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Abstract

In this note, we determine two simple and sharp lower bounds for exp(x2), improving two well-known lower
bounds. They are defined by continuous even functions on R using exponential functions for the first lower
bound, and polynomial-exponential functions for the second lower bound. The results are illustrated by a
numerical study and some graphics.
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1. Introduction

In this note, we propose two sharp lower bounds for the function exp(x2). This can be of interest in
many area of mathematics when the function exp(x2) naturally appears. One of the most famous example is
the gaussian probability density function; a lower bound for exp(x2) gives an upper bound for this function.
The first lower bound proposes an improvement of the well-known exponential (hyperbolic) lower bound:
for any x ∈ R, we have exp(x2) ≥ cosh

(√
2x
)
, whereas the second lower bound proposes an improvement

of the well-known polynomial lower bound: for any x ∈ R, we have exp(x2) ≥ 1 + x2 + x4/2. Both of them

can be proved using the exponential series: exp(x2) =
+∞∑
k=0

x2k/(k!). For other classical inequalities involving

exponential functions, we refer to Mitrinović (1964) and Bullen (1998). The motivation of this note is based
on the following remark: the two lower bounds presented above are sharp for small values of |x|, but not
when |x| is greater to a certain threshold. We thus propose to improve them by an analytic approach; we
split R into two parts, an interval A centered in 0 with a length depending on a tuning parameter a ≥ 0,
and its complementary Ac, we keep the existing lower bound for exp(x2) on A, and we consider a particular
exponentiated warped version of it on Ac. The obtained lowers bounds are simple continuous even function
on R using exponential functions for the first one and polynomial-exponential functions for the second one;
there is no power of x2. We thus provide a simple and intuitive alternative to the sharp lower bound proposed

by Brenner and Alzer (1991), i.e. for any a > 0 and x ∈ R, m(x; a) =
(
1 + x2/a

)(a(a+x2))1/2

.
The rest of the note is organized as follows. Section 2 present the first lower bound, supported by a

short numerical study and some graphics. Section 3 presents the second lower bound, supported by a short
numerical study and some graphics. The proofs of our results are postponed in Section 4.

2. First lower bound

The following lower bound of exp(x2) is well-known: for any x ∈ R, we have exp(x2) ≥ cosh
(√

2x
)
. In

the result below, we determine a continuous even function on R denoted by f(x; a) such that, for any a ≥ 0,
exp(x2) ≥ f(x; a) ≥ cosh

(√
2x
)
, x ∈ R.
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Proposition 1. For any a ≥ 0, we defined the function f(x; a) by

f(x; a) = cosh
(√

2x
)
1{|x|<a/2} + cosh

(√
2(|x| − a)

)
exp(2a|x| − a2)1{|x|≥a/2}, x ∈ R,

where 1A denotes the indicator function over A, i.e. 1A = 1 if x ∈ A and 0 elsewhere. Then, for any a ≥ 0
and x ∈ R, we have

exp(x2) ≥ f(x; a) ≥ cosh
(√

2x
)
.

Note that f(x; a) is a continuous function on R according to x; lim
|x|→a/2

f(x; a) = cosh
(
a/
√

2
)

=

f(a/2; a) = f(−a/2; a). Moreover, the lower bound of the second inequality can be attained: f(x; 0) =
cosh

(√
2x
)
. Several criteria are possible for a suitable choice for a. For instance, one can consider

a∗ = arg min
a≥0

∫ 2.5

−2.5
[
f(x; a)− exp(x2)

]2
dx.

Table 1 shows the numerical values of the integral squared error R(a, b) measuring an error between

f(x; a) and exp(x2) over [−b, b]: R(a, b) =
∫ b

−b
[
f(x; a)− exp(x2)

]2
dx and the integral squared error R∗(b)

measuring an error between cosh
(√

2x
)

and exp(x2): R∗(b) =
∫ b

−b
[
cosh

(√
2x
)
− exp(x2)

]2
dx, for several

values of a and b. For the considered values, we see that R(a, b) ≤ R∗(b).
Then several figures are proposed. Figure 1 illustrates the well-known inequality: exp(x2) ≥ cosh

(√
2x
)
,

Figure 2 shows graphically the first inequality in Proposition 1: exp(x2) ≥ f(x; a) with a = 1 and Figure 3
illustrates the second inequality in Proposition 1: f(x; a) ≥ cosh

(√
2x
)

with a = 1. Let us mention that the
choice of a = 1 is far to be optimal (as we can see in Table 1), it is arbitrary taken. The numerical study
and the figures are done with Mathematica (v.11.1). See Wolfram (1999).

3. Second lower bound

Let us now focus on a second well-known lower bound of exp(x2): for any x ∈ R, we have exp(x2) ≥
1 + x2 + x4/2. In the result below, we determine a continuous even function on R denoted by k(x; a) such
that, for any a ≥ 0, exp(x2) ≥ k(x; a) ≥ 1 + x2 + x4/2, x ∈ R.

