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Exponential growth of torsion in abelian coverings

JEAN RAIMBAULT

We show exponential growth of torsion numbers for links whose first nonzero
Alexander polynomial has positive logarithmic Mahler measure. This extends a
theorem of Silver and Williams to the case of a null first Alexander polynomial and
provides a partial solution for a conjecture of theirs.

57M10; 57M25, 57Q10

Introduction

Let M be a compact three–manifold; the homology groups Hi(M) can be written as
the direct sums Hi(M)tors ⊕ Hi(M)free of a finite abelian group with a finite-rank free
abelian group. The torsion summand is nontrivial only for i = 1: H0 and H3 are Z or
0, and the universal coefficients theorem for cohomology implies that H1(M, ∂M) is
free, and by Poincaré duality it follows that H2(M) is also torsion-free. On the other
hand, the torsion in H1 can be arbitrarily large (e.g., for lens spaces; see below for
hyperbolic examples) and it is believed that “most” 3-manifolds should have a rather
large torsion. For example E. Kowalski shows in [Kow08, Proposition 7.19] that the
first homology group of a “Dunfield-Thurston random 3-manifold” typically has a
large torsion subgroup. This paper is concerned with the growth rate of the order of
H1(MN)tors in a sequence of finite coverings MN of a manifold M . The least precise
question that can be asked is whether it is exponential in the degree or not, i.e. whether
the sequence log |H1(MN )tors|

[π1(M):π1(MN )] has a positive limit (or limit superior). This shall be partially
answered here in the case where the MN are abelian coverings converging to a free
abelian covering of M . The main motivation to study this question was to provide a
partial result towards a conjecture of Silver and Williams on the growth rate of torsion
numbers of abelian coverings of complements of links (see Conjecture 6.1 in [SW02a]
or (0.1) below).

Historically, the first context where the growth of torsion in the homology of coverings
has been studied is that of cyclic coverings of a knot complement. Let K be an
open knotted solid torus in the three-sphere and M = S3 − K ; then M is a compact
three-manifold with H1(M) = Z. Thus we can consider the infinite cyclic covering M̂
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1002 Jean Raimbault

of M and its finite quotients MN , which are the finite coverings of M corresponding
to the maps π1(M)→ Z→ Z/NZ. If ∆ is the Alexander polynomial of K (the first
Alexander polynomial of the Z[Z]-module H1(M̂)-see 1.2) then the so-called Fox
formula says that for all N such that H1(MN) has rank one we have:

|H1(MN)tors| =
∏
ζN=1

|∆(ζ)|.

It is known that ∆ is always nonzero. A diophantine inequality due to Gelfond then
allows to show that when N tends to infinity 1

N

∑
ζN=1 log |∆(ζ)| converges to the

logarithmic Mahler measure of ∆, that is:

m(∆) =

∫
T1

log |∆(z)|dz

(here T1 is the unit circle in C endowed with the Lebesgue probability measure); see
Lemma 2.6 below or Proposition 2.8 of [SW02b]. Let d be the product of all integers l
such that the lth cyclotomic polynomial divides ∆: it is known ([SW02b, Proposition
2.2] or [Gor72, Theorem 4.1(ii)]) that H1(MN ,Q) ∼= H1(MN+d,Q). We get that

lim
N→∞
d|N−1

(
1
N

log |H1(MN)tors|) = m(∆);

in particular, if m(∆) > 0 an infinite subsequence of the torsion numbers tends to
infinity with exponential growth. This result answered a question of Gordon (who
proved in [Gor72] that when m(∆) = 0 the torsion numbers are periodic in N ) and
has first been proved by González-Acuña and Short in [GAS91] and independently
by Robert Riley in [Ril90]. Since there exists hyperbolic knots whose Alexander
polynomial has positive Mahler measure (for example the figure-eight) this proves in
particular that there exists (noncompact with finite volume) hyperbolic manifolds with
arbitrarily large torsion in their H1 .

The similar setting for a collection of m > 1 linked solid tori L in the three-sphere is
to consider the coverings MH of M = S3 − L given by the maps π1(M)→ H1(M) ∼=
Zm → Zm/H where H is a finite-index subgroup. We want to study the torsion numbers
as the quantity:

α(H) = min{max
i
|vi|; 0 6= v = (v1, . . . , vm) ∈ H}

tends to infinity. Fox’s formula admits a generalization due to Mayberry and Murasugi
([MM82]; see also [Por04] for a proof using Reidemeister torsion). However, because
the Betti numbers may very well tend to infinity as α(H) does, it may not be applicable
to an infinite sequence of coverings. This forbids any naı̈ve application of the preceding
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Exponential growth of torsion in abelian coverings 1003

scheme of proof to this case. Moreover, two other obstructions arise when considering
links: the Alexander polynomial may be zero, and the generalisation of Gelfond’s
estimate needed to prove the convergence of Riemann sums to the Mahler measure is
not known to hold for polynomials in several variables.

By using methods from algebraic dynamical systems Daniel Silver and Susan Williams,
in [SW02a], were able to show that if the first Alexander polynomial ∆(L) of L is
nonzero then:

lim sup
α(H)→∞

log |H1(MH)tors|
[G : H]

= m(∆(L)) :=
∫
Tm

log |∆(L)|

and that this holds with a limit in the case of a knot (this is also proved in [SW02b]).
They also conjecture that, in the general case, the following limit should hold where ∆i

is the first nonzero polynomial in the sequence of Alexander polynomials of L:

(0.1) lim
α(H)→∞

log |H1(MH)tors|
[G : H]

= m(∆i(L)).

The Mahler measure of the Alexander polynomial of a knot can be interpreted as the
`2 -torsion of the infinite cyclic covering M̂ of its exterior M (see for example (1.5)
below). In [BV] Nicolas Bergeron and Akshay Venkatesh used this to give a new proof
of the theorem of Silver and Williams in the case of a knot: the main point is that the
nonnullity of the Alexander polynomial guarantees that M̂ is `2 -acyclic, and in this
case the approximation of `2 -torsion by Reidemeister torsions is known. They then
show that the growth of torsion numbers is the same as that of Reidemeister torsion and
obtain a generalization of the theorem for knots (see [BV, Theorem 7.3]). For links
with nonzero first Alexander polynomial their proof can be adapted; however the result
obtained is slightly weaker than Silver and Williams’.

