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Introduction

A unimodular random d-manifold, or URM, is a random element (M, p) of the space M d of all pointed (complete, connected, without boundary) Riemannian d-manifolds, whose law ν is a 'unimodular' probability measure on M d . See Definition 1. Informally, unimodularity means that for a each fixed manifold M , the basepoints p ∈ M are distributed with respect to the Riemannian volume of M . As explained in detail in [START_REF] Abért | Unimodular measures on the space of all Riemannian manifolds[END_REF], see also §1.1 below, URMs simultaneously generalize finite volume manifolds, their regular covers, randomly chosen leaves in measured foliations, and invariant random subgroups of the isometry groups of Riemannian manifolds. In this note, we describe the topology of the space of ends of a URM.

An end of a Riemannian manifold M is called finite volume if it has a finite volume neighborhood; otherwise, it is infinite volume. The infinite volume ends of M form a closed subset E ∞ (M ) ⊂ E(M ) of the space of all ends. See §2.

Theorem 1.1. If (M, p) is a URM, then the following all hold almost surely:

(1) either |E ∞ (M )| = 0, 1, 2 or E ∞ (M ) is a Cantor set, (2) if M has a finite volume end, every infinite volume end of M is a limit of finite volume ends, (3) setting the dimension d = 2, if M is a surface with genus g(M ) > 0, every infinite volume end of M has infinite genus.

Note that the topology of a finite volume end of a Riemannian manifold can be completely arbitrary. However, if S is a surface with bounded curvature, it is well-known that every finite volume end of S is isolated and has a neighborhood homeomorphic to an open annulus (Lemma 2.2). Using the classification of infinite type surfaces, see §2, Theorem 1.1 implies the following: Corollary 1.2. Suppose (S, p) is an orientable unimodular random surface with bounded curvature. Then almost surely, either (1) S has finite volume, and therefore finite topological type, (2) S has infinite volume and is homeomorphic to one of the following 12 surfaces: the cylinder, the plane, one of the four surfaces in Figure 1, or a surface obtained by puncturing one of these six surfaces at a locally finite set of points that intersects all end neighborhoods. the infinite prison window, Jacob's ladder, the Cantor tree, the Cantor tree in bloom, Figure 1. The Cantor tree is the boundary of a regular neighborhood of a 3-valent tree properly embedded in R 3 . In the spring, genus blooms near each of its vertices. The infinite prison window is also homeomorphic to the Loch Ness monster of [START_REF] Ghys | Topologie des feuilles génériques[END_REF] and the one-ended Jacob's ladder.

Furthermore, all these topological types can be realized by such a URS.

Here, finite topological type means that S is homeomorphic to the interior of a compact surface. Lemma 2.2 implies that any finite volume surface with bounded curvature has finite topological type.

There is a natural extension of Corollary 1.2 for non-orientable surfaces: the conclusion is that S is almost surely either finite volume and finite type, one of the four surfaces of Figure 1 with sequences of non-orientable loops (and possibly punctures) exiting all its ends, or a cylinder or plane with both punctures and nonorientable loops exiting its ends. This can be proved with the same techniques as Corollary 1.2, but we will only consider orientable surfaces here for simplicity.

1.1. Motivation, definitions and applications. As mentioned above, let M d be the space of all complete, connected, pointed Riemannian d-manifolds (M, p), taken up to pointed isometry. We regard M d in the smooth topology, where two pointed manifolds are close if their metrics are C ∞ -close on large diffeomorphic neighborhoods of their base points. See [START_REF] Abért | Unimodular measures on the space of all Riemannian manifolds[END_REF] for details. Similarly, let M d 2 be the space of all doubly pointed Riemannian manifolds (M, p, q), taken up to doubly pointed isometry and considered in the appropriate smooth topology. f (M, q, p) dvol dν.

A unimodular random d-manifold (or surface, when d = 2) is a random pointed manifold (M, p) whose law is a unimodular probability measure on M d .

