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In this note, we determine two simple and sharp lower bounds for exp(x 2 ), improving two well-known lower bounds. They are defined by continuous even functions on R using exponential functions for the first lower bound, and polynomial-exponential functions for the second lower bound. The results are illustrated by a numerical study and some graphics.

Introduction

In this note, we propose two sharp lower bounds for the function exp(x 2 ). This can be of interest in many area of mathematics when the function exp(x 2 ) naturally appears. One of the most famous example is the gaussian probability density function; a lower bound for exp(x 2 ) gives an upper bound for this function. The first lower bound proposes an improvement of the well-known exponential (hyperbolic) lower bound: for any x ∈ R, we have exp(x 2 ) ≥ cosh √ 2x , whereas the second lower bound proposes an improvement of the well-known polynomial lower bound: for any x ∈ R, we have exp(x 2 ) ≥ 1 + x 2 + x 4 /2. Both of them can be proved using the exponential series: exp(x 2 ) = +∞ k=0

x 2k /(k!). For other classical inequalities involving exponential functions, we refer to [START_REF] Mitrinović | Elementary Inequalities[END_REF] and [START_REF] Bullen | A Dictionary of Inequalities[END_REF]. The motivation of this note is based on the following remark: the two lower bounds presented above are sharp for small values of |x|, but not when |x| is greater to a certain threshold. We thus propose to improve them by an analytic approach; we split R into two parts, an interval A centered in 0 with a length depending on a tuning parameter a ≥ 0, and its complementary A c , we keep the existing lower bound for exp(x 2 ) on A, and we consider a particular exponentiated warped version of it on A c . The obtained lowers bounds are simple continuous even function on R using exponential functions for the first one and polynomial-exponential functions for the second one; there is no power of x 2 . We thus provide a simple and intuitive alternative to the sharp lower bound proposed by [START_REF] Brenner | Proc. R. Soc. Edinburgh[END_REF], i.e. for any a > 0 and

x ∈ R, m(x; a) = 1 + x 2 /a (a(a+x 2 )) 1/2
. The rest of the note is organized as follows. Section 2 present the first lower bound, supported by a short numerical study and some graphics. Section 3 presents the second lower bound, supported by a short numerical study and some graphics. The proofs of our results are postponed in Section 4.

First lower bound

The following lower bound of exp(x 2 ) is well-known: for any x ∈ R, we have exp(x 2 ) ≥ cosh √ 2x . In the result below, we determine a continuous even function on R denoted by f (x; a) such that, for any a ≥ 0, exp(

x 2 ) ≥ f (x; a) ≥ cosh √ 2x , x ∈ R.
Proposition 1. For any a ≥ 0, we defined the function f (x; a) by

f (x; a) = cosh √ 2x 1 {|x|<a/2} + cosh √ 2(|x| -a) exp(2a|x| -a 2 )1 {|x|≥a/2} , x ∈ R,
where 1 A denotes the indicator function over A, i.e. 1 A = 1 if x ∈ A and 0 elsewhere. Then, for any a ≥ 0 and x ∈ R, we have exp(x 2 ) ≥ f (x; a) ≥ cosh √ 2x .

Note that f (x; a) is a continuous function on R according to x; lim

|x|→a/2 f (x; a) = cosh a/ √ 2 =
f (a/2; a) = f (-a/2; a). Moreover, the lower bound of the second inequality can be attained: f (x; 0) = cosh √ 2x . Several criteria are possible for a suitable choice for a. For instance, one can consider

a * = arg min a≥0 2.5 -2.5 f (x; a) -exp(x 2 ) 2 dx.
Table 1 shows the numerical values of the integral squared error R(a, b) measuring an error between f (x; a) and exp( x Then several figures are proposed. Figure 1 illustrates the well-known inequality: exp(x 2 ) ≥ cosh √ 2x , Figure 2 shows graphically the first inequality in Proposition 1: exp(x 2 ) ≥ f (x; a) with a = 1 and Figure 3 illustrates the second inequality in Proposition 1: f (x; a) ≥ cosh √ 2x with a = 1. Let us mention that the choice of a = 1 is far to be optimal (as we can see in Table 1), it is arbitrary taken. The numerical study and the figures are done with Mathematica (v.11.1). See [START_REF] Wolfram | The Mathematica Book[END_REF].