The aim of this work is to generalise their results to the case of a null first Alexander
polynomial, i.e. that of a non-`2 -acyclic infinite covering. This yields the following
result, which follows from the more general Theorem 3.1.

Theorem 0.1 With notation as in (0.1) we have:

lim sup
α(H)→∞

log |H1(MH)tors|
[G : H]

≥ m(∆i(L)).

The same scheme of proof can be applied to homology with coefficients in a local
system. Let V be a free Z-module of finite rank and χ a representation of π1(M) to
GL(V). Then we can define homology twisted by χ for all coverings of M , also called
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1004 Jean Raimbault

homology with coefficients in the local system defined by χ. See [Hat02, Chapter 3.H]
for definitions. Let ∆i(L, χ) be the first nonzero Alexander polynomial of H1(M̂; V) (the
Alexander polynomials with nontrivial coefficients are usually called twisted Alexander
polynomials). We get (see also [SW09, Theorem 3.10]):

lim sup
α(H)→∞

log |H1(MH; V)tors|
[G : H]

≥ m(∆i(L, χ)).

In the case of a sequence of cyclic coverings converging to a possibly non-`2 -acyclic
infinite cyclic covering the proofs yield a more precise result, generalising Theorem
2.10 of [SW02b].

Theorem 0.2 If M is a compact n-manifold (with boundary) with a surjection
π1(M)→ Z let MN be the cyclic covering of M associated to π1(M)→ Z/NZ and M̂
the infinite cyclic covering. Then we have for all i = 1, . . . , n− 1:

lim
N→∞

log |Hi(MN)tors|
N

= m(∆i)

where ∆i is the first nonzero Alexander polynomial of Hi(M̂).

Thang Le has recently proved the equality lacking in Theorem 0.1 in the preprint [Le].
His proof uses methods slightly different from ours, namely a Bourbaki theorem on
“pseudo-zero modules” and the dynamical version of approximation (due to Lind; see
[Sch95, Theorem 21.1]). He also gives a different construction of the approximating
sequences contructed in Proposition 2.7 below.

Finally, note that throughout this paper we work with three-manifolds with boundary,
that is, we consider regular coverings of S3 − L instead of the correspondings branched
(over core circles of L) coverings of S3 , which are closed three-manifolds. However,
the growth of torsion homology in abelian coverings is the same for the two sequences
of manifolds, as shown in [Le, 4.4] (for knots the two homologies differ only by a
infinite cyclic direct factor).

Warnings and outline

Most of the techniques and results used here are fairly elementary with one notable
exception: I have found more practical and efficient to use the Fuglede-Kadison
determinant as defined in the book [Lüc02] of Wolfgang Lück, and all its properties
proved therein instead of trying to do everything solely in terms of Mahler measures (in
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Exponential growth of torsion in abelian coverings 1005

any case, it is the right tool to use to define `2 -torsion). However, the reader need not
be familiar with the Fuglede-Kadison determinant since all those of its properties that
we use are recalled. One warning about notations: I have chosen to denote by M the
multiplicative Mahler measure given by exp(m) since I already use the casual M to
denote modules and manifolds.

The paper is organised as follows: the first section reviews various classical and
`2 -invariants for Z[G]-modules. In particular, I give there the computation of the
`2 -torsion in terms of Mahler measures of Alexander polynomials. In the second section
I give a proof of the approximation of the Fuglede-Kadison determinant in the free
Abelian case since there was (to the best of my knowledge) no complete proof of this
result available in the literature. In the third section we prove Theorems 0.1 and 0.2. The
fourth section contains some further remarks about three-manifolds. The appendices
contain proofs that I judged too cumbersome for a first reading; I hope that their being
relegated there will make the main thrust of the paper more apparent and intelligible.
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1 Review of classical and `2-invariants

In this section G shall denote a free Abelian group of rank m; we identify the group
ring Z[G] with the Laurent polynomials Z[t±1

1 , . . . , t±1
m ] through the choice of a free

generating set t1, . . . , tm for G. In this section, we review various invariants for
G-modules and G-complexes.
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1006 Jean Raimbault

1.1 Rank, von Neumann dimension and `2 -Betti numbers

Recall that a finitely generated Hilbert N (G)-module is a Hilbert space with a unitary
action of G, which admits a G-equivariant surjection of `2(G)n for some integer n (we
shall not use explicitly the von Neumann algebra N (G) in the sequel, so we shall simply
call these finitely generated N (G)-modules). Given a submodule M ⊂ Z[G]n , the
closure of M⊗C is a N (G)-submodule of `2(G)n , in particular it is a finitely generated
N (G)-module. The von Neumann dimension of a N (G)-module is defined for any
discrete group ([Lüc02, Definition 1.10]): it assigns to a nonzero finitely generated
N (G)-module a positive real number and satisfies the same basic properties that the
dimension of a vector space does (see Theorem 1.12 in [Lüc02]). In general it is not
easy to compute. However, in our case the group ring Z[G] has a fraction field Q(G)
identified with the field of rational functions in m variables Q(t1, . . . , tm). We can then
define the rank of M as the dimension of the Q(G)-vector space M ⊗Q(G).

Lemma 1.1 Let M be a submodule of C[G]n ; then the von Neumann dimension of its
closure in `2(G)n is equal to its rank.

Proof This is easy to deduce from the two lemmas below: according to Lemma 1.2 we
can pick a free module L ⊂ M such that M/L is torsion; then the rank of M is equal to
that of L , and by Lemma 1.3 the completion of L is equal to that of M . Thus it suffices
to show the lemma for a free submodule L . Let r be the rank of L; then L is the image
of an injective morphism from C[G]r to C[G]n , which extends to an isomorphism of
N (G)-modules from `2(G)r to the closure of L , so that its von Neumann dimension is
r .

Lemma 1.2 Let M be a finitely generated Z[G]-module. If L ⊂ M is a maximal rank
free submodule (which always exists) then the quotient M/L is torsion.

