 3 we know that a tenure period
of 1 will guarantee cooperation. Proposition 8 reveals that some longer tenure
durations will also sustain cooperation, but if tenure is too long (i.e. if T > T̄ ),
defection will surely arise. Still, in practice, very short tenure durations might
entail high monitoring costs, which supports the use of longer tenures. We will
further emphasize in Section 4.1 that a longer tenure duration has some advantages
(in terms of the overall robustness of the instrument).

It turns out that the threshold tenure length (T̄ ) depends on patch level char-
acteristics, so we define by T̄i the threshold value for concessionaire i: if Ti > T̄i,
owner i will defect and if Ti < T̄i, she will cooperate. Then, by Proposition 8, coop-
eration can be achieved by assigning to all N concessionaires T = mini{T̄i}. Here,
we briefly examine the dependence of T̄i on patch, and system-level characteristics.

The time-threshold for concessionaire i can be written as follows:

T̄i = 1 +
ln
(
δ(x̄i−x∗

i )+e∗
i−ēi

δx̄i−ēi

)
ln(δ) (16)

17Following our approach above, we focus on the incentives of a single concessionaire, and
assume that the other concessionaires are unconditional cooperators. A more sophisticated set
of strategies (e.g. under trigger or other punishment strategies), might weaken Proposition 7; we
return to this issue in Section 4.1.

18



But because the variables ēi, x̄i, e∗i , and x∗i all depend on model parameters, de-
riving comparative statics is non-trivial. Recalling Proposition 4 (which addresses
how concessionaire i’s willingness to cooperate depends on parameters of the prob-
lem), it is intuitive to think that similar results will be obtained here. Indeed, we
obtain qualitatively similar results; because of this similarity, we relegate them to
the Appendix.

4 Robustness of the instrument
To maintain analytical tractability, and to sharpen the analysis, we have made a
number of simplifying assumptions about the strategies pursued by cooperators.
Here, we examine the consequences of three noteworthy assumptions. First, we
explore trigger strategies as a means by which cooperators might punish defectors.
Second, we examine whether a finite horizon (rather than infinite, as is assumed
above) can still induce cooperation. Finally, we briefly explain why the emergence
of cooperation is robust to the case of stock-dependent costs.

4.1 The scope of applicability of trigger strategies
In Section 3, we focused on the use of simple strategies. An alternative is to
use trigger strategies under which all non-defectors agree to defect immediately
upon the defection of a single concessionaire. By using trigger strategies to punish
defectors, all other concessionaires will know for sure that they will not get renewed
at the end of their current tenure block. Thus, trigger strategies imply a form
of self-punishment, which can be seen as an additional incentive scheme.18 We
summarize our findings on trigger strategies as follows:

Proposition 9. Assume that concessionaires follow trigger strategies. Then coop-
eration will emerge as an equilibrium outcome if and only if the following condition
holds (for any concessionaire i):

δx∗i − e∗i − (1− δT−1)
[
δ ¯̄xi − ēi

]
> 0,

where we assume ¯̄xi = ∑
j Djig(ēj) ≥ ēi > 0.

The proof confirms one of our previous claims regarding the incentives to defect:
it is intuitive and straightforward to show that incentives to defect are the same at
any given period, that is, they are not time dependent. This proposition implies

18It is useful to recall that the instrument analyzed here does not require that the agents use
such kind of self-punishment devices in order to induce efficient resource management.
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that the incentives to defect increase with a longer time horizon.19 Moreover, the
inequality characterizing the scope of trigger strategies is less restrictive than the
similar condition in Proposition 3. Thus, using trigger strategies in addition to
the concession instrument enlarges the scope for full cooperation.

4.2 The case of a finite horizon
We have assumed an infinite horizon problem, so concessionaires must trade off
a finite single tenure block against an infinite number of renewed tenure blocks.
Even though this is not an unreasonable assumption per se, it begs the question
of whether the instrument developed here is still effective at inducing cooperation
when the horizon is finite. Here we prove that this is the case. Suppose time ends
after K tenure blocks where 1 < K < ∞ after which all agents’ payoffs are zero.
We prove here that provided cooperation was subgame perfect under an infinite
horizon, it remains subgame perfect under the finite horizon problem described
here. We formalize the result as follows:

Proposition 10. Suppose time ends after the K th tenure block. Provided that the
following condition holds for any i:

δx∗i − e∗i >
1− δT−1

1− δT
{
δx̄i −

(
1− δT

)
ēi − δT+1 ¯̄xi

}
, (17)

then the instrument induces cooperation for the first K − 1 tenure blocks of the
finite horizon problem. This condition is more stringent than the one ensuring
cooperation over an infinite time horizon.

The key insight from Proposition 10 is that the planner’s time horizon need not
be infinitely long for the limited-tenure concession instrument to be effective. In-
deed, the proposition provides a sufficient condition for complete cooperation, and
thus socially-optimal extraction rates, to occur across the entire spatial domain,
despite the limited time horizon.

4.3 The case of stock-dependent costs
We assume in the analysis that extraction costs are linear. We might still wonder
whether the instrument is robust to the case of stock-dependent marginal costs.
In such a case, the expression of concessionaire i’s payoffs at period t would be
given by the following expression:

19This conclusion follows if we differentiate the expression of the difference between payoffs as
a function of the time horizon.
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Πit = pi (xit − eit)−
∫ xit

eit
ci(s)ds

where c′i(s) < 0 is continuously differentiable. In this section, our aim is only to
explain briefly why the logic of Proposition 3 (the main result, which provides the
conditions for the emergence of complete cooperation as an equilibrium outcome)
will remain valid in this case. The proof relies mainly on two arguments.20 First,
the optimal defection strategy does not depend on the tenure block considered.
Second, for the tenure block during which defection occurs, patch owner i’s optimal
defection strategy in period t is actually time and state independent. In the
case of stock-dependent costs, these two features remain valid, even though the
actual characterization of the optimal defection strategy differs with respect to
the case of linear costs. Then the conditions ensuring the emergence of complete
cooperation will in turn differ from conditions (12), but the qualitative conclusion
of Proposition 3 remains valid. From a general point of view, while using stock-
dependent marginal costs would complicate the proofs of our results (and their
exposition as well), we think it is unlikely to overturn the main findings of this
paper (for instance, the impossibility to ensure the emergence of cooperation for
sufficiently long tenure lengths).