Second lower bound

Let us now focus on a second well-known lower bound of exp(x 2 ): for any x ∈ R, we have exp(x 2 ) ≥ 1 + x 2 + x 4 /2. In the result below, we determine a continuous even function on R denoted by k(x; a) such that, for any a ≥ 0, exp(x 2 ) ≥ k(x; a) ≥ 1 + x 2 + x 4 /2, x ∈ R.

Proposition 2. For any a ≥ 0, we defined the function k(x; a) by

k(x; a) = 1 + x 2 + x 4 2 1 {|x|<a/2} + 1 + (|x| -a) 2 + (|x| -a) 4 2 exp(2a|x| -a 2 )1 {|x|≥a/2} , x ∈ R.
Then, for any a ≥ 0 and x ∈ R, we have

exp(x 2 ) ≥ k(x; a) ≥ 1 + x 2 + x 4 2 .
Note that k(x; a) is a continuous function according to x; lim |x|→a/2 k(x; a) = 1+a 2 /4+a 4 /32 = k(a/2; a) = k(-a/2; a). The lower bound of the second inequality can be attained: k(x; 0) = 1 + x 2 + x 4 /2. Among the possible criteria to chose a suitable a, one can evaluate a * = arg min a≥0 2.5

-2.5 k(x; a) -exp(x 2 ) 2 dx.
As for Table 1, Table 2 shows the numerical values of error measures: R(a, b) Figure 4 illustrates the well-known lower bound: exp(x 2 ) ≥ 1 + x 2 + x 4 /2, Figure 5 illustrates the first inequality in Proposition 2: exp(x 2 ) ≥ k(x; a) with a = 1 and Figure 6 illustrates the second inequality in Proposition 2: k(x; a) ≥ 1 + x 2 + x 4 /2 with a = 1. Again, let us mention that the choice of a = 1 is just for the illustration; it is far to be optimal.

= b -b k(x; a) -exp(x 2 ) 2 dx and R * (b) = b -b 1 + x 2 + x 4 /2 -exp(x 2 ) 2 dx,
Note that the comparison of the two proposed lower bounds is not immediate; from an analytic point of view, there exists x * > 0 such that cosh

√ 2x < 1 + x 2 + x 4 /2 for x ∈ [-x * ,
x * ] and the reverse for |x| ≥ x * . A fair numerical comparison needs to take the optimal a for each of them with a given criteria, which remains arbitrary. -1.0 -0.5 0.5 1.0 

expx 2  1 + x 2 + x 4 2 -3 -2 -1 1 
1.5 2.0 2.5 k(x, 1) 1 + x 2 + x 4 2 -3 -2 -1 1 

Proofs

Proof of Proposition 1. First of all, let us recall that exp(x 2 ) ≥ cosh √ 2x , x ∈ R. Therefore, using

x 2 = (|x| -a) 2 + 2a|x| -a 2 , we have exp(x 2 ) = exp((|x| -a) 2 ) exp(2a|x| -a 2 ) ≥ cosh √ 2(|x| -a) exp(2a|x| -a 2 ).
Let us set g(x; a) = cosh √ 2(|x| -a) exp(2a|x| -a 2 ). We now propose to study g(x; a) according to the variable a. We have 

(x 2 )1 {|x|<a/2} ≥ cosh √ 2x 1 {|x|<a/2} . So, for any x ∈ R, we have exp(x 2 ) ≥ cosh √ 2x 1 {|x|<a/2} + g(x; a)1 {|x|≥a/2} = f (x; a), f (x; a) ≥ cosh √ 2x .
Proposition 1 is proved.

Proof of Proposition 2. First of all, let us recall that exp( Moreover, if a < |x|, we have ∂ ∂a (x; a) > 0, so (x; a) is strictly increasing according to a, and if a > |x|, we have ∂ ∂a (x; a) < 0, so (x; a) is strictly decreasing according to a. Noticing that (x; 0) = (x; 2|x|) = 1 + x 2 + x 4 /2, for any |x| ≥ a/2, we have exp(x 2 ) = (x; |x|) ≥ (x; a) ≥ inf a∈[0,2|x|] (x; a) = inf [ (x; 0), (x; 2|x|)] = 1 + x 2 + x 4 2 .

x 2 ) ≥ 1 + x 2 + x 4 /2, x ∈ R. It follows from x 2 = (|x| -a) 2 + 2a|x| -a 2 that exp(x 2 ) = exp((|x| -a) 2 ) exp(2a|x| -a 2 ) ≥ 1 + (|x| -a) 2 + (|x| -a) 4 2 exp(2a|x| -a 2 ).
This proves that exp(x 2 )1 {|x|≥a/2} ≥ (x; a)1 {|x|≥a/2} ≥ 1 + x 2 + x 4 /2 1 {|x|≥a/2} . For |x| < a/2, we have the reverse of the second inequality: This completes the proof of Proposition 2.

