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LMEE, Université d’Evry, France 

Abstract 

This study describes a process to design a sensor network. This network could 
include: wireless mobile sensors deployed by first responders in hazardous 
material operations, stationary sensors used to protect an area against accidental, 
or intentional, contaminations or stationary air quality monitoring stations. The 
objective of the network is the estimation (localization – quantification) of 
releases sources. The design of such a network has an important issue in 
determining the optimal placement of sensors. This paper presents the first 
application of the renormalized data assimilation method to address this issue. It 
is associated with a classical optimization algorithm (simulate annealing) to 
solve the combinatory optimization problem consisting of finding the optimal 
configuration of ݉	sensors among a set of ݊ potential positions. Three scenarios, 
corresponding with three different cost functions, are proposed. The first one 
consists of optimizing the design of a network deployed in emergency situations. 
Experimental data from a wind tunnel experiment are used. The objective is to 
characterize the source to minimize error in measurement forecasts. The second 
one is to optimize the design of the same network but in a situation where the 
source can be anywhere in the domain. To that end, an entropic criterion is used. 
The last one consists of optimizing the design of a stationary network. The 
objective is to characterize the source with varying meteorological conditions 
(experimental meteorological data are used). 
Keywords: network optimization, source characterization, renormalized data 
assimilation. 
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1 Introduction 

In a defined geographical area, the concentrations in the air of hazardous gas can 
be measured by a network of sensors distributed over the area. In critical 
pollution situations, these near-live measurements can be transmitted to 
authorities, over high-speed data links, and used along with atmospheric 
dispersion models to provide the basics for decisions. Successful forecasts from 
dispersion models rely on an accurate and reliable estimation of the source 
strength and location. But an effective source determination from air 
concentration measurement strongly depends on the network design.  
     In recent years, several studies have examined the design of sensor networks 
for environmental process. They have dealt with: effective coverage [1], efficient 
monitoring [2], reconstitution of plume extent [3], detecting of species and 
threats presence [4]. Optimality criteria used in these studies were based either 
on the “Optimal Experimental Design” theory [5] or on the information theory 
[6]. Only few studies focus on optimal design for the pure purpose of source 
characterization. As an example Abida and Bocquet [7] presented a sequential 
reconstruction technique of dispersed plume by coupling inverse modelling to 
observation targeting strategy. This technique has been used to determine the 
optimal sensors’ positions that improve the source term. 
     The aim of this study is to present a process to design sensor networks used to 
localize and quantify the sources of continuous pollutant released at local scale. 
This process, combines the renormalization inversion approach with classical 
optimization techniques. The proposed approach is a general framework within 
which more or less complex configurations can be studied. In the next section, 
the optimisation process is defined: the networks’ objectives, the inversion 
technique and the optimization algorithm are presented. Then the process is 
evaluated versus experimental data for three scenarios (with mobile and 
stationary sensors at local scale). 

2 The optimization process 

2.1 Definition of the network objective 

In view of the variety and plurality of goals [8], the objective of a network of 
݅ ൌ 1…݉ sensors must be clearly identified. We mention, as examples the 
“detect to warn” objective (warn people before they receive toxic exposures) and 
the “detect to identify” objective (identify specific pollutants, to guide the 
medical response). In this study, the purpose is to design, optimally, a network of 
a predetermined number of detectors (a) to detect pollutant emissions (b) to 
localize and quantify their sources. This strategy could be named “detect 
to estimate”. In critical situations, the purpose could be to provide estimates of 
the source strength and location to assess the extent of the plume and/or to 
forecast the plume evolution (with air pollution models). The purpose of the 
network could also be to generate atmospheric emission inventories by inverting 
the concentrations measured by air quality monitoring stations. The 
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reconstruction of a pollutant source exploiting measured data after a monitoring 
network is an inverse problem. To address such a problem a specific method 
must be defined.  