5 Conclusion
This paper has spawned from two basic observations: First, that limited-duration
concessions are a prominent version of property rights used to manage diverse nat-
ural resources around the world, and second, that many of the natural resources
managed with such instruments have spatial characteristics. Despite the ubiquity
with which concessions are used to manage spatial resources, they have received
almost no attention from economists. We have studied the efficiency of a decentral-
ized property rights system over a spatially-connected renewable natural resource,
such as a fishery. To overcome the excessive harvest that is incentivized by decen-
tralization, we propose a new instrument based on limited-tenure concessions with
the possibility of renewal. Somewhat surprisingly, we find that this instrument can
be designed to be extremely effective in overcoming the tragedy of the commons;
indeed it is often the case that this instrument can induce the concessionaires to
implement the socially optimal outcome, completely neutralizing the externality.
This is remarkable as it does not rely on any transfers or side-payments, and seems
to accord with many real-world institutions that use limited-term concessions to
manage natural resources. Second, unlike an initial intuition, the effect of a longer

20We provide the key arguments of the proof. The full details are available from the authors
upon request.
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time horizon is usually negative. This is in contradiction with the case without
strategic interactions as depicted in Costello and Kaffine (2008).

Several observations bear further discussion. First, we have considered a quite
secure tenure system, in the sense that renewal is ensured as long as the target is
attained. This allows us to focus on the effects of the spatial characteristics of the
problem. Introducing a probability of renewal (as in Costello and Kaffine (2008))
would require characterizing the threshold value over which cooperation could
be induced. Second, we have not explicitly included monitoring of the stock and
enforcement, which may prove to be important. It seems plausible that endogenous
enforcement activity would be strengthened by parameters that induce persistent
cooperation over time, particularly when monitoring involves capital expenditures.
Moreover, real-world cases of concessions (such as Territorial Use Rights Fisheries)
seem to suggest that science-based stock assessment is an integral part of the
property rights system, which makes it less onerous for managers to monitor stocks
and assess patch-specific characteristics.

Several additional extensions remain. We could analyze situations where there
is imperfect (incomplete) information, or where the growth of the resource is
stochastic. As long as patches are symmetric regarding the anticipated effects,
we would expect no drastic change in the qualitative results. The incentives of
regulators in offering concessions may also be an interesting issue to explore. In
this setting, the regulator might be considered a Stackelberg leader with incentives
based on things such as a concern for option values of bioeconomics systems. The
focus in this study was to analyze choices of tenure lengths that would be consis-
tent with inducing agents to cooperate. A next step could involve introducing a
variety of regulators’ objectives.

Overall, these results suggest that if implemented with care, the limited-tenure
spatial concession can achieve near socially-optimal outcomes and yet still allow
concessionaires to make decentralized decisions over harvest all while the govern-
ment retains regulatory authority to require adherence to certain restrictions. Our
results also suggest that this class of instruments may not only have attractive
intuitive appeal, but that if designed and implemented with care, they could be
theoretically grounded in economic efficiency.
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Appendix
Proof of Proposition 1
We proceed by backward induction. At final period kT − 1, concessionaire i’s problem is to
maximize

max
eikT −1≥0

pi (xikT−1 − eikT−1)

Using the first order condition enables us to conclude immediately that ēikT−1 = 0, that is,
concessionaire i extracts the entire stock at the final period. Now, moving backward, at period
T − 2, this concessionaire’s problem becomes:

max
eikT −2≥0

pi

xikT−2 − eikT−2 + δ

∑
j 6=i

Djig(ējkT−2) +Diig(ēikT−2)− ēikT−1

 .
Using the first order condition (with respect to ēikT−2) and ēikT−1 = 0, we obtain that

ēikT−2 is characterized by the following condition:

δDiig
′(ēikT−2) = 1.

Repeating the same argument of backward induction it is easily checked that any equilibrium
residual stock level ēit (where (k − 1)T ≤ t ≤ kT − 3) is characterized by the same condition.
This concludes the proof.

Proof of Proposition 2
Compliance by concessionaire i requires that eit ≥ e∗i ∀t. Now assume that there is a time period
t during which concessionaire i chooses eit > e∗i : this implies that, for eit to be strictly profitable
we must have:

pi (1 + δ) (x∗i − e∗i ) < pi

(x∗i − eit) + δ

∑
j 6=i

Djig
(
e∗j
)

+Diig (eit)

 .
Simplifying this inequality, we obtain:

δDii (g (eit)− g (e∗i )) > eit − e∗i . (18)
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Since g(.) is continuously differentiable and increasing, we know there exists ei ∈]e∗i , eit[ such
that g (eit)− g (e∗i ) = (eit − e∗i ) g′(ei) and we can rewrite expression 18 as follows:

δDii (eit − e∗i ) g′(ei) > eit − e∗i ,

or
g′(ei) >

1
δDii

= g′(ēi).