Equation 1 is usually called the mass transport principle, or MTP. It has its roots in foliations, but the setting in which we use it is motivated by graph theory, see Aldous-Lyons [START_REF] Aldous | Processes on unimodular random networks[END_REF] and [START_REF] Benjamini | Recurrence of distributional limits of finite planar graphs[END_REF][START_REF] Benjamini | Group-invariant percolation on graphs[END_REF][START_REF] Häggström | Infinite clusters in dependent automorphism invariant percolation on trees[END_REF]. As an example of a unimodular measure, suppose M is a finite volume Riemannian surface, and let µ M be the measure on M d obtained by pushing forward the Riemannian measure vol under the map

M -→ M d , p -→ (M, p).
Then both sides of the MTP are equal to the integral of f (M, p, q) over (p, q) ∈ M × M , so the measure µ M is unimodular, [START_REF] Abért | Unimodular measures on the space of all Riemannian manifolds[END_REF]. For a more general example, let X be a foliated space, a separable metrizable space X that is a union of 'leaves' that fit together locally as the horizontal factors in a product R d × Z for some transversal space Z. Suppose X is Riemannian, i.e. the leaves all have Riemannian metrics, and these metrics vary smoothly in the transverse direction, see [2, §3]. There is then a leaf map

X -→ M d , x -→ (L x , x),
where L x is the leaf of X through x. Let µ be a completely invariant probability measure on X: a measure obtained by integrating the Riemannian measures on the leaves of X against some invariant transverse measure, see [START_REF] Candel | Foliations. II[END_REF]. The push forward of µ under the leaf map is a unimodular measure on M d . See [START_REF] Abért | Unimodular measures on the space of all Riemannian manifolds[END_REF] for details.

Combining this discussion with Theorem 1.1, we get:

Theorem 1.3 (Generic leaves).
Whenever X is a Riemannian foliated space with a completely invariant probability measure µ, the leaf through µ-almost every point x ∈ X satisfies the conclusions ( 1) -( 3) of Theorem 1.1.

There is a large amount of literature available concerning generic leaves of Riemannian foliated spaces, see for instance the papers by Cantwell-Conlon [START_REF] Cantwell | Endsets of leaves[END_REF][START_REF] Cantwell | Endsets of exceptional leaves; a theorem of G. Duminy[END_REF][START_REF] Cantwell | Generic leaves[END_REF], Ghys [START_REF] Ghys | Topologie des feuilles génériques[END_REF] and Álvarez López-Candel [START_REF] Jesús | Generic coarse geometry of leaves[END_REF], and also [START_REF] Jesús | Turbulent relations[END_REF][START_REF] Bermúdez | Laminations hyperfinies et revêtements. Ergodic Theory Dynam[END_REF][START_REF] Hector | Ends of leaves of Lie foliations[END_REF][START_REF] Pawe L Walczak | Dynamics of foliations, groups and pseudogroups[END_REF] and [START_REF] Candel | Foliations. II[END_REF]Chapter 3]. At least when X is compact, parts (1) and (3) of Theorem 1.3 follow from Ghys's 1995 work [START_REF] Ghys | Topologie des feuilles génériques[END_REF] on foliations endowed with harmonic measures, which generalize completely invariant measures. Ghys also uses classification of surfaces to prove the harmonic foliated version 1 of Corollary 1.2.

We doubt that Theorem 1.3 is very surprising to those working in the field, but what is interesting to us is that its proof (even together with the translation from foliations to URMs in [START_REF] Abért | Unimodular measures on the space of all Riemannian manifolds[END_REF]) is extremely simple. In some sense, the MTP captures exactly the recurrence property necessary to prove these 'if it happens somewhere, it happens everywhere' statements efficiently.

Another way to construct unimodular measures on M d is through quotients by invariant random subgroups. If G is a locally compact group, let Sub G be the space of closed subgroups of G endowed with the Chabauty topology, see [1, Section 2]. Definition 2. An invariant random subgroup (IRS) of G is a random closed subgroup whose law is a conjugation invariant probability measure on Sub G .

A simple example is the IRS whose law is the unique G-invariant probability measure ν Γ on the conjugacy class of a lattice Γ < G; more involved examples are given in [1, Section 12]. IRSs were first studied by Abért-Glasner-Virág [START_REF] Abért | Kesten's theorem for invariant random subgroups[END_REF] for discrete G, see also Vershik [START_REF] Moiseevich | Totally nonfree actions and the infinite symmetric group[END_REF], and were introduced to Lie groups in [START_REF] Abért | On the growth of L 2 -invariants for sequences of lattices in Lie groups[END_REF].

In [2, §2.2], it is shown that when X is a complete Riemannian manifold and G < Isom(X) is a subgroup such that either 1 Again, Ghys assumes X is compact. This rules out cusps in the leaves, so that the only possible infinite type surfaces in Ghys's theorem are the cylinder, the plane and those of Figure 1.