Proof If a1, . . . , ar is a basis for the finite-dimensional vector space M ⊗ C(G) such
that ai ∈ M for all i, then the module L =

∑
i Z[G]ai is a maximal rank free submodule.

If f is the lowest common multiple of the denominators of the coordinates of a generating
family for M in the basis (a1, . . . , ar) we have M ⊂ fL; thus f annihilates M/L .

Lemma 1.3 The quotient of a C[G]-module M by a submodule M′ is torsion if and
only M′ is dense in M .

Algebraic & Geometric Topology XX (20XX)
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Proof If the quotient is torsion then for any x ∈ M the intersection of C[G]x with M′

is equal to Ix for some nonzero ideal I ; thus it suffices to prove that an ideal is dense in
C[G]. This is true: any ideal I contains a nonzero principal ideal (f ) (since we are in a
Noetherian UFD) and the operator of `2(G) induced by multiplication by f is injective,
so it has dense image by [Lüc02, Lemma 1.14].

If M′ is dense then its `2 completion equals that of M and so its rank, which equals its
Von Neumann dimension, is the same as that of M . Now it is clear that the quotient
of a module by a submodule of maximal rank is torsion (see the proof of the above
lemma).

In the same way, given a complex C∗, d∗ of free finitely generated Z[G]-modules we
can define its reduced `2 -homology: the Ci ⊗ C can be endowed with a G-invariant
prehilbertian inner product (where we pick a Z[G]-basis and its images under G to be
an orthonormal basis) and the diferentials di extend to bounded operators d(2)

i from
C(2)

i to C(2)
i−1 . The reduced ith `2 -homology module H(2)

i (C) of C∗ is then defined to

be the N (G)-module ker(d(2)
i )/Im(d(2)

i+1) and the ith `2 -Betti number b(2)
i (C) to be its

dimension. It follows from the Lemma above that we have b(2)
i (C) = rk(Hi(C)) (see

also [Lüc02, Lemma 1.34]). The complex C∗ is thus `2 -acyclic if and only all Hi(C)
are Z[G]-torsion modules.

1.2 Alexander polynomials and Fuglede-Kadison determinant

We now present the analogue for Z[G]-modules of the order of the torsion subgroup
for Z-modules, and the Fuglede-Kadison determinant which is linked to the Mahler
measure.

Alexander polynomials of Z[G]-modules

Let M be a finitely generated Z[G]-module and A ∈ Mm,n(Z[G]) a presentation matrix
for M , i.e. M = Z[G]m/AZ[G]n . We define the l-th elementary ideal of M as the
ideal of Z[G] generated by the (m− l)-minors of A. This definition makes sense since
a given presentation matrix for M can be made into any other one by a sequence of
elementary transformations that do not affect the elementary ideals (cf. [Tur01, Lemma
4.4]). Since Z[G] is a Noetherian UFD, we can take the greatest common divisor
of an ideal; we thus put ∆l(M) = gcd(Il), and call it the l-th Alexander polynomial
of the module M . The Laurent polynomial ∆l(M) is of course defined only up to

Algebraic & Geometric Topology XX (20XX)



1008 Jean Raimbault

multiplication by a unit of Z[G] and it is zero for all l ≤ rk(M). It depends only on the
Z[G]-torsion submodule of M ; in fact we have ([Tur01, Chapter 4]):

∆rk(M)+l(M) = ∆l(Mtors).

In particular, it follows from this equality that ∆r(M) = 1 for a torsion-free module
M of rank r . We remark that ∆0 is a multiplicative invariant, i.e. if we have a short
exact sequence 0→ M′ → M → M′′ → 0 of modules, then ∆0(M) = ∆0(M′)∆0(M′′).
To prove this we can suppose the modules are torsion (if not both sides of the equality
are zero). Thus M′,M′′ have presentation matrices A′,A′′ which are of maximal ranks
m′,m′′ ; then M has a presentation matrix of the form:

A =

(
A′ ∗
0 A′′

)
,

whose nonzero (m′ + m′′)-minors are products of m′ -minors of A′ with m′′ -minors of
A′′ .

Note that the Mahler measure of the Alexander polynomial ∆l(M) is a well-defined
positive real number since the units of Z[G] are the monomials ±tv for v ∈ Zm , whose
Mahler measure is equal to one.

Fuglede-Kadison determinant

The Fuglede-Kadison determinant is defined for any N (G)-module morphism, cf.
[Lüc02, Definition 3.11]; it is an infinite-dimensional analogue of the det ′ introduced
in the next subsection. Here we only need it for those morphisms that are induced from
morphisms between free Z[G]-modules. It is always nonzero when the modules are
finitely generated. If A is a (n × n′)-matrix with coefficients in Z[G] we abusively
denote by A the continuous operator from `2(G)n′ to `2(G)n that it induces, and by
detN (G)(A) its Fuglede-Kadison determinant. We list some of its properties below for
the reader’s convenience:

(i) If A is square with nonzero determinant, then we have:

(1.1) detN (G)(A) =M(det A).

(ii) ([Lüc02, Theorem 3.14(1)]) If U
f→ V

g→ W , f has dense image and g is
injective then

detN (G)(g ◦ f ) = detN (G)(f ) detN (G)(g).

Algebraic & Geometric Topology XX (20XX)
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(iii) ([Lüc02, Theorem 3.14(2)]) If f1 has dense image and f2 is injective then

detN (G)

(
f1 f3
0 f2

)
= detN (G)(f1) detN (G)(f2).

(iv) ([Lüc02, Lemma 3.15(3)]) We have:

detN (G)(f |Im(f )
ker(f )⊥) = detN (G)(f )

(v) ([Lüc02, Lemma 3.15(4)]) Let f ∗ be the adjoint of f , then:

detN (G)(f ∗) = detN (G)(f ) =
√

detN (G)(ff ∗).