We thus deduce that (since g(.) is strictly concave) e∗i < ei < ēi, which is a contradiction (since
e∗i ≥ ēi as explained in subsection 2.1.2). This implies that eit = e∗i for any time period t, which
concludes the proof.

Proof of Proposition 3
If concessionaire i deviates during tenure k+ 1 (while other concessionaires follow simple strate-
gies) then this concessionaire’s payoff is Πd

i = piA, where :

A =
[
xi0 − e∗i + δ(1− δkT )

1− δ (x∗i − e∗i ) + δkT (e∗i − ēi) + δkT+1(1− δT−1)
1− δ (x̄i − ēi) + δ(k+1)T−1ēi

]
.

Now, using Condition (10), we compute Πc
i −Πd

i = piB, with:

B =
[
δkT+1

1− δ (x∗i − e∗i )− δkT (e∗i − ēi)−
δkT+1(1− δT−1)

1− δ (x̄i − ēi)− δ(k+1)T−1ēi

]
(19)

= δkT pi
1− δ

[
δx∗i − e∗i − (1− δT−1) (δx̄i − ēi)

]
. (20)

The conclusion follows from Equality (20).

Proof of Proposition 5
We will show that concessionaire i does not have incentives to deviate, which will be sufficient
to prove the result. First, we prove that the concessionaire does not have incentive to deviate
from the initial period until the end of the first tenure. From the proof of Proposition 3 (using
the expression of the difference in payoffs (19) when k = 0) we know that:

Πc
i −Πd

i = pi

[
ēi − e∗i + δ

1− δ (x∗i − e∗i )−
δ(1− δT−1)

1− δ (x̄i − ēi)− δT−1ēi

]
= pi

1− δ
[
(1− δ)(ēi − e∗i ) + δ(x∗i − e∗i )− δ(1− δT−1)(x̄i − ēi)− δT−1(1− δ)ēi

]
.

When Dii gets arbitrarily close to one, the characterizations of ēi and e∗i enable to conclude
that ēi gets arbitrarily close to e∗i . We can deduce that Πc

i − Πd
i gets arbitrarily close to the

following expression:

pi

[
δT

1− δ (x∗i − e∗i )− δT−1e∗i

]
= δT−1pi

1− δ (δx∗i − e∗i ). (21)
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Again, when Dii converges to one, x∗i gets arbitrarily close to g(e∗i ). Then, for Dii = 1 we
know that 1 = δg′(e∗i ) and we can rewrite Equation (21) as follows:

δT

1− δ (δx∗i − e∗i ) = δT

1− δ [δg(e∗i )− δg′(e∗i )e∗i ] = δT+1

1− δ [g(e∗i )− g′(e∗i )e∗i ]. (22)

The concavity of g (together with the fact that g(0) = 0) enables to quickly deduce that
g(e∗i )− g′(e∗i )e∗i is positive. Thus, for Dii = 1 we know that Πc

i −Πd
i > 0 which, by a continuity

argument, enables to conclude that the above deviation is not profitable (for concessionaire i)
for sufficiently large (but less than one) values of self retention of this concessionaire’s patch.

Second, we conclude the proof by showing that concessionaire i does not have incentives to
deviate during any other tenure block. Consider that defection might occur during tenure block
k + 1. We can rewrite the difference in payoffs as follows:

Πc
i −Πd

i = pi

δkT (ēi − e∗i ) +
(k+1)T−1∑
t=kT+1

δt (x∗i − e∗i − x̄i + ēi) + δ(k+1)T

1− δ (x∗i − e∗i )− δ(k+1)T−1ēi

 .
When Dii gets arbitrarily close to one, the characterizations of ēi and e∗i enable to conclude that
ēi gets arbitrarily close to e∗i , and x̄i gets arbitrarily close to x∗i (since g is continuous). We can
deduce that Πc

i −Πd
i gets arbitrarily close to pi δ

(k+1)T −1

1−δ (δx∗i − e∗i ). We can then deduce that the
deviation is not profitable for concessionaire i (for sufficiently large values of Dii). This proves
that concessionaire i does not have the incentive to defect. The same reasoning holds for any
other concessionaire, which concludes the proof.

Proof of Proposition 6
Using Proposition 3, we know that concessionaire i would defect if the following condition is
satisfied:

δx∗i − e∗i <
(
1− δT−1) (δx̄i − ēi) .

The right hand side of this inequality increases as T increases. Indeed, the derivative of this
term as a function of T is −δT−1ln(δ) (δx̄i − ēi), which is positive, since ln(δ) < 0 and δx̄i− ēi is
positive.21 As such, for any tenure length T there will be defection if δx∗i −e∗i is negative. Now, if
Dii is sufficiently small, then ēi = 0 and we focus on cases where e∗i is still positive. We examine
the extreme case where e∗i > 0 even when Dii is equal to zero. Using the characterization of e∗i ,
we can rewrite δx∗i − e∗i as follows:

δx∗i − e∗i = δ

∑
j 6=i

Djig(e∗j )−
∑
j 6=i

Dij
pj
pi
g′(e∗i )e∗i

 .
If the left hand side of this equality is negative (which is the case provided that Condition 14
holds), then δx∗i − e∗i is negative, which concludes the proof.