Proposition 2. For any a ≥ 0, we defined the function k(x; a) by

k(x; a) =

(
1 + x2 +

x4

2

)
1{|x|<a/2} +

(
1 + (|x| − a)2 +

(|x| − a)4

2

)
exp(2a|x| − a2)1{|x|≥a/2}, x ∈ R.

Then, for any a ≥ 0 and x ∈ R, we have

exp(x2) ≥ k(x; a) ≥ 1 + x2 +
x4

2
.

Note that k(x; a) is a continuous function according to x; lim
|x|→a/2

k(x; a) = 1+a2/4+a4/32 = k(a/2; a) =

k(−a/2; a). The lower bound of the second inequality can be attained: k(x; 0) = 1 + x2 + x4/2. Among the

possible criteria to chose a suitable a, one can evaluate a∗ = arg min
a≥0

∫ 2.5

−2.5
[
k(x; a)− exp(x2)

]2
dx.

As for Table 1, Table 2 shows the numerical values of error measures: R(a, b) =
∫ b

−b
[
k(x; a)− exp(x2)

]2
dx

and R∗(b) =
∫ b

−b
[(

1 + x2 + x4/2
)
− exp(x2)

]2
dx, for several values of a and b. For all the considered values,

we see that R(a, b) ≤ R∗(b).
Figure 4 illustrates the well-known lower bound: exp(x2) ≥ 1 + x2 + x4/2, Figure 5 illustrates the first

inequality in Proposition 2: exp(x2) ≥ k(x; a) with a = 1 and Figure 6 illustrates the second inequality in
Proposition 2: k(x; a) ≥ 1 + x2 + x4/2 with a = 1. Again, let us mention that the choice of a = 1 is just for
the illustration; it is far to be optimal.

Note that the comparison of the two proposed lower bounds is not immediate; from an analytic point
of view, there exists x∗ > 0 such that cosh

(√
2x
)
< 1 + x2 + x4/2 for x ∈ [−x∗, x∗] and the reverse for

|x| ≥ x∗. A fair numerical comparison needs to take the optimal a for each of them with a given criteria,
which remains arbitrary.
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Table 1: Numerical evaluations of R(a, b) and R∗(b) for the first lower bound.

R(a, b) a = 0.1 a = 0.5 a = 0.7 a = 1 a = 1.3 a = 1.7 a = 2 a = 2.5 a = 3 R∗(b)
b = 1.5 4.4441 0.566336 0.113316 0.0027994 0.00173972 0.0300955 0.201991 2.34954 6.29601 6.29601
b = 2 419.788 170.47 82.1288 16.2676 1.21222 0.0311728 0.207063 4.96995 482.842 482.842
b = 2.5 48470.4 35358.7 26319.9 12962.2 4044.96 269.723 7.01922 5.16422 208.093 50481.3
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Figure 1: Superimposed curves of exp(x2) and cosh
(√

2x
)

for x ∈ [−b, b] with b = 1 for the first figure, and b = 3 for the

second figure.
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Figure 2: Superimposed curves of exp(x2) and f(x; 1) for x ∈ [−b, b] with b = 1 for the first figure, and b = 3 for the second
figure.
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Figure 3: Superimposed curves of f(x; 1) and cosh
(√

2x
)

for x ∈ [−b, b] with b = 1 for the first figure, and b = 3 for the second

figure.
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Table 2: Numerical evaluations of R(a, b) and R∗(b) for the second lower bound.

R(a, b) a = 0.1 a = 0.5 a = 0.7 a = 1 a = 1.3 a = 1.7 a = 2 a = 2.5 a = 3 R∗(b)
b = 1.5 1.55921 0.073 0.0068 0.000029 0.0000439 0.00188203 0.0206829 0.562207 2.62638 2.62638
b = 2 291.674 73.3948 24.3381 2.15825 0.0459892 0.00188357 0.0207268 0.780871 21.17 362.355
b = 2.5 44507.6 26997.6 17012.7 5707.33 973.879 16.9692 0.0944469 0.78247 30.9922 47492.8
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Figure 4: Superimposed curves of exp(x2) and 1 + x2 + x4/2 for x ∈ [−b, b] with b = 1 for the first figure, and b = 3 for the
second figure.
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Figure 5: Superimposed curves of exp(x2) and k(x; 1) for x ∈ [−b, b] with b = 1 for the first figure, and b = 3 for the second
figure.
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Figure 6: Superimposed curves of k(x; 1) and 1 + x2 + x4/2 for x ∈ [−b, b] with b = 1 for the first figure, and b = 3 for the
second figure.
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4. Proofs

Proof of Proposition 1. First of all, let us recall that exp(x2) ≥ cosh
(√

2x
)
, x ∈ R. Therefore, using

x2 = (|x| − a)2 + 2a|x| − a2, we have

exp(x2) = exp((|x| − a)2) exp(2a|x| − a2) ≥ cosh
(√

2(|x| − a)
)

exp(2a|x| − a2).