2.2 Choice of an inverse method  

In this study, the deterministic renormalized data assimilation method, proposed 
by Issartel [9], is used. This approach exploits the linearity between the 
measured data and the source. In case of a continuous release, the source is 
described by a function ݏሺݔ,  representing the rate of release of the pollutant	ሻݕ
per unit area and time at the location of horizontal coordinates ݔ,  and altitude ݕ
ݖ ൌ 0 of the ground. The measurement		ߤ௜	sampled by the ݅௧௛ detectors ሺ݅ ൌ
1…݉ሻ	can be written: 

௜ߤ ൌ නݏሺݔ, ,ݔሻܽ௜ሺݕ ሻݕ
ఆ

 ݕ݀ݔ݀ (1) 

In which the adjoint function a௜	gives the sensitivity of the ݅௧௛ measurement with 
respect to emissions in the various regions of the ground	ߗ. This adjoint function 
is obtained by computing a dispersion model in a backward mode (i.e. by 
reversing the wind direction) and by considering the detector as a source with 
unit intensity [10]. In this study Gaussian dispersion model have been used. 
     The inverse problem consists of determining the source function ݏሺݔ,  ሻ fromݕ
a given vector of measurements ࣆ. This problem is ill-posed and has an infinite 
number of solutions. In the renormalization method, only the component of the 
source parallel to the adjoint functions is considered [11]. Moreover, the adjoint 
functions are weighted by a function ݂ in order to avoid singularities at sensors’ 
locations. Equation (1) becomes 

௜ߤ ൌ න ,ݔሺݏ ሻݕ
ܽ௜ሺݔ, ሻݕ
݂ሺݔ, ሻݕ

݂ሺݔ, ሻݕ
ఆ

 (2) ݕ݀ݔ݀

The estimated source function is given by  

,ݔ௙ሺݏ ሻݕ ൌ ݂ࡴࢀࣆ
െ1
,ݔሺࢇ ሻݕ

݂ሺݔ, ሻݕ
 (3) 

where ࢇሺݔ,  ௙ is the Gram matrixࡴ ሻ is the vector of the adjoint functions andݕ
given by  

௙݆݅ܪ ൌ න
ܽ௜ሺݔ, ሻݕ
݂ሺݔ, ሻݕ

௝ܽሺݔ, ሻݕ
݂ሺݔ, ሻݕ

݂ሺݔ, ሻݕ
ఆ

 (4) ݕ݀ݔ݀

     The choice of ݂	should be as neutral as possible in order to minimize the 
information unduly introduced in the interpretation of the data (minimum 
entropy criterion). It has been shown by Busch [12] that this criterion 
corresponds to minimizing det൫ࡴ௙൯. 	The optimal function, that verifies this 
criterion is named the visibility	߮ and verifies the three following conditions: 
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	ሺܽሻ	߮ሺݔ, ሻݕ ൐ 0		ሺܾሻන ߮ሺݔ, ݕ݀ݔሻ݀ݕ ൌ ݉ ሺܿሻ
,ݔሺࢀࢇ ሻݕ

߮ሺݔ, ሻఆݕ
ఝࡴ
ିଵ ,ݔሺࢇ ሻݕ

߮ሺݔ, ሻݕ
ൌ 1 (5) 

2.3 Problem statement 

In this study, the region of interest Ω is a typical built-up suburban area with flat 
topography. The sensors network could include (i) wireless mobile sensors 
deployed by first responders in hazardous materials operations, (ii) stationary 
(fixed) sensors used to protect the area against accidental, or intentional, 
contaminations, (iii) stationary air quality monitoring stations deployed in the 
area to measure concentrations in the air of specific gas. In the region of interest, 
݊	potential locations are defined  

ܲ ൌ ሼሺݔଵ, ,ଵሻݕ ሺݔଶ, …ଶሻݕ ሺݔ௡, ௡ሻሽݕ ⊂ Ω (6) 

      P can be either intuitively chosen or determined by a specific study. In case 
(ii), the potential locations should be in “danger zones” around the protected site. 
These zones can be identified from steady retroplumes scattered upwind from the 
site (figure 4(b)). Among these potential locations, we have to find the optimal 
configuration of ݉	sensors  