21Indeed, δx̄i − ēi = δ
∑
j 6=iDjig(e∗j ) + δDiig(ēi) − δDiig

′(ēi)ēi = δ
∑
j 6=iDjig(e∗j ) +

δDii (g(ēi)− g′(ēi)ēi) > 0 since the second term is positive by concavity of the growth func-
tion g. If Dii = 0 then δx̄i − ēi = δx̄i is positive too.
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Proof of Proposition 7
We claim that, as T gets arbitrarily large, any concessionaire i will defect from full cooperation.
Let us assume that any concessionaire j 6= i follows a full cooperation path; we now analyze
concessionaire i’s incentives to defect. One possible deviation is described in Proposition 1.
Specifically, concessionaire i might deviate from the initial period until period T . Then this
concessionaire will not be renewed. According to Proposition 1, this concessionaire’s payoff from
defecting will then be equal to Πd

i .
We now prove that Πc

i − Πd
i ≤ 0 for sufficiently large values of T . Using the proof of

proposition 3 (specifically, the difference in payoffs (19) when k = 0) we have:

Πc
i −Πd

i = pi

[
ēi − e∗i + δ

1− δ (x∗i − e∗i )−
δ(1− δT−1)

1− δ (x̄i − ēi)− δT−1ēi

]
.

When T gets arbitrarily large, Πc
i −Πd

i gets close to

pi

[
ēi − e∗i + δ

1− δ (x∗i − e∗i − x̄i + ēi)
]
. (23)

Now, we know that x∗i − x̄i = Dii(g(e∗i )− g(ēi)) and we obtain the following inequality (by
concavity of function g):

x∗i − x̄i = Dii(g(e∗i )− g(ēi)) < Diig
′(ēi)(e∗i − ēi).

This enables us to deduce the following inequality regarding Equation (23):

pi
1− δ [δDii(g(e∗i )− g(ēi))− (e∗i − ēi)] <

pi
1− δ [δDiig

′(ēi)− 1](e∗i − ēi). (24)

But we know (from the characterization of ēi) that ēi satisfies δDiig
′(ēi) = 1, which implies that

the right hand side of the above inequality is equal to zero. We conclude that the Expression
(23) is negative which, by a continuity argument, implies that Πc

i −Πd
i ≤ 0 for sufficiently large

values of T . This concludes the proof.

Proof of Proposition 8
For a given concessionaire i, consider T̄i defined implicitly by:

ēi − e∗i + δ

1− δ (x∗i − e∗i )−
δ(1− δT̄i−1)

1− δ (x̄i − ēi)− δT̄i−1ēi = 0.

Since the characterization of ēi and e∗i ensure that residual stock levels (and thus stock levels)
do not depend on the value of the time horizon, we can differentiate the left hand side of the
equality as a function of T , and we obtain the following expression:

δT−1 ln(δ)
1− δ (δx̄i − ēi)

which is negative since ln(δ) < 0 as 0 < δ ≤ 1 and δx̄i − ēi is positive (as shown in the proof of
Proposition 6). This implies that the left hand side of the equality is a decreasing and continuous
function of T (where T is assumed to take continuous values). Since the proof of Proposition 2
implies that this function takes on negative values as T becomes large, if we can prove that it
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has a positive value when T = 2 this would imply that T̄i is uniquely defined and that T̄i > 1.22

Then, again using the proof of Proposition 5 enables us to conclude that concessionaire i will
have incentives to defect as soon as the renewal time horizon is larger than T̄i.

For T = 2 the value of the function is given by the following expression:

ēi − e∗i + δ

1− δ (x∗i − e∗i )− δx̄i = 1
1− δ [δx∗i − e∗i − (1− δ) (δx̄i − ēi)] .

Assumption (15) implies that the right hand side of this equality is positive, which enables us to
conclude about the existence and uniqueness of

T̄i = 1 +
ln
[
δx̄i−ēi−(δx∗

i−e
∗
i )

δx̄i−ēi

]
ln(δ) .

This concludes the proof of the result since T̄ = mini T̄i qualifies as the appropriate threshold
value.

Proof of Proposition 9
If concessionaire i deviates during tenure k+ 1 (while other concessionaires follow trigger strate-
gies) then this concessionaire’s payoff is Πd

i , where :

pi

[
xi0 − e∗i + δ(1− δkT )

1− δ (x∗i − e∗i ) + δkT (e∗i − ēi) + δkT+1(1− δT−1)
1− δ

(¯̄xi − ēi)+ δ(k+1)T−1ēi

]
.

Now, computing the difference Πc
i −Πd

i , we obtain:

Πc
i −Πd

i = pi

[
δkT+1

1− δ (x∗i − e∗i )− δkT (e∗i − ēi)−
δkT+1(1− δT−1)

1− δ
(¯̄xi − ēi)− δ(k+1)T−1(1− δ)ēi

]
= pi

1− δ
[
δkT+1x∗i − δkT e∗i + δkT (1− δT−1)ēi − δkT (1− δT−1)δ ¯̄xi

]
= δkT

pi
1− δ

[
δx∗i − e∗i − (1− δT−1)

(
δ ¯̄xi − ēi

)]
.

The conclusion follows from this equality.

Proof of Proposition 10
First, consider what happens during the final tenure block K. Using backward induction reveals
that any agent i’s strategy during that block is characterized by ei,KT−1 = 0, and for any other
period (K − 1)T ≤ t ≤ KT − 2 we have ei,t = ēi where: 1 = δDiig

′(ēi).
In other words, anticipating that he will not get renewed for sure at the end of the final

tenure block, any agent i will defect. But in order to reach the final tenure block all agents will
have managed the resource cooperatively (for the first K − 1 tenure blocks). Thus, cooperative
agents will play as follows (the first period of the first tenure block being t = 0):

22Keep in mind that T̄i is assumed to take continuous values in the proof. Now coming back
to the fact that it is actually discrete, the argument of the proof implies that T̄i is at least equal
to 2.
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• during the first K − 1 tenure blocks (thus from t = 0 to t = (K − 1)T − 1) agent i chooses
ei = e∗i : from t = 1 to t = (K − 1)T − 1 the stock level is xi = x∗i , at period t = 0 we has
xi = xi,0;

• then, at period t = (K − 1)T , agent i chooses ei = ēi, and stock level at this same period
(K − 1)T is still xi = x∗i ;

• In all other periods of the final tenure block but the last one, agent i chooses ei = ēi and
the stock level is ¯̄xi =

∑
j Djig(ēj);

• Finally, at t = KT − 1 we have ei = 0 and xi = ¯̄xi.