(1) G is unimodular and act transitively on X, or (2) G acts freely and properly discontinuously, and G\X has finite volume, then any IRS Γ < G that acts freely and properly discontinuously gives a unimodular random manifold M = Γ\X, where the base point is the projection of a fixed point in X in case [START_REF] Abért | On the growth of L 2 -invariants for sequences of lattices in Lie groups[END_REF], and is the projection of a randomly chosen point from a fundamental domain for the action G X in case [START_REF] Abért | Unimodular measures on the space of all Riemannian manifolds[END_REF].

All the conclusions of Theorem 1.1 then hold for these IRS quotients. So in particular, setting G = PSL 2 R and X = H 2 , we get the following, which was our initial motivation for writing this paper and was explained in the survey [START_REF] Raimbault | Géométrie et topologie des variétés hyperboliques de grand volume[END_REF].

Corollary 1.4 (Topology of IRS quotients). Suppose that Γ is a discrete, torsion free IRS of PSL 2 R. Then almost surely, the quotient S = Γ\H 2 is either finite type or is homeomorphic to one of the 12 surfaces that appear in Theorem 1.2.

Actually, only 11 surfaces appear: IRSs of PSL 2 R are concentrated on subgroups with full limit set, by [START_REF] Abért | On the growth of L 2 -invariants for sequences of lattices in Lie groups[END_REF]Proposition 11.3], so cannot be cyclic.

Note that any normal subgroup H of a group G can be considered as an IRS. So, by (2) above, any regular cover Ŝ of a (say, closed) orientable surface S can be considered as a unimodular random surface, after fixing a Riemannian metric on S and randomly choosing a base point for Ŝ as above. In this special case, Theorem 1.1 (1) is the classical theorem of Hopf [START_REF] Hopf | Enden offener Räume und unendliche diskontinuierliche Gruppen[END_REF] on ends of groups, and the corresponding special case of Corollary 1.2 was noticed by Grigorchuk [START_REF] Grigorchuk | Topological and metric types of surfaces that regularly cover a closed surface[END_REF].
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2. Ends, bounded curvature and the proof of Corollary 1.2 Suppose X is a locally compact, separable space. The space of ends E(X) is the inverse limit of the system of complements of compact subsets of X. It is a compact, separable, totally disconnected topological space, see Freudenthal [START_REF] Freudenthal | Über die Enden topologischer Räume und Gruppen[END_REF].

More concretely, one can construct E(X) as follows. Choose a nested sequence of compact subsets K 1 ⊂ K 2 ⊂ . . . in X such that X = i int(K i ). A point in E(X) is determined by a sequence (C i ), where each C i is a component of X \ K i and C i+1 ⊂ C i . Moreover, for every i and complementary component C i we get a map E(C i ) → E(X), and the images of these maps are a basis for the topology.

If X is an orientable surface, one can take the K i to be subsurfaces (with boundary) and define the genus of an end (C i ) as the limit of the genus of the C i . This genus is either zero or infinity, and the set of ends with infinite genus is a closed set. In fact, an orientable surface is determined by its total genus, the genus of its ends, and the topology of its space of ends; this was originally proven by B. Kerékjártó, but a modern proof is given by I. Richards in [START_REF] Richards | On the classification of noncompact surfaces[END_REF]: Theorem 2.1 (Classification of noncompact surfaces). Suppose that S and T are orientable surfaces with the same genus and that there is a homeomorphism

φ : E(S) → E(T )
such that for all ξ ∈ E(S), the genera of ξ and φ(ξ) are the same. Then S and T are homeomorphic.

As mentioned in the introduction, the classification of surfaces combines with Theorem 1.1 to give a classification of topological types of unimodular random surfaces of bounded curvature. The key lemma is the following: Lemma 2.2 (Finite volume ends). Suppose that S is a complete Riemannian surface with bounded Gaussian curvatures. Then every finite volume end E ∈ E(S) has an end-neighborhood in S that is homeomorphic to an open annulus, and so E is an isolated point in E(S).

Proof. This is a well-known corollary of the 'Good Choppings' theorem of Cheeger-Gromov [START_REF] Cheeger | Chopping Riemannian manifolds[END_REF]. We may assume that S itself has finite volume, by arbitrarily replacing the complement of a finite volume end neighborhood with something compact.