௢ܥ ൌ ൛ሺ1ݔ
,݋ 1ݕ

,ሻ݋ ሺ2ݔ
,݋ 2ݕ

…ሻ݋ ሺ݉ݔ
݋ , ݉ݕ

݋ ሻൟ ⊂ ܲ  (7) 

2.4 Optimization algorithm 

2.4.1 Definition of the cost function 
To obtain ܥ௢, a cost function must be defined in accordance with the purpose of 
the network. Following, three scenarios are proposed. Note that, in emergency 
situations (scenarios 1 and 2), one can often guess that the source has negligible 
extent relative to the spatial size of the domain of interest. In this case, it can be 
considered as a point source located at ሺݔ௦,   and emitting a tracer with	௦ሻݕ
intensity	ݍ௦ ൐ 0. Moreover the actual meteorological conditions are known (real 
time measurements).  
– Scenario 1: The source has been roughly localized. The network is rapidly 
deployed on the site. The objective is to obtain clear estimates of the source 
strength and location. The goal is to obtain reliable concentration forecasts from 
a dispersion model. The objective function to be minimized can be: 

ௌଵܬ ൌ
1
2
ሺߤ௢௕௦ െ ஦ࡴ௠௢ௗሻ்ߤ

ିଵሺߤ௢௕௦ െ ௠௢ௗሻߤ ൌ ௢௕௦ߤ‖ െ  ಞషభ (8)ࡴ௠௢ௗ‖ଶߤ

where ߤ௢௕௦ and		ߤ௠௢ௗ are respectively the observed and modeled values of the 
concentrations.  
– Scenario 2: The source has not been yet localized. The network is rapidly 
deployed on the site. The source can be anywhere in the domain. The optimal 
network must be efficient regardless of the source location. An entropic criterion, 
similar to the one proposed to define φ can be chosen. The objective function to 
be maximized can be defined as follows [12]: 
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ௌଶܬ ൌ
1
2
 ஦൯൯ࡴ൫ݐ൫݀݁݃݋݈

(9) 

– Scenario 3: The network is permanent and fixed (to protect a site). One have 
no a priori knowledge of the source term (shape, localization etc...). The 
objective is to design an optimal network, which must be efficient irrespective of 
the meteorological conditions. These meteorological conditions (wind speed and 
directions) are statistically known. The objective function to be maximized can 
be: 

ௌଷܬ ൌ	 ෍ߙ௜ ൜ሺ݈݃݋ሺߙ௜ሻ ൅
1
2
஦൯ࡴ൫ݐ൫݀݁݃݋݈ ൯ൠ

௞

௜ୀଵ

 (10) 

where ݇	is the number of wind direction considered and ߙ௜ is the wind frequency 
in direction ݅. 

2.4.2 Choice of the algorithm 
For all scenarios, the problem is essentially a combinatory optimization problem. 
As shown by Ko et al. [13] the problem of sensors network optimization is NP-
hard. To solve such problems the Simulated Annealing (SA) algorithm is 
efficient. This algorithm designed for statistical physics, incorporates a 
probabilistic technique to explore the search space and converges iteratively to 
the optimum solution. The probabilistic treatment consists of accepting a new 
configuration with the probability (Metropolis rule):  

where Δܬ	the cost difference between the previous and current configurations and 
ܶ is a fictive temperature parameter which must be lowered gradually as the 
algorithm evolves. The cost associated with the accepted configuration is named 
the “best cost”. The process begins by setting the initial and final fictive 
temperatures, ଴ܶ	and	 ௦ܶ, the temperature decrease scheme, the number of 
iterations for each temperature stage	ܮெ and an initial configuration. Here, ଴ܶ has 
been chosen as the pseudo temperature which correspond to the acceptance, with 
a probability of 0.8, of the mean cost difference Δܬതതത	 observed with a sample of 
200 random configurations: 

     The most simple and commonly used decay decrease scheme for ܶ, i.e. the 
exponential cooling schedule, has been used:  

where ߠ is the decay factor such that	0	 ൏ 	ߠ ൏ 1. The stopping criterion is 
reached when the temperature is equal to 		 ௦ܶ ൌ 	ݎ ൈ	 ଴ܶ where ݎ is a fixed ratio. 