This implies that the payoffs from cooperation are this time given by:

Πc
i = pi

xi,0 − e∗i +
(K−1)T−1∑

t=1
δt(x∗i − e∗i ) + δ(K−1)T (x∗i − ēi) +

KT−2∑
t=(K−1)T+1

δt(¯̄xi − ēi) + δKT−1 ¯̄xi

 .
Now, we have to consider agent i’s potential unilateral deviation strategy. Assuming that

this agent defects during tenure block 1 ≤ k < K (thus knowing that he will not be renewed
following tenure block k) the timing of his strategy then becomes:

• From t = 0 to t = (k − 1)T − 1 agent i chooses ei = e∗i : from t = 1 to t = (k − 1)T − 1
the stock level is xi = x∗i , at period t = 0 we have xi = xi,0;

• Then, at period t = (k − 1)T , agent defects by choosing ei = ēi, and the stock level at
this same period (k − 1)T is still xi = x∗i ;

• In all other periods of tenure block k but the last one, agent i chooses ei = ēi and the
stock level is xi = x̄i;

• Finally, at t = kT − 1 we have ei = 0 and xi = x̄i.

This implies that the payoffs from unilaterally deviating during tenure block k < K are this time
given by:

Πd
i = pi

xi,0 − e∗i +
(k−1)T−1∑

t=1
δt(x∗i − e∗i ) + δ(k−1)T (x∗i − ēi) +

kT−2∑
t=(k−1)T+1

δt(x̄i − ēi) + δkT−1x̄i

 .
Using the expressions of Πc

i and Πd
i , we obtain:

Πc
i −Πd

i = pi
δ(k−1)T

1− δ

{(
1− δ(K−k)T

)
[δx∗i − e∗i + (1− δ)ēi] + δ(1− δT−2)

[
δ(K−k)T (¯̄xi − ēi)− (x̄i − ēi)

]
+δT−1(1− δ)

[
δ(K−k)T ¯̄xi − x̄i

]}
= pi

δ(k−1)T

1− δ

{(
1− δ(K−k)T

)
(δx∗i − e∗i ) + δ(K−k)T (1− δT−1) δ ¯̄xi

−
(
1− δT−1) [δx̄i − (1− δ(K−k)T

)
ēi

]}
.

This implies that the sign of Πc
i −Πd

i is given by that of

Φ(k) :=
(

1− δ(K−k)T
)

(δx∗i − e∗i )+δ(K−k)T (1− δT−1) δ ¯̄xi−
(
1− δT−1) [δx̄i − (1− δ(K−k)T

)
ēi

]
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Differentiating Φ(·) with respect to k, we obtain:

Φ′(k) = δ(K−k)TT ln(δ)
{
δx∗i − e∗i −

(
1− δT−1) [δ ¯̄xi − ēi

]}
. (25)

By definition of ¯̄xi we have ¯̄xi ≤ x̄i. Suppose concessionaires cooperate in the infinite horizon
problem, i.e. that:

δx∗i − e∗i >
(
1− δT−1) (δx̄i − ēi) , (26)

Then we have

δx∗i − e∗i −
(
1− δT−1) [δ ¯̄xi − ēi

]
> δx∗i − e∗i −

(
1− δT−1) (δx̄i − ēi) > 0.

This implies that the term between brackets on the right hand side of Equality (25) is positive.
Since ln(δ) < 0 as δ ∈ (0, 1] we conclude that Φ′(k) < 0 for any k. This means that willingness
to cooperate is decreasing in k - the longer we wait to defect, the lower is their incentive to
cooperate. This implies that k = K − 1 corresponds to the lowest possible value of Φ(k). In
other words, if concessionaire i will defect, she will have the strongest incentive to do so late in
the game. We then obtain:

Φ(K − 1) =
(
1− δT

)
(δx∗i − e∗i ) + δT

(
1− δT−1) δ ¯̄xi −

(
1− δT−1) [δx̄i − (1− δT ) ēi] .

The reasoning above implies that Φ(K − 1) > 0 is a necessary and sufficient condition to ensure
that agent i will not defect. This condition can be rewritten as follows:

δx∗i − e∗i >
1− δT−1

1− δT
{
δx̄i −

(
1− δT

)
ēi − δT+1 ¯̄xi

}
.

This concludes the proof of the first part of the proposition.

Finally, we can show that Condition 17 is more stringent than the condition ensuring coop-
eration under the infinite horizon instrument (Condition 26). Indeed, we have:

1− δT−1

1− δT
{
δx̄i −

(
1− δT

)
ēi − δT+1 ¯̄xi

}
−
(
1− δT−1) [δx̄i − ēi] =

= 1− δT−1

1− δT δT+1 [x̄i − ¯̄xi
]
> 0.