By [14, Theorem 0.5], S is a nested union of compact subsurfaces S 1 , S 2 , . . ., such that the boundary curves ∂S i have length tending to zero and uniformly bounded geodesic curvatures κ. As S has finite volume, we have vol(S i+1 \ S i ) → 0, and since curvature is bounded,

χ(S i+1 \ S i ) = Si+1\Si K dvol - ∂Si κ ds → 0.
So for large i, we have that S i+1 \S i is a union of annuli, and the lemma follows.

To prove Corollary 1.2, then, note that if S is any bounded curvature surface satisfying the conclusion of Theorem 1.1, then either S has finite volume,

(1) S has genus zero and E(S) consists of either 1 or 2 genus zero ends, (2) S has infinite genus and E(S) consists of either 1 or 2 infinite genus ends, (3) E(S) is a Cantor set, all of genus 0 ends, (4) E(S) is a Cantor set, all of genus ∞ ends, or E(S) is as described in one of the four cases above, except with isolated genus 0 ends accumulating on to all the previously described ends. By classification of surfaces, this means that S is as described in Theorem 1.2.

To realize all the listed topological types, we recall from [START_REF] Abért | Unimodular measures on the space of all Riemannian manifolds[END_REF], see also §1.1, that any regular cover of a finite volume surface can be regarded as a URS. The listed surfaces are all clearly homeomorphic to such covers.

The proof of Theorem 1.1

Throughout this section, let ν be a unimodular measure on M d . For clarity, we will work directly with ν here rather than referencing a ν-random element of M d . We will prove the three assertions of Theorem 1.1 in turn. Each is a quick application of the mass transport principle (see Definition 1).

First, we want to show that for ν-a.e. (M, p), we have that

|E ∞ (M )| = 0, 1, 2 or E ∞ (M ) is a Cantor set. As E ∞ (M )
is compact, separable and totally disconnected, it suffices to show that either it is perfect or it has cardinality at most 2. 

d : if M has an infinite volume end that is isolated in E ∞ (M ), then |E ∞ (M )| ≤ 2.
Proof. Throughout the proof, we can assume that ν is concentrated on infinite volume manifolds. If a pointed manifold (M, p) has at least three infinite volume ends, one of which is isolated in E ∞ (M ), then there are integers r, V > 0 such that (1) M \ B M (p, r) has at least three infinite volume connected components, (2) some component of M \ B M (p, r) has a single infinite volume end, (3) the volume of B M (p, 2r) is at most V . So, it suffices to show that for each r, V , it is ν-almost never the case that (1) -( 3) hold. Define a function f : 3) are satisfied for (M, p) and if q lies in one of the components from (2). Claim 3.2. This function f is Borel.

B(p 1 , r) q (b) (a) (c)
M d 2 -→ {0, 1} by setting f (M, p, q) = 1 if conditions (1) -(
Proof. For each A > 0, the condition that M \ B M (p, r) has at least three components with volume bigger than A, one of which contains q, is an open condition on (M, p, q) ∈ M d . So requiring (1) and (2), and also that q lies in an infinite volume component of M \ B M (p, r), is an intersection of open conditions, and hence is Borel. Condition [START_REF] Abért | Kesten's theorem for invariant random subgroups[END_REF], that B M (p, 2r) ≤ V , is closed.

Similarly, for any R > r, the condition that the component of M \ B M (p, r) containing q contains at least two components of M \B M (p, R) with infinite volume is Borel. Therefore, the condition f (M, p, q) = 1 is the complement of a countable union of Borel conditions, and therefore is Borel.

Claim 3.3. If (M, q) ∈ M d , then vol{p ∈ M | f (M, p, q) = 1} ≤ V .
Proof. It suffices to show that B(p 1 , r) ∩ B(p 2 , r) = ∅ whenever f (M, p i , q) = 1; since then after fixing p 1 , we always have p 2 ∈ B(p 1 , 2r), so the volume estimate follows from condition (3). So, suppose the balls B(p 1 , r) and B(p 2 , r) are disjoint, and that q is contained in components C i of their complements. Then either (1) B(p 2 , r) separates q from p 1 , in which case there can only be two infinite volume components of M \ B(p 2 , r), as in Figure 2 (a), or (2) B(p 2 , r) does not separate q from p 1 , in which case either C 1 or C 2 has more than one infinite volume end, as in Figure 2 (b) and (c). In both cases, though, this is a contradiction.