Let us set g(x; a) = cosh
(√

2(|x| − a)
)

exp(2a|x| − a2). We now propose to study g(x; a) according to the
variable a. We have

∂

∂a
g(x; a) = exp

(
2a|x| − a2

)
h(|x| − a),

where h(y) is the function defined by h(y) = 2y cosh
(√

2y
)
−
√

2 sinh
(√

2y
)
, y ∈ R. We have immediately

exp
(
2a|x| − a2

)
> 0. Let us investigate the sign of h(|x| − a). Since, for any y ∈ R,

∂

∂y
h(y) = 2

√
2y sinh

(√
2y
)
≥ 0,

h(y) is increasing. Thanks to h(0) = 0, if a < |x|, we have h(|x| − a) > 0, implying that ∂
∂ag(x; a) > 0, so

g(x; a) is strictly increasing according to a. If a > |x|, we have h(|x| − a) < 0, implying that ∂
∂ag(x; a) < 0,

so g(x; a) is strictly decreasing according to a. Moreover, ∂
∂ag(x; a) = 0 if and only if a = |x|. Noticing that

g(x; 0) = g(x; 2|x|) = cosh
(√

2x
)
, for any |x| ≥ a/2, we have

exp(x2) = g(x; |x|) ≥ g(x; a) ≥ inf
a∈[0,2|x|]

g(x; a) = inf [g(x; 0), g(x; 2|x|)] = cosh
(√

2x
)
.

Thus exp(x2)1{|x|≥a/2} ≥ g(x; a)1{|x|≥a/2} ≥ cosh
(√

2x
)
1{|x|≥a/2}. For |x| < a/2, we have the reverse of

the second inequality:

cosh
(√

2x
)

= inf
a∈[0,2|x|]

g(x; a) ≥ sup
a6∈[0,2|x|]

g(x; a) ≥ g(x; a),

but the well-known lower bound is still valid: exp(x2)1{|x|<a/2} ≥ cosh
(√

2x
)
1{|x|<a/2}. So, for any x ∈ R,

we have

exp(x2) ≥ cosh
(√

2x
)
1{|x|<a/2} + g(x; a)1{|x|≥a/2} = f(x; a), f(x; a) ≥ cosh

(√
2x
)
.

Proposition 1 is proved.

Proof of Proposition 2. First of all, let us recall that exp(x2) ≥ 1 + x2 + x4/2, x ∈ R. It follows from
x2 = (|x| − a)2 + 2a|x| − a2 that

exp(x2) = exp((|x| − a)2) exp(2a|x| − a2) ≥
(

1 + (|x| − a)2 +
(|x| − a)4

2

)
exp(2a|x| − a2).

Let us set `(x; a) =
(
1 + (|x| − a)2 + (|x| − a)4/2

)
exp(2a|x|−a2). We now propose to study `(x; a) according

to the variable a. Algebraic manipulations and simplifications give a simple expression for ∂
∂a`(x; a):

∂

∂a
`(x; a) = exp

(
2a|x| − a2

)
(|x| − a)5,

Since exp
(
2a|x| − a2

)
> 0, we have ∂

∂a`(x; a) = 0 if and only if a = |x|.
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Moreover, if a < |x|, we have ∂
∂a`(x; a) > 0, so `(x; a) is strictly increasing according to a, and if a > |x|,

we have ∂
∂a`(x; a) < 0, so `(x; a) is strictly decreasing according to a. Noticing that `(x; 0) = `(x; 2|x|) =

1 + x2 + x4/2, for any |x| ≥ a/2, we have

exp(x2) = `(x; |x|) ≥ `(x; a) ≥ inf
a∈[0,2|x|]

`(x; a) = inf [`(x; 0), `(x; 2|x|)] = 1 + x2 +
x4

2
.

This proves that exp(x2)1{|x|≥a/2} ≥ `(x; a)1{|x|≥a/2} ≥
(
1 + x2 + x4/2

)
1{|x|≥a/2}. For |x| < a/2, we have

the reverse of the second inequality:

1 + x2 +
x4

2
= inf

a∈[0,2|x|]
`(x; a) ≥ sup

a6∈[0,2|x|]
`(x; a) ≥ `(x; a),

but the well-known lower bound still holds: exp(x2)1{|x|<a/2} ≥
(
1 + x2 + x4/2

)
1{|x|<a/2}. Hence, for any

x ∈ R, we have

exp(x2) ≥
(

1 + x2 +
x4

2

)
1{|x|<a/2} + `(x; a)1{|x|≥a/2} = k(x; a), k(x; a) ≥ 1 + x2 +

x4

2
.

This completes the proof of Proposition 2.
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