We prove (i), which is left as an exercise in [Lüc02]. Let A = LPU be a Bruhat
decomposition of A over the field C(G), i.e. P is a permutation matrix, L is a
lower triangular matrix with diagonal coefficients all equal to 1 and U is an upper
triangular matrix with diagonal coefficients u1, . . . , un ∈ C(G). Let q be the lcm of the
denominators of the coefficients of L and U . We get detN (G)(q2A) = detN (G)(qLPqU);
The permutation matrix P is diagonalisable over C with modulus one eigenvalues, and
thus detN (G)(P) = 1. From properties (ii) and (iii) above follow first:

detN (G)(q2Id) detN (G)(A) = detN (G)(qL) detN (G)(P) detN (G)(qU),

and then:

detN (G)(A) = M(q)−2nM(qn)M(qnu1 . . . un)

= M(u1 . . . un) =M(det(A)).

1.3 Reidemeister torsion and `2 -torsion

Reidemeister torsion

Let us first recall some elementary definitions: if f is a map between two finite-
dimensional hermitian spaces V,W we define det ′(f ) = det(f ∗f |ker(f )⊥) (the product of
all nonzero eigenvalues of the self-adjoint map f ∗f ). A lattice of V is defined to be a
Z-submodule L of rank dim(V) spanning V over C; its volume is defined to be the
absolute value of the determinant of any map sending an orthonormal basis of V to a
Z-basis of L . If V ′ is a subspace of V such that V ′ ∩ L spans V ′ , then this is also true
for its orthogonal complement V ′′ and we have

(1.2) vol(L) = vol(L ∩ V ′) vol(L′′) = vol(L′) vol(L ∩ V ′′)

Algebraic & Geometric Topology XX (20XX)



1010 Jean Raimbault

where L′,L′′ are the orthogonal projections of L on V ′,V ′′ . From (1.2) it is easy to
deduce the “metric rank formula”

(1.3) vol(Im(f )) =
det ′(f ) vol(L)

vol(ker f )
.

Now let C∗, d∗ be a finite complex of free Z[G]-modules; we pick for each i a Z-basis
of Ci and endow C∗ ⊗ C with the inner product where all these bases are orthonormal.
The free part Hi(C)free of the homology is a lattice in Hi(C ⊗ C), which itself can
be seen as the orthogonal of Im(di+1) in ker(di)⊗ C. Then the Reidemeister torsion
defined by:

τ (C∗) =
∏

i

det ′(di)(−1)i

does not depend on the choice of the bases and is in fact given by the following equality:

(1.4) τ (C∗) =
∏

i

(
|Hi(C)tors|

vol(Hi(C)free)

(−1)i+1)
.

The proof of this equality is a simple exercise using (1.3).

`2 -torsion

Let C∗, d∗ be a finite complex of free Z[G]-modules. By analogy with the finite-
dimensional case we put:

τ (2)(C) =
∏

i

detN (G)(di)(−1)i
.

In our particular case this can be computed:

Proposition 1.4 In the situation above, suppose that C∗ is `2 -acyclic. Then we have:

(1.5) τ (2)(C) =
∏

i

M
(
∆0(Hi(C))

)

Proof This can be deduced without too much effort from the equality [Tur01, Theorem
4.7]. We do not do so here, and instead prove a result which is also valid for non
`2 -acyclic complexes (Lemma B.3), following the lines of the proof of (1.4). The
equality (1.5) follows immediately from this result.

Algebraic & Geometric Topology XX (20XX)
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Example: link complements

Let X be a CW-structure on the complement of a regular neighbourhood L of a link in
the three-sphere, and put G = H1(X). Let X̂ be the maximal abelian cover of X ; then
X̂ is a G-CW-complex. The only Hi(X̂) that can contain Z[G]-torsion is H1 , and it is
known that in the case of a knot K , H1 is in fact a torsion module. In this case we get
from Proposition 1.4 that

τ (2)(X̂) =M(∆(K))

where ∆(K) is the Alexander polynomial of K . For a link with nonzero first Alexander
polynomial ∆(L) we get in the same way that τ (2)(X̂) =M(∆(K)); if ∆(L) = 0 then
the `2 -torsion depends on the CW -structure; the precise dependance is computed in
Lemma B.3.

2 Approximation for the Fuglede-Kadison determinant

Let H ⊂ G be a subgroup and M a Z[G]-module. We denote by MH the Z[G/H]-
module obtained by restricting from G to G/H :

MH = Z[G/H]⊗Z[G] M.

There is a G/H -equivariant isomorphism from MH to the quotient module M/(H−1)M .
If f : Z[G]n → Z[G]n′ is a linear map of free modules, fH is the map from Z[G/H]n →
Z[G/H]n′ that it induces. The restricted determinant det′(fH) is always taken with
respect to the canonical metric on C[G/H], for which the elements of G/H are
an orthonormal basis. Let C∗, d∗ be a complex of Z[G]-modules; then CH is the
Z[G/H]-complex with C∗,H = (C∗)H and d∗,H = (d∗)H .

It is a well-known result of Lück (cf. [Lüc94] or chapter 13 of [Lüc02]) that for any
complex C∗ of free Z[G]-modules the normalised Betti numbers converge to the `2

Betti number, i.e.

(2.1) lim
α(H)→∞

dim(Hi(CH)⊗ C)
[G : H]

= b(2)
i (C∗).

This result is true for any residually finite group and any exhaustive sequence of finite
index normal subgroups. It is a natural question to ask whether a similar result holds for
torsions, i.e. does the sequence det ′(fH)

1
[G:H] converge to detN (G)(f ). We shall prove

the following result.
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Proposition 2.1 Let A ∈ Mn,n′(Z[G]) be any matrix. Then:

lim sup
α(H)→∞

log(det(AH))
[G : H]

= log(detN (G)(A)).

More precisely, the result we prove and use in the next section is:

Proposition 2.2 Let A1, . . . ,An be a finite collection of matrices with coefficients
in Z[G]; there exists a sequence GN of subgroups of finite index in G such that
α(GN) −→

N→∞
∞ and for all i we have:

(i)

lim
N→∞

log det ′(Ai,GN )
[G : GN]

= log detN (G)(Ai)

(ii)
| dim(ker(Ai,GN )⊗ C)− [G : GN] rk(ker(Ai))| = O(log[G : GN]).