݌ ൌ expሺ
Δܬ
ܶ
ሻ (11) 

଴ܶ ൌ
െΔܬതതത

logሺ0.8ሻ
 (12) 

௜ܶାଵ ൌ ߠ ௜ܶ (13) 
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3 Process evaluation 

3.1 Evaluation for scenario 1 

3.1.1 Experimental data  
The optimal design process for scenario 1 (source roughly localized, network 
rapidly deployed) is evaluated with data from wind tunnel experiments 
conducted at the ENFLO (Environmental Flow Research Centre), Surrey 
University, United Kingdom [14]. During these experiments a gas mixture of 
1.5% propane in air was released over a period of 15 min. The emission rate was 
7.5×10-7 m3s-1. Four Fast Flame Ionization Detectors (FFID) were placed 10 mm 
above ground level. Eleven different configurations of the four sensors have been 
tested, corresponding with 27 potential positions (Figure 1). 
 
 
 
 
 

 

 
 

Figure 1: Schematic representation of the experiment, with the true source 
position (red circle), with the potentials positions (black stars) and 
an example of a feasible configuration (B). 

3.1.2 Optimal network design 
The goal is to select the best set of 4 sensors, with 27 potential locations, by 
minimizing the cost function given by equation (8). This function describes the 
match degree between the concentration given by the model and the observed 
values measured by the network. The SA algorithm converges to the solutions 
shown figure 2(a) (blue stars). This result confirms the intuitive one obtained by 
Rudd et al. [14]: best estimated of the source location and strength are obtained 
with the “line configuration” closest to the source (the relative errors are 
respectively 3% and 4%). Figure 2(b) shows the evolution of the cost function 
and the temperature stages. At the first beginning of the process, the cost 
function oscillates in a fairly large range. After 3000 iterations the oscillations 
are stabilized and the algorithm reaches the optimal solution. 
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(a) (b) 

Figure 2: (a) Optimal configuration, (b) Evolution of the cost function (blue 
line) and of the temperature (red line). 

3.1.3 Optimal number of sensors 
The optimal number of sensors for this scenario has also been determined 
(theoretically the minimum number of sensors required to solve this inverse 
problem is 3). The optimal sets of 3, 4 up to 10 sensors have been first identified 
by following the previous procedure. Then, for each of these optimal networks, 
the relative location error (Euclidian distance of the retrieved source from the 
true source divided by the mean distance between the source and the sensors in 
the downwind direction) and the relative strength error (difference between the 
estimate and the true source intensity, divided by the estimate one) have been 
computed. The results are presented in figure 3. A significant decrease of the 
relative strength errors is observed when the number of sensors is changed from 
3 to 4. This error becomes stable for an optimal network of seven sensors and is 
observed to be minimal for 6. The relative location error is minimal for 7 
sensors. 
 

Figure 3: Relative error for (a) strength and (b) location VS number of 
sensors. 
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3.2 Evaluation for scenario 2  

3.2.1 Optimal network design 
The optimal design process for scenario 2 (source anywhere in the domain, 
network rapidly deployed) is evaluated by using the same framework than for the 
precious scenario. The goal is to select the best set of 4 sensors, with 27 potential 
locations. The optimal network must be efficient regardless of the source 
location. The cost function to be maximized is given by equation (9). It is based 
on an entropic criterion. The SA algorithm converges to the solutions shown 
figure 4(a) (blue stars). This result shows that the optimal configuration is far 
away from the ”domain entrance” with 2 sensors far from the central line of the 
domain. Geometrically, this configuration allows the monitoring of a large 
portion of the domain.  
 

  
     

                                 (a)                                                            (b) 

Figure 4: (a) Best four sensors configuration, (b) evolution of cost function. 