This inequality implies that, as soon as Condition 17 is satisfied then Condition 26 is satisfied:

δx∗i − e∗i >
1− δT−1

1− δT
{
δx̄i −

(
1− δT

)
ēi − δT+1 ¯̄xi

}
⇒ δx∗i − e∗i >

(
1− δT−1) (δx̄i − ēi) ,

but the opposite does not always hold true. In particular, full cooperation under the infinite
horizon instrument is not sufficient to ensure the same result under the finite horizon version of
the instrument. Still, there are conditions under which cooperation will persist under the finite
horizon version of the instrument (the instrument is robust in this sense).
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Supplementary Material: proof of Proposition 4
and comparative statics on the time horizon (given
by (16))
We have the following stocks, respectively, when patch i defects and when all patches cooperate:

x̄i = Diig (ēi, αi) +
∑
j 6=i

Djig
(
e∗j , αj

)
; x∗i =

∑
j

Djig
(
e∗j , αj

)
We assume that one parameter, θi = {pi, αi, Dii, Dij} or θj = {pj , αj , Dji}, is elevated. We
obtain the general following forms for the stocks:

dx̄i
dθi

= ∂x̄i
∂ēi
· ∂ēi
∂θi

+ ∂x̄i
∂θi

+
∑
j 6=i

∂x̄i
∂e∗j
·
∂e∗j
∂θi

(27)

dx̄i
dθj

= ∂x̄i
∂θj

+
∑
l 6=i

∂x̄i
∂e∗l
· ∂e

∗
l

∂θj
(28)

dx∗i
dθi

= ∂x∗i
∂θi

+
∑
j

∂x∗i
∂e∗j
·
∂e∗j
∂θi

(29)

dx∗i
dθj

= ∂x∗i
∂θj

+
∑
l

∂x∗i
∂e∗l
· ∂e

∗
l

∂θj
(30)

and the residual stock levels
with gα∗

i
≡ gαi(e∗i ) and gᾱi ≡ gᾱi(ēi).

A. Impact on the emergence of cooperation
Using Expressions (27) to (30) and Table 1 we compute the following expressions.

Impact of net price, p
Impact of pi
We first analyze the impact of pi on agent i’s willingness to cooperate by using Expressions (27)
to (30) and the table in order to compute the following expression:

d
(
Πc
i −Πd

i

)
dpi

= δkT

1− δ
[
δx∗i − e∗i − (1− δT−1)(δx̄i − ēi)

]
+ δkT pi

1− δ

δ∑
j

∂x∗i
∂e∗j

∂e∗j
∂pi
− ∂e∗i
∂pi
− δ(1− δT−1)

∑
j 6=i

∂x̄i
∂e∗j

∂e∗j
∂pi


Let us focus on the second term between brackets and rewrite it as follows:
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Table 1: Computations of derivatives
θ

∂e∗
i

∂θ
∂ēi
∂θ

∂x∗
i

∂θ
∂x̄i
∂θ

pi
1−δDiigei∑N

j=1 δDijpjgeiei
< 0 0 0 0

pj − Dijgei∑N

l=1 Dilplgeiei
> 0 0 0 0

αi −geiαi
geiei

> 0 −geiαi
geiei

> 0 Diigα∗
i
> 0 Diigᾱi > 0

αj 0 0 Djigα∗
j
> 0 Djigα∗

j
> 0

Dii −
pigei∑N

j=1 Dijpjgeiei
> 0 − gei

geiei
> 0 g(e∗i ) > 0 g(ēi) > 0

Dij − pjgei∑N

j=1 Dijpjgeiei
> 0 0 0 0

Dji 0 0 g(e∗j) g(e∗j)

∂e∗i
∂pi

(
δ
∂x∗i
∂e∗i
− 1
)

+
∑
j 6=i

∂e∗j
∂pi

[
δ
∂x∗i
∂e∗j
− δ(1− δT−1)∂x̄i

∂e∗j

]
(31)

⇔ ∂e∗i
∂pi

(
δDiige∗

i
− 1
)

+
∑
j 6=i

∂e∗j
∂pi

[
δDjige∗

j
− δ(1− δT−1)Djige∗

j

]
(32)

⇔ − ∂e∗i
∂pi

(
1− δDiige∗

i

)
+
∑
j 6=i

∂e∗j
∂pi

δTDjige∗
j
> 0 (33)

because we have ∂e∗
i

∂pi
< 0, 1 − δDiige∗

i
> 0 and ∂e∗

j

∂pi
> 0. Thus, we can conclude that

d(Πc
i−Πd

i )
dpi

> 0 if the condition regarding agent i’s willingness-to-cooperate is satisfied. This

means that an increase in pi results in an increase in the value of d(Πc
i−Πd

i )
dpi

, thus an increase in
the willingness-to-cooperate.

Effect of pj, j 6= i

In this case we have
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d
(
Πc
i −Πd

i

)
dpj

= δkT pi
1− δ

δ∑
l

∂x∗i
∂e∗l

∂e∗l
∂pj
− ∂e∗i
∂pj
− δ(1− δT−1)

∑
l 6=i

∂x̄i
∂e∗l

∂e∗l
∂pj


= δkT pi

1− δ

∂e∗i
∂pj

(
δ
∂x∗i
∂e∗i
− 1
)

+
∑
l 6=i

(
δ
∂x∗i
∂e∗l

∂e∗l
∂pj
− δ(1− δT−1)∂x̄i

∂e∗l

∂e∗l
∂pj

)
= δkT pi

1− δ

−∂e∗i
∂pj

(
1− δDiige∗

i

)
+ δT

∑
l 6=i

∂e∗l
∂pj

Dlige∗
l



= δkT pi
1− δ

−∂e
∗
i

∂pj

(
1− δDiige∗

i

)
︸ ︷︷ ︸

<0

+δT

∂e
∗
j

∂pj
Djige∗

j︸ ︷︷ ︸
<0

+
∑
l 6=i,j

∂e∗l
∂pj

Dlige∗
l︸ ︷︷ ︸

>0




Using the expressions provided in the table and focusing on the spatial connection between
the patch of interest and the patch where the value of the parameter is increased, (i and j), we
deduce the following conclusions:
• First, if both dispersal rates Dij and Dji are sufficiently small, then the first and second

term between brackets on the RHS of the equality are small, which implies that d(Πc
i−Πd

i )
dpj

is positive;
Indeed, when Dij and Dji are small, then ∂e∗

i

∂pj
and ∂e∗

j

∂pj
Djige∗

j
are small. And the sign of the

term between brackets (and thus of d(Πc
i−Πd

i )
dpj

) is similar to the sign of
∑
l 6=i,j

∂e∗
l

∂pj
Dlige∗

l
,

which is positive.
• Second, if the degree of spatial connection between the two patches and their own self-

retention rate are sufficiently large (or if both patches i and j are weakly spatially-
connected with other patches), respectively Dii+Dij and Djj +Dji are sufficiently large,
then the term