Proposition 2.1 follows from this since arguing as in the proof of Lemma 2.6 below it is
easy to see that:

lim sup
α(H)→∞

(det ′(AH)
1

[G:H] ) ≤ detN (G)(A)

(this is a general fact, see Theorem 3.4(2) in [Lüc94]).

2.1 Growth of Betti numbers

We shall need precise estimates on the speed of convergence in (2.1). For a subgroup
H ⊂ Zm we set:

H⊥ = {(ζ1, . . . , ζm) ∈ Tm, ∀(v1, . . . , vm) ∈ H, ζv1
1 . . . ζvm

m = 1},

The result we want is the following (we count the multiplicities when computing the
number of zeroes of some polynomial):

Proposition 2.3 We remind the reader that G = Zm and that we identify the group
ring Z[G] with the ring of Laurent polynomials Z[t±1

1 , . . . ; t±1
m ]. Let M be a finitely

generated Z[G]-module (resp. C∗ a finite complex of finitely generated free Z[G]-
modules). Then there exists a polynomial P ∈ Z[t1, . . . , tm] such that for all subgroups
H ⊂ G we have:

| dim(MH ⊗ C)− [G : H] rk(M)| ≤ |{ζ ∈ H⊥, P(ζ) = 0}|
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(resp.
|bi(CH)− [G : H]b(2)

i (C∗)| ≤ |{ζ ∈ H⊥, P(ζ) = 0}|).

Proof Let M be a finitely generated Z[G]-module; let i : L ↪→ M be an embedding of
a free module of maximal rank in M and T the torsion module M/L . We see that:

| dim(MH ⊗ C)− [G : H] rk(M)| ≤ dim(TH ⊗ C) + dim(ker(iH)⊗ C).

We need to bound the right-hand side; this is done in the two next lemmas.

Lemma 2.4 If T is a finitely generated torsion Z[G]-module there is a polynomial P
such that we have:

dim(TH ⊗ C) ≤ |{ζ ∈ H⊥, P(ζ) = 0}|.

Proof Let a1, . . . , as be generators for T , since they are torsion elements there exists
a nonzero P ∈ Z[t1, . . . , tm] such that Pai = 0 for all i. Then there is a surjection from
(C[G]/(P))k to T , and we have:

dim(TH ⊗ C) ≤ k dim(C[G]/(P)⊗ C[G/H]).

The dimension on the right is equal to |H⊥ ∩ {P = 0}|: we have a surjection
C[G/H]→ (C[G]/(P))H , and in the decomposition C[G/H] =

∑
ζ∈H⊥ Cζ (where Cζ

is a complex line on which G/H acts by the character associated with ζ ) the kernel of
this surjection is

⊕
ζ,P(ζ)6=0 Cζ . Thus dim(TH) is bounded by the number of zeroes of

Pk (recall that we count multiplicities).

Lemma 2.5 Let i : M1 → M2 be an injective map of Z[G]-modules. Then there is a
polynomial Q such that for all H we have:

dim(ker(iH)⊗ C) ≤ |{ζ ∈ H⊥, Q(ζ) = 0}|.

Proof We first consider the case where M ⊂ Z[G]n is a submodule and i its embedding.
We begin by proving there is a Q1 such that:

(2.2) dim(MH ⊗ C) ≤ [G : H] rk(M) + |{ζ ∈ H⊥, Q1(ζ) = 0}|.

To prove this take a torsion module T = M/L where L ⊂ M is a free maximal rank
submodule: the image of LH ⊗ C in MH ⊗ C has dimension less than dim(LH ⊗ C) =
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rk(M)[G : H] and codimension equal to dim(TH ⊗ C) so that we can take for Q1 the
polynomial associated to T by Lemma 2.4.

Now let M′ ⊂ Z[G]n be a submodule such that M ∩M′ = 0 and rk(M) + rk(M′) = n
and i′ its embedding. The quotient T ′ := Z[G]n/M ⊕M′ is a torsion module and so
from Lemma 2.4 we get a polynomial Q2 such that

(2.3) dim(T ′H ⊗ C) ≤ |{ζ ∈ H⊥, Q2(ζ) = 0}|.

On the other hand we have an exact sequence:

0→ M ⊕M′ → Z[G]n → T ′ → 0

which becomes after tensorization with Z[G/H]:

MH ⊕M′H → Z[G/H]n → T ′H → 0.

We get:

dim(ker(iH)⊗C)+dim(ker(i′H)⊗C) = dim(T ′H⊗C)+dim(MH⊕M′H⊗C)−n[G : H].

We can apply the reasoning leading to (2.2) to M′ and this yields a polynomial Q3 such
that dim(M′H ⊗ C)− [G : H] rk(M′) is less than the number of zeroes of Q3 on H⊥ ;
letting Q = Q1Q2Q3 , (2.2) and (2.3) above and this imply that the right hand side is
bounded above by the number of zeroes of Q in H⊥ .

In the general case we have an embedding of M1/(M1)tors in a free module Z[G]n : let i′

be the embedding of M2/(M2)tors in Z[G]n this yields. We get Lemma 2.5 by applying
the preceding discussion to i′ and Lemma 2.4 to (M2)tors .

Let C∗ be a finite complex of free Z[G]-modules; we use standard arguments to deduce
the second point of the proposition from the first one. Let ni = rkZ[G](Ci); then we
have rkZ(Ci,H) = [G : H]ni , and it follows that:

bi(CH) = rkZ(ker(di,H))− rkZ(Im(di+1,H))

= rkZ(ker(di,H)) + ni+1[G : H]− rkZ(ker(di+1,H)).

On the other hand,

b(2)
i (C) = rkZ[G](ker(di)) + ni+1 − rkZ[G](ker(di+1))

so that we need only prove that for a matrix A ∈ Mn,n′(Z[G]) the difference

rkZ(ker(AH))− [G : H] rkZ[G](ker(A))

is bounded by the number of zeroes in H⊥ of some polynomial. We know from the
case of a module and Lemma 2.5 that

rkZ Im(AH) = [G : H] rkZ[G](Im A) + e
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where e is the number of zeroes in H⊥ of some polynomial, and since

rkZ Im(AH) + rkZ ker(AH) = n′[G : H] = (rkZ[G] Im(A) + rkZ[G] ker(A))[G : H]

we get the result we want.