3.3 Evaluation for scenario 3 

3.3.1 Experimental data 
The optimal design process for scenario 3 (no a priori knowledge of the source, 
fixed permanent network) is evaluated with data from the “Pelvoux project” [15]. 
High frequency wind measurements (figure 5(a)) have been performed, one year 
 

 
 

Figure 5: (a) Wind speeds and frequencies for sixteen directions and 
(b) retroplume for the North–East direction. 
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long, on the top of a cuboid building located in a typical flat suburban area 
located in the Paris region (France).  

3.3.2 Optimal network design 
From the knowledge of the annual meteorological conditions, we seek to obtain 
the best design of a network of 10 sensors. The optimal network must be 
efficient regardless of the source location. The potential sensors location are 
chosen in the “danger zone” surrounding the protected site. This zone is obtained 
following the procedure described in section 2.3: steady retroplumes are 
scattered upwind from the site, in the 16 directions (figure 6(a)), over a square 
domain of dimensions 10 × 10 km (discretized as a grid of 100  100 cells). To 
that a Gaussian Plume Model is used with the mean wind speed observed in each 
direction (figure 5(b)). The lateral and vertical standard deviations are obtained 
from the Briggs Urban Model. The high ”danger zone” is bounded by taken into 
account (a) the critical concentration values for the people on the site and (b) the 
required warning time. By maximizing the cost function given by equation (10), 
the goal is to select the best set of 10 sensors, within a set of 265 potential 
locations. The number of 10-combinations of a set of 265 potential locations is 
around 1018. 

3.3.2.1 Determination of potential positions   Potential locations for the 
sensors are all the grid points contained in the danger zones defined with a 
critical concentration value and a warning time equal to 100 PPM and 10 min 
respectively (figure 6). 

 

 
 

Figure 6: (a) Contours of the danger zone and (b) potential sensors locations 
(black triangles) surrounding the Pelvoux building. 

3.3.2.2 Optimal detectors locations   First a parametric study have been 
performed to set the Simulated Annealing parameters. The most efficient ones 
are ଴ܶ=50, ௦ܶ= 10-6, ܮெ= 40 and 0.93=ߠ. The optimal configuration of 10 sensors 
selected by SA is shown Figure 7(a). Qualitatively, this design is in coherence 
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Air Pollution XXIV  19

 
 www.witpress.com, ISSN 1743-3541 (on-line) 
WIT Transactions on Ecology and The Environment, Vol 207, © 2016 WIT Press

×



with the data provided by the wind distribution: It devotes 3 sensors to monitor 
the East/North–East direction and 3 sensors to monitor the South/South–West 
direction. Figure 5(a) shows that these directions are the ones with the highest 
occurrences (9.6% and 10.3% respectively) and thus are the ones with the 
highest risk. 
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Figure 7: (a) Optimal 10-sensors configuration (blue stars) and (b) evolution 
of the cost function. 

4 Conclusions 

This study presents the first application of the renormalized data assimilation 
method to design optimal sensors networks. This method, associated with an 
efficient optimization algorithm (SA), has been used to design networks under 
different scenarios. In each case, the combinatory optimization problem consists 
of selecting the best set of ݉ locations among a set of ݊ potential locations. The 
first scenario was to optimize the design a 4-sensors network deployed in 
emergencies situations, with known meteorological data. The objective was to 
localize/quantify the source to minimize the error in the measurements forecasts. 
It has also been shown, that little value is added to the inversion by using more 
than 7 sensors. The second one was to optimize the design of the same 4-sensors 
network but in situations where the source has not been yet localized and can be 
anywhere in the domain. To that, an entropic criterion has been used and the 
optimal network provides the monitoring of the whole domain. The last one was 
to optimize the design of a permanent-fixed network of 10 detectors. The 
objective was to localize/quantify the source with varying meteorological 
conditions (statistically known). The optimal design, resulting from an entropic 
criterion, is in coherence with the meteo data. As a perspective of this study, the 
process should be extend to find the optimal number of sensors required for an 
effective characterization of the sources. Moreover, in this study, the adjoint 
source-receptor relationships have been computed by using an analytical 
Gaussian model. This simple model is not able to capture the effects of complex 
urban geometries on dispersion process. An interesting extension could be to use 
CFD models which have potential to provide precise and realistic simulations.  
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