∑
l 6=i,j

∂e∗
l

∂pj
Dlige∗

l
is small, which implies that d(Πc

i−Πd
i )

dpj
is negative.

Impact of growth, α
Effect of αi
We analyze the effect of αi on agent i’s willingness to cooperate. We have:

d
(
Πc
i −Πd

i

)
dαi

= δkT pi
1− δ

{
δ

(
∂x∗i
∂αi

+ ∂x∗i
∂e∗i

∂e∗i
∂αi

)
− ∂e∗i
∂αi
− (1− δT−1)

[
δ

(
∂x̄i
∂αi

+ ∂x̄i
∂ēi

∂ēi
∂αi

)
− ∂ēi
∂αi

]}
= δkT pi

1− δ

[
∂e∗i
∂αi

(
δDiige∗

i
− 1
)

+ δDiigα∗
i
− (1− δT−1)

(
∂ēi
∂αi

(δDiigēi
− 1) + δDiigᾱi

)]
= δkT pi

1− δ

[
∂e∗i
∂αi

(
δDiige∗

i
− 1
)

+ δDii

(
gα∗

i
− (1− δT−1)gᾱi

)]
If Dii is small while ēi > 0, then d(Πc

i−Πd
i )

dαi
< 0 and an increase in αi decreases agent i’s

incentives to cooperate.
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If Dii = 1, then 1− δDiige∗
i

= 0 and d(Πc
i−Πd

i )
dαi

> 0 since gα∗
i
− (1− δT−1)gᾱi

is positive. By
a continuity argument, this conclusion remains valid when Dii is sufficiently large.

Effect of αj, j 6= i

We analyze the effect of αj on agent i’s willingness to cooperate. We have:

d
(
Πc
i −Πd

i

)
dαj

= δkT pi
1− δ

[
δ

(
∂x∗i
∂αj

+ ∂x∗i
∂e∗j

∂e∗j
∂αj

)
− δ(1− δT−1)

(
∂x̄i
∂αj

+ ∂x̄i
∂e∗j

∂e∗j
∂αj

)]

= δkT+1pi
1− δ

[
δT−1Djigα∗

j
+
∂e∗j
∂αj

δT−1Djige∗
j

]
= δ(k+1)T pi

1− δ Dji

(
gα∗

j
+ ge∗

j

)
> 0

An increase in αj increases the willingness-to-cooperate of agent i.

Impact of dispersal rate, D
Effect of Dii

We first analyze the effect of the self-retention rate on an agent’s willingness to cooperate. We
have:

d
(
Πc
i −Πd

i

)
dDii

= δkT pi
1− δ

{
δ

(
∂x∗i
∂Dii

+ ∂x∗i
∂e∗i

∂e∗i
∂Dii

)
− ∂e∗i
∂Dii

− (1− δT−1)
[
δ

(
∂x̄i
∂Dii

+ ∂x̄i
∂ēi

∂ēi
∂Dii

)
− ∂ēi
∂Dii

]}
= δkT pi

1− δ

{
∂e∗i
∂Dii

(
δDiige∗

i
− 1
)

+ δg(e∗i , αi)− (1− δT−1)
[
∂ēi
∂Dii

(δDiigēi − 1) + δg(ēi, αi)
]}

= δkT pi
1− δ

(
δ[g(e∗i , αi)− g(ēi, αi)] + δT g(ēi, αi)−

(
1− δDiige∗

i

) ∂e∗i
∂Dii

)
.

The overall effect of Dii on Πc
i −Πd

i is given by the sum of two terms of opposite signs, and is
thus ambiguous (due to the expression of ∂e∗

i

∂Dii
provided in the table, when pi is small we might

expect d(Πc
i−Πd

i )
dDii

to be positive).

Effect of Dij

We now analyze the effect of dispersal from patch i on agent i’s willingness to cooperate. We
have:

d
(
Πc
i −Πd

i

)
dDij

= δkT pi
1− δ

(
δ
∂x∗i
∂e∗i

∂e∗i
∂Dij

− ∂e∗i
∂Dij

)
= −δ

kT pi
1− δ ·

∂e∗i
∂Dij

(
1− δDiige∗

i

)
< 0

An increase in dispersal from patch i decreases agent i’s incentives to cooperate.
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Effect of Dji

We finally analyze the effect of dispersal from a given patch to patch i on agent i’s willingness
to cooperate. We have:

d
(
Πc
i −Πd

i

)
dDji

= δkT pi
1− δ

[
δ

(
∂x∗i
∂Dji

+ ∂x∗i
∂e∗j

∂e∗j
∂Dji

)
− δ(1− δT−1)

(
∂x̄i
∂Dji

+ ∂x̄i
∂e∗j

∂e∗j
∂Dji

)]

= δ(k+1)T pi
1− δ

[
∂e∗j
∂Dji

Djige∗
j

+ g(e∗j , αj)
]
> 0

An increase in dispersal from patch j to patch i increases agent i’s incentives to cooperate.