There is a majoration of the number of zeroes of a polynomial on the m-torus: given an
affine subvariety X ⊂ Cm we denote by X[H] the finite set H⊥ ∩ X ; then there exists a
constant C depending only on X such that:

(2.4) |X[H]| ≤ C
[G : H]
α(H)

.

We can retrieve from Proposition 2.3 and this inequality a generalisation to the non
`2 -acyclic case of Theorem 2.1 in [CW03] (where a proof of the above bound can be
found).

Corollary Let M be a finitely generated Z[G]-module (resp. C∗ a finite complex of
finitely generated free Z[G]-modules). Then there exists a constant C > 0 such that:

| dim(MH ⊗Q)− [G : H] rk(M)| ≤ C
[G : H]
α(H)

(resp.

|bi(CH)− [G : H]b(2)
i (C∗)| ≤ C

[G : H]
α(H)

).

2.2 Convergence of Riemann sums

We shall soon give a method to construct from a finite number of polynomials in m
variables a sequence of subgroups GN of G for which the Riemann sums over the
subsets G⊥N converge to the Mahler measure, and the polynomials have “few” zeroes
in G⊥N . We will also need a lower bound on the nonzero values of the polynomials at
points in G⊥N . In the case where G is cyclic these are two well-known facts which we
recall below.

Lemma 2.6 Let P ∈ Z[t] be a nonzero polynomial;

(i) limN→∞
1
N

∑
ζN=1

P(ζ)6=0
log |P(ζ)| = m(P).

(ii) There is a CP > 0 such that for all N th roots of unity ζ such that P(ζ) 6= 0 we
have: log |P(ζ)| ≥ −CP log N .
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Proof From the additivity of the logarithmic Mahler measure and the decomposition
of P into irreducible factors over C we see that the only case we need consider is that
of a degree one polynomial of the form t − a for some algebraic number a; if the
absolute value of a is not 1 then the result is trivial. If |a| = 1 then it is easy to see
that the superior limit of the Riemann sums is less than 0 (just cut off log |z− a| near
a to replace it with a continuous function with arbitrarily small mean value over T1 ).
Jensen’s formula implies that the Mahler mesure of z− a is 0, so we have to prove that:

lim inf
N→∞

1
N

∑
ζN=1
ζ 6=a

log |ζ − a| ≥ 0.

From a diophantine estimate due to Baker it is deduced in Lemma 1.11 of [EW99] that
there exists a constant Ca > 0 such that:

(2.5)
∏
ζN=1
ζ 6=a

|ζ − a| ≥ 1
NCa

.

we get for all N
1
N

∑
ζN=1
ζ 6=a

log |ζ − a| ≥ −Ca log N
N

and since the right-hand side converges to zero we get the desired result.

Statement (ii) is a “local” version of (2.5) and is easily deduced from it.

If m > 1 the same argument as above shows that:

lim sup
α(H)→∞

∑
ζ∈H⊥
P(ζ)6=0

log |P(ζ)| ≤ m(P).

However, we cannot give good lower bounds for the values of P at roots of unity and
thus cannot prove the convergence. As a palliative, we use in the next subsection an
approximation result due to Boyd and Lawton to be able to apply the above results to
multivariate polynomials.

2.3 Construction of the sequence GN

Proposition 2.7 Let P be a finite collection of polynomials in Z[t1, . . . , tm]. There
exists a sequence of finite index subgroups GN ⊂ G = Zm such that α(GN) −→

N→∞
∞
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and for any polynomial P ∈ P we have:
1

[G : GN]

∑
ζ∈G⊥N
P(ζ)6=0

log |P(ζ)| −→
N→∞

m(P);(i)

|{ζ ∈ G⊥N , P(ζ) = 0}| ≤ log[G : GN];(ii)

∀ζ ∈ G⊥N , log |P(ζ)| ≥ −(log[G : GN])2.(iii)

Proof It is clear from the nature of the arguments below that we need only consider
the case of a single polynomial P ∈ Z[t1, . . . , tm].

For any vector v = (v1, . . . , vm) ∈ Zm we denote by v∗ the subgroup given by
{(u1, . . . , um) ∈ Zm,

∑
i uivi = 0}. We put q(v) = α(v∗) and for a polynomial

P ∈ Z[t1, . . . , tm], Pv(X) = P(Xv1 , . . . ,Xvm). The main result of [Law83] is that:

m(Pv) −→
q(v)→∞

m(P).

For a prime p we denote by p = p1 < p2 < . . . < pm the m primes following p; we
put ri =

∏
j 6=i pj for i = 1, . . . ,m and r = (r1; . . . , rm). It is easy to see that q(r) ≥ p:

if
∑

i siri = 0 for some nonzero s ∈ Zm and if sj 6= 0 we get −tsjrj = pj
∑

i 6=j
ri
pj

sj .
Since the prime pj does not divide rj we must have pj|sj and thus q(r) ≥ |sj| ≥ pj ≥ p.
Thus m(Pr) −→

p→∞
m(P). For an integer M ≥ 0 we define a subgroup Gp,M of G by:

Gp,M = {v ∈ G,
∑

i

viri ≡ 0 (mod M)};

this is equal to r∗ ⊕ ZMv for any v generating a supplement to r∗ , and has index M in
G. It is not hard to see that for M > mp1 . . . pm we have α(Gp,m) ≥ p: let v ∈ Gp,M ,
v 6∈ r∗ . Then |

∑
i rivi| ≥ M and so we must have |vj| > M/(m

∏
i 6=j pi) for some j.

This is bigger than p for M as above and the claim follows. Now given an ε > 0,
choose p big enough so that |m(Pr)− m(P)| < ε; by Lemma 2.6 there exists an integer
M0 such that for all M ≥ M0 :∣∣∣∣∣∣m(Pr)−

1
M

∑
ζM=1,Pr(ζ)6=0

log |Pr(ζ)|

∣∣∣∣∣∣ < ε.