The mass transport principle (MTP), see Definition 1, now states:

(M,q)∈M d p∈M f (M, p, q) dvol dν = (M,q)∈M d p∈M f (M, q, p) dvol dν. By Claim 3.3, the inner integral on the left side of the MTP is always at most V , so the left side of the MTP is at most V . On the other hand, if (M, q) ∈ M d satisfies (1) -( 3), the inner integral on the right side of the MTP is clearly infinite. So, conditions (1) -( 3) are ν-almost never satisfied, which proves Lemma 3.1.

We now verify the second part of Theorem 1.1.

Lemma 3.4. The following holds for ν-a.e. (M, p) ∈ M d : if M has a finite volume end then every infinite volume end of M is a limit of finite volume ends.

Proof. The proof is similar to that of Lemma 3.1, and we assume that the reader has understood its proof in what follows. Fixing r, v, V > 0, the function f : M d 2 -→ {0, 1} we input in the MTP is defined by setting f (M, p, q) = 1 when

(1) q belongs to an infinite-volume connected component of M \ B M (p, r) that has no finite volume ends, (2) some unbounded component of M \ B M (p, r) has volume at most v, (3) vol B M (p, r) > v, and vol B M (p, 2r) ≤ V . Using arguments similar to those in Claim 3.2, it is easy to show that f is Borel. It suffices, then, to show that for fixed (M, q), the volume of the set of all p ∈ M for which (1) -( 3) are satisfied is at most V , for then the lemma follows from the MTP in the same way that Lemma 3.1 did.

This also works the same way that it did in Claim 3.3. Bearing condition (3) in mind, we only have to show that if f (M, p 1 , q) = f (M, p 2 , q) = 1 then B M (p 1 , r) ∩ B M (p 2 , r) = ∅. Assume they are disjoint, and let C 1 , C 2 be the complementary components containing q. We now break into two cases.

( Proof. The proof is again similar to that of Lemma 3.1 and one should understand the proofs above before reading further. Fixing r, V > 0, set f (M, p, q) = 1 if (1) q is contained in a component of M \ B M (p, r) that is infinite volume and has genus zero, (2) B M (p, r) contains a subsurface with positive genus (3) vol B M (p, 2r) ≤ V . The proof that f is Borel is similar to that of Claim 3.2. It is easy to see that whenever f (M, p 1 , q) = f (M, p 2 , q) = 1 then B M (p 1 , r) ∩ B M (p 2 , r) = ∅, for if C 1 , C 2 are the complementary components containing q, then conditions (1) and (2) imply that neither B M (p 1 , r) ⊂ C 2 nor B M (p 2 , r) ⊂ C 1 . As before, this implies that the set of all p such that f (M, p, q) = 1 has volume at most V , and the proof concludes using the MTP in the same way as it does in Lemma 3.1.

Definition 1 .

 1 A Borel probability measure ν on M d is unimodular if and only if for every nonnegative Borel function f : M d 2 -→ R we have (1) (M,p)∈M d q∈M f (M, p, q) dvol dν = (M,p)∈M d q∈M

Lemma 3 . 1 .

 31 The following holds for ν-a.e. (M, p) ∈ M

Figure 2 .

 2 Figure 2. Here, (a), (b) and (c) indicate possible positions for B(p 2 , r), relative to B(p 1 , r).

1 . 3 . 5 .

 135 ) B M (p 2 , r) ⊂ C 1 . In this case, any unbounded, finite volume component K ⊂ M \ B M (p 2 , r) with must contain B M (p 1 , r), since otherwise it is contained in C 2 , which by (1) has no finite volume ends. Choosing K so that vol K ≤ v, this contradicts that vol B M (p 1 , r) > v. (2) B M (p 2 , r) ⊂ C 1 . Suppose that K ⊂ M \ B M (p 1 , r) is an unbounded component with volume at most v. By volume considerations, B M (p 2 , r) is not contained in K. Hence, K and C 1 are both contained in C 2 , which is a contradiction since C 2 has no finite volume ends. Finally, we set the dimension d = 2, and prove the third part of Theorem 1.Lemma The following holds for ν-a.e. (M, p) ∈ M 2 : if M has an infinite volume end of genus zero, then M has genus zero.