1 + x 2 + x 4 2 = inf

  2 ) over [-b, b]: R(a, b) = b -b f (x; a) -exp(x 2 ) 2 dx and the integral squared error R * (b) measuring an error between cosh √ 2x and exp(x 2 ): R * (b) = b -b cosh √ 2x -exp(x 2 ) 2 dx, for several values of a and b. For the considered values, we see that R(a, b) ≤ R * (b).

  for several values of a and b. For all the considered values, we see that R(a, b) ≤ R * (b).

Table 1 :

 1 Numerical evaluations of R(a, b) and R * (b) for the first lower bound.

Figure 1 :

 1 Figure 1: Superimposed curves of exp(x 2 ) and cosh √ 2x for x ∈ [-b, b] with b = 1 for the first figure, and b = 3 for the second figure.

Figure 2 :

 2 Figure 2: Superimposed curves of exp(x 2 ) and f (x; 1) for x ∈ [-b, b] with b = 1 for the first figure, and b = 3 for the second figure.

Figure 3 :

 3 Figure 3: Superimposed curves of f (x; 1) and cosh √ 2x for x ∈ [-b, b] with b = 1 for the first figure, and b = 3 for the second figure.

Table 2 :

 2 Numerical evaluations of R(a, b) and R * (b) for the second lower bound.

Figure 4 :

 4 Figure 4: Superimposed curves of exp(x 2 ) and 1 + x 2 + x 4 /2 for x ∈ [-b, b] with b = 1 for the first figure, and b = 3 for the second figure.

Figure 5 :

 5 Figure 5: Superimposed curves of exp(x 2 ) and k(x; 1) for x ∈ [-b, b] with b = 1 for the first figure, and b = 3 for the second figure.

Figure 6 :

 6 Figure 6: Superimposed curves of k(x; 1) and 1 + x 2 + x 4 /2 for x ∈ [-b, b] with b = 1 for the first figure, and b = 3 for the second figure.

  a) = exp 2a|x| -a 2 h(|x| -a),where h(y) is the function defined by h(y) = 2y cosh √ 2y -√ 2 sinh √ 2y , y ∈ R. We have immediately exp 2a|x| -a 2 > 0. Let us investigate the sign of h(|x| -a). Since, for any y ∈ R, is increasing. Thanks to h(0) = 0, if a < |x|, we have h(|x| -a) > 0, implying that ∂ ∂a g(x; a) > 0, so g(x; a) is strictly increasing according to a. If a > |x|, we have h(|x| -a) < 0, implying that ∂ ∂a g(x; a) < 0, so g(x; a) is strictly decreasing according to a. Moreover, ∂ ∂a g(x; a) = 0 if and only if a = |x|. Noticing that g(x; 0) = g(x; 2|x|) = cosh √ 2x , for any |x| ≥ a/2, we haveexp(x 2 ) = g(x; |x|) ≥ g(x; a) ≥ inf a∈[0,2|x|] g(x; a) = inf [g(x; 0), g(x; 2|x|)] = cosh √ 2x .Thus exp(x 2 )1 {|x|≥a/2} ≥ g(x; a)1 {|x|≥a/2} ≥ cosh √ 2x 1 {|x|≥a/2} . For |x| < a/2, we have the reverse of the second inequality: a) ≥ g(x; a), but the well-known lower bound is still valid: exp

  Let us set (x; a) = 1 + (|x| -a) 2 + (|x| -a) 4 /2 exp(2a|x|-a 2 ). We now propose to study (x; a) according to the variable a. Algebraic manipulations and simplifications give a simple expression for ∂ ∂a (x; a):∂ ∂a (x; a) = exp 2a|x| -a 2 (|x| -a) 5 ,Since exp 2a|x| -a 2 > 0, we have ∂ ∂a (x; a) = 0 if and only if a = |x|.

  a) ≥ (x; a), but the well-known lower bound still holds: exp(x 2 )1 {|x|<a/2} ≥ 1 + x 2 + x 4 /2 1 {|x|<a/2} . Hence, for any x ∈ R, we haveexp(x 2 ) ≥ 1 + x 2 + x 4 2 1 {|x|<a/2} + (x; a)1 {|x|≥a/2} = k(x; a), k(x; a) ≥ 1 + x 2 + x 4 2 .
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