We see that G⊥p,M = {(ζr1 , . . . , ζrm), ζM = 1} and thus we get:∣∣∣∣∣∣∣m(P)− 1
[G : Gp,M]

∑
ζ∈G⊥p,M ,P(ζ)6=0

log |P(ζ)|

∣∣∣∣∣∣∣ < 2ε
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for any M ≥ M0 .

Now the number of zeroes of P in G⊥p,M is less than the degree of Pr , which is itself
less than:

max
i
|ri| × deg(P) ≤ deg(P)p1 . . . pm ≤ deg(P)2

m(m+1)
2 pm

since we have pi ≤ 2pi−1 by a well-known result of Chebyshev. Thus there exists an
integer M1 such that the number of zeroes of P in Gp,M is less than log(M) for all
M ≥ M1 .

From Lemma 2.6 we get that for all p there is a constant Cp such that the nonzero
values of P at the points ζ ∈ Gp,M satisfy:

log |P(ζ)| ≥ −Cp log(M).

It follows that for M ≥ M2 = exp(Cp) we have log |P(ζ)| ≥ − log(M)2 .

We can construct a sequence GN = GpN ,MN where pN is the N th prime number and MN

a well-chosen positive integer: we take MN > mpN . . . pN+m−1 so that α(GpN ,MN ) ≥ pN ,
MN ≥ M0,M1,M2 (M0 as above for, say, ε = 1/p) so that (i), (ii) and (iii) hold.

2.4 Proof of Proposition 2.2

We shall need the following elementary lemma:

Lemma 2.8 Let f be a linear map between Hermitian spaces V,W and V ′ a subspace
in V with codimension d ; suppose that any singular value λ of f satisfies c ≤ λ ≤ C .
Putting f ′ = f|V′ , we have:

d log(c) ≤ log(det ′(f ))− log(det ′(f ′)) ≤ d log(C).

Proof If λ1 ≥ . . . ≥ λdim V are the eigenvalues of an invertible positive self-adjoint
endomorphism g of V , we have that:

λi = max
F≤V,dim(F)=i

min
x∈F

||gx||
||x||

;

so if g = f ∗f |ker(f )⊥ and λ′1, . . . , λ
′
dim V−d are its eigenvalues in restriction to V ′ (the

singular values of f ′ ), we have λi ≥ λ′i ≥ λi+d for all i ≥ 0 and it follows that:

log(det ′(f ))− log(det ′(f ′)) ≤
d∑

i=1

log(λi) ≤ d log(C)
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and that

log(det ′(f ))− log(det ′(f ′)) ≥
dim V∑

i=dim V−d

log(λi) ≥ d log(c).

Proof of Proposition 2.2 As in the proof of proposition 2.7 it is clear that we can
restrict ourselves to the case of a single matrix. The second thing to be acknowledged
is that it suffices to prove the result for self-adjoint matrices since for any matrix
A ∈ Mn,m(C[G]) we have detN (G)(A) =

√
detN (G)(A∗A). Thus we suppose that

A ∈ Mn(Z[G]) is a self-adjoint matrix.

We want to show that:

lim
N→∞

log det′(AGN )
[G : GN]

= detN (G)(A)

for a sequence GN obtained from Proposition 2.7. The strategy is to use Lemma 2.8
above to reduce to the case when A has a nonzero determinant. The proposition is
then a straightforward consequence of (i) of Proposition 2.7 applied to det(A). Let
L be a free maximal rank Z[G]-submodule in Im(A), L′ its image by A and h, g be
isomorphisms of Z[G]r (r = rk(A)) with L, L′ so that the following diagram commute:

Z[G]r A′−−−−→ Z[G]r

h

y g
y

Z[G]n A−−−−→ Z[G]n

with A′ a square matrix with nonzero determinant. Since L⊗ C is dense in ker(A)⊥

Lemma 3.15(3) in [Lüc02] yields the equality:

detN (G)(A) = detN (G)(g) detN (G)(A′) detN (G)(h−1).

We write the characteristic polynomial det(t − A) as
∑n

i=i0 Pi(t1, . . . , tm)ti where i0 is
the rank of ker(A) and thus all Pi are nonzero. Let P be the collection of all Pi together
with the nonzero coefficients of the characteristic polynomials of A′, hh∗ and gg∗ and
all the polynomials appearing in Lemma 2.5 for h and g and the polynomials from
Lemma 2.4 for Im(A)/ Im(h) and Im(A)/ Im(g). Let GN be the sequence associated
to P by Proposition 2.7. Since det′ A(ζ) = Pi(ζ) for i = dim ker(A(ζ)) ≥ i0 (and
similarly for the other matrices) we get by (iii) of Proposition 2.7 that for any singular
value λ of AGN ,A

′
GN
, hGN or gGN we have:

(2.6) logλ ≥ − log[G : GN]2.
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From Lemma 2.5 and (ii) of Proposition 2.7 we see that the subspace ker(hGN )+ker(gGN )
of C[G/GN]r has dimension ≤ log[G : GN]. In the same way Lemma 2.4 yields that
Im(hGN ) and Im(gGN ) = AH Im hGN have codimension ≤ log[G : GN] in ker(AH)⊥ .
We define subspaces V1 ⊂ C[G/GN]r and V2 ⊂ C[G/GN]n by:

V1 = ker(hGN )⊥ ∩ ker(A′GN
) ∩ A

′−1
GN

(ker(gGN )⊥)

V2 = hGN (V1)

so that we have a commutative diagram:

V1
A′GN−−−−→ A′GN

(V1)

hGN

y gGN

y
V2

AGN−−−−→ AGN (V2)

such that all arrows are isomorphisms. We also get for i = 1, 2:

dim Vi − r[G : GN] = O(log[G : GN]).

In the sequel we use the abbreviation uH ∼ vH to mean that log(uH) = log(vH) + o([G :
H]). From Lemma 2.8 and (2.6) above we see that for any linear map f : Z[G]n → Z[G]n′

and any subspaces FN ⊂ C[G/GN]n such that dim(FN) = O([G : GN]b) for some
b < 1 we have det′(fGN ) ∼ det′(fGN |FN ). Applying this to f = A′ , with Lemma 2.8
applied to V = W = C[G/GN]r and V ′ = V1 we get:

det ′(A′GN
) ∼ det ′(A′GN

|V1).