B. Impact on the time threshold, T̄i
Differentiating Condition (16) with respect to parameter θ, we have:

dT̄i
dθ

= ∂T̄i
∂θ

+ ∂T̄i
∂x̄i

dx̄i
dθ

+ ∂T̄i
∂ēi

∂ēi
∂θ

+ ∂T̄i
∂x∗i

dx∗i
dθ

+ ∂T̄i
∂e∗i

∂e∗i
∂θ

(34)

= 1
ln(δ) [δ(x̄i − x∗i ) + e∗i − ēi]

[
∂e∗i
∂θ
− δ dx

∗
i

dθ
+
(
δx∗i − e∗i
δx̄i − ēi

)(
δ
dx̄i
dθ
− ∂ēi
∂θ

)]
(35)

Since δ ∈ (0, 1) and δ(x̄i − x∗i ) + e∗i − ēi > 0, we know that the first term in Equality (35)
is always negative. Thus, in order to sign the effect of parameter θ on T̄i we examine the term
between brackets. Using expressions (27)-(30) and Table 1, we check that δ dx̄i

dθ −
∂ēi

∂θ > 0. Then
let us notice that:

∂e∗i
∂θ
− δ dx

∗
i

dθ
= ∂e∗i

∂θ
(1− δDiige∗

i
)− δ

∂x∗i
∂θ

+
∑
j 6=i

Djige∗
j

∂e∗j
∂θ

 < 0 if θ = {pi;αj ;Dji}

> 0 if θ = {Dij}

which implies that dT̄i

dθ > 0 for θ = {pi;αj ;Dji} and dT̄i

dθ < 0 for θ = {Dij}. By contrast, the
sign is ambiguous for θ = {pj ;αi;Dii}. We can yet find some situations highlighting that the
overall expression can be positive or negative. We focus on the expression between brackets in
Condition (35).

Effect of pj, j 6= i

∂e∗i
∂pj

(
1− δ ∂x

∗
i

∂e∗i

)
− δ

∑
l 6=i

∂x∗i
∂e∗l

∂e∗l
∂pj

+ δ

(
δx∗i − e∗i
δx̄i − ēi

)∑
l 6=i

∂x̄i
∂e∗l

∂e∗l
∂pj

(36)

⇔ ∂e∗i
∂pj

(1− δDiigei) + δ
∑
l 6=i

Dligel

∂e∗l
∂pj

(
δ(x∗i − x̄i)− e∗i + ēi

δx̄i − ēi

)
(37)

⇔ ∂e∗i
∂pj

(1− δDiigei) + δ

(
δ(x∗i − x̄i)− e∗i + ēi

δx̄i − ēi

)Djigej

∂e∗j
∂pj

+
∑
l 6=i,j

Dligel

∂e∗l
∂pj

 (38)
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Using the expressions provided in the table, we can obtain conclusions that highlight that
the effect on T̄i depends on the dispersal process. Specifically, we have:

• First, if Dij is small enough, then expression (36) is negative, which implies that the value
of T̄i increases when pj increases;

• Second, if Dji and
∑
l 6=i,j DliDlj are small enough, then expression (36) is positive, which

implies that the value of T̄i decreases when pj increases.
Indeed, this leads to a small value of the last term between brackets, Djigej

∂e∗
j

∂pj
+
∑
l 6=i,j Dligel

∂e∗
l

∂pj
.

Thus, the sign of dT̄i

dpj
depends only on that of ∂e

∗
i

∂pj
(1− δDiigei

), which is positive. We thus
conclude that ∂T̄i

∂pj
is negative.

Effect of αi

∂e∗i
∂αi

(
1− δ ∂x

∗
i

∂e∗i

)
− δ ∂x

∗
i

∂αi
+
(
δx∗i − e∗i
δx̄i − ēi

)[
δ

(
∂x̄i
∂αi

+ ∂x̄i
∂ēi

∂ēi
∂αi

)
− ∂ēi
∂αi

]
(39)

⇔ ∂e∗i
∂αi

(
1− δDiige∗

i

)
− δDii

[
gα∗

i
− gᾱi

(
δx∗i − e∗i
δx̄i − ēi

)]
(40)

We obtain the following conclusion: If δDii is sufficiently small while ēi remains positive,
then the sign of expression (37) is positive, which implies that T̄i would decrease when the
growth-related parameter increases in patch i.

Effect of Dii

∂e∗i
∂Dii

(
1− δ ∂x

∗
i

∂e∗i

)
− δ ∂x

∗
i

∂Dii
+
(
δx∗i − e∗i
δx̄i − ēi

)[
δ

(
∂x̄i
∂Dii

+ ∂x̄i
∂ēi

∂ēi
∂Dii

)
− ∂ēi
∂Dii

]
⇔ ∂e∗i

∂Dii

(
1− δDiige∗

i

)
− δg(e∗i , αi) +

(
δx∗i − e∗i
δx̄i − ēi

)[
δg(ēi, αi) + ∂ēi

∂Dii
(δDiigēi − 1)

]
⇔ ∂e∗i

∂Dii

(
1− δDiige∗

i

)
− δ

[
g(e∗i , αi)−

(
δx∗i − e∗i
δx̄i − ēi

)
g(ēi, αi)

]
︸ ︷︷ ︸

>0

We obtain a conclusion in one case described as follows. If δ is sufficiently small (so that
∂e∗

i

∂Dii

(
1− δDiige∗

i

)
> δ

[
g(e∗i , αi)−

(
δx∗

i−e
∗
i

δx̄i−ēi

)
g(ēi, αi)

]
) while ēi remains positive, then the sign

of the expression is that of ∂e∗
i

∂Dii
, which is positive.
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