In the same way we obtain:

det ′(A′GN
|V1) = det ′((gGN |

AGN V2

A′GN
V1

)−1AGN hGN |V1)

= det(gGN |
AGN V2

A′GN
V1

)−1 det(AGN |V2) det(hGN |V1)

∼ det ′(gGN )−1 det ′(AGN ) det ′(hGN ),

where the last line line follows from Lemma 2.8 applied to f = gGN , V = C[G/GN]r

and W = Im(A)GN , and V ′ = A′GN
V1 ; then to f = AGN , V = W = Im(A)GN , V ′ = V2

and finally to f = hGN , V = C[G/GN]r , W = Im(A)GN and V ′ = V1 . We conclude
that:

log(det ′(AGN ))
[G : GN]

=
log(det ′(hGN )−1 det ′(A′GN

) det ′(gGN ))
[G : GN]

+ o(1)

and we see that to prove the proposition it suffices to consider the case with nonzero
determinant, since we can then apply it to the matrices A′ , hh∗ and gg∗ .
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We suppose now that P = det(A) 6= 0; this case is proved as in [Lüc02, Lemma 13.53]:
we decompose C[G/GN]n as the sum

⊕
ζ∈G⊥N

Vn
ζ where G/GN acts on the line Vζ

through the character induced by ζ so that AGN is represented on Vn
ζ by the matrix A(ζ).

The number of ζ ∈ G⊥N with det(A)(ζ) = 0 is ≤ log[G : GN] and since the singular
values of the AGN are bounded above by a constant an below by (2.6) we get:

1
[G : GN]

log det ′(AGN ) =
1

[G : GN]

∑
ζ∈G⊥N

log det ′A(ζ)

∼ 1
[G : GN]

∑
ζ∈G⊥N , det(A)(ζ)6=0

log det(A(ζ))

Applying (i) of Proposition 2.7 to the right hand side we see that it converges to
log detN (G)(A) as N →∞.

Remark

There is a general condition under which it is known that the approximation of the
Fuglede-Kadison determinant is true (see [Lüc94, Theorem 3.4]). We could have
checked this condition directly for the matrices AGN using (iii) of Proposition 2.7, but
we have chosen to give a direct proof instead.

2.5 Growth of volumes for `2 -acyclic complexes

We treat here the growth of the parasite term
∏

i vol(Hi)(−1)i
in (1.4). The following

proposition is an adaptation of the main result of [BV, section 7].

Proposition 2.9 Let C∗ be a finite complex of finitely generated Z[G]-modules.
Suppose that for some i we have H(2)

i (C) = 0. Then for a sequence GN obtained from
Proposition 2.7 we have:

| log vol(Hi(CGN )free)| = O(log[G : GN]2).

Proof For convenience we pick up the notation in [BV] and denote Ri(A) =

vol(Hi(A)free) for a finite complex of free finitely generated Z-modules A∗ . The
two next lemmas are proved there:
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Lemma 2.10 Let a finite group K act by isometries on a finite complex A∗ of free
Z-modules endowed with metrics. Let M be bigger than all singular values of the
differentials of A∗ an suppose that the Ai are generated by vectors with length less
than ν . Suppose that all irreducible characters of K appearing in the K -vector space
Hi(A)⊗ C are contained in a subset X and denote by D the maximal dimension of the
X -isotypical component of the Aj . Then the following inequality holds:

Ri(A) ≥ (Mν|K|5)−D.

Lemma 2.11 Let A be as above and B∗ be the dual complex Bn−j = hom(Aj,Z) with
the dual metric. We have:

Rj(A∗)Rn−j(B∗) = 1.

Now we know that the differentials of the complexes (C∗)H have their singular values
bounded by a constant M depending only on C∗ and that the (Cj)H are generated by
vectors of length one. Let X be the set of irreducible characters of G/H appearing in
Hi(CH)⊗C and D the maximal dimension of the X -isotypical component of the (Cj)H .
Lemma 2.10 yields:

Ri(CH) ≥ (M[G : H]5)−D.

Now Lemma 2.11 implies that:

(2.7) (M[G : H]5)D ≥ Ri(CH) ≥ (M[G : H]5)−D;

Since all Cj are contained in Z[G]n for some n we see that for any set of characters
Y the dimension of the Y -isotypical component of (Cj)H ⊗ C is less than n|Y|. From
Proposition 2.3 and (ii) of Proposition 2.7 we get that D in (2.7) is an O(log[G : GN])
and thus that:

| log Ri(CGN )| = O(log[G : GN]2).

Corollary Let C∗ be a finite `2 -acyclic complex of free finitely generated Z[G]-
modules. There exists a sequence GN so that we have:

lim
N→∞

(∏
i

|Hi(CGN )Z−tors|(−1)i

) 1
[G:GN ]

= τ (2)(C).
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Proof From Proposition 2.9 we get that we can choose GN so that for all i we have

| log vol(Hi(CGN )free)|
[G : GN]

tends to 0 for all i. From Proposition 2.2 applied to the di we get that we can choose
GN so that furthermore

log τ (CGN )
[G : GN]

−−−−→
N→∞

τ (2)(C).

The corollary then follows from (1.4).

3 Proof of the main theorems

We recall notation from the Introduction: if X is a CW-complex with universal covering
X̃ and a surjection φ : π1(M) → G ∼= Zm , for any subgroup H ⊂ G we denote by
XH the Galois covering of X given by φ−1(H) \ X̃ ; its Galois group is G/H . We also
denote the free abelian covering of X given by ker(φ) \ X̃ by X̂ . Theorem 0.1 and
Theorem 0.2 are immediate consequences of the following result:

Theorem 3.1 For all i, let ∆j(Hi(X̂)) be the first nonzero Alexander polynomial. There
exists a sequence of subgroups GN ⊂ G with α(GN) −−−−→

N→∞
∞ such that:

lim
N→∞

log |Hi(XGN )tors|
[G : GN]

= m(∆j(Hi(X̂))).

When m = 1 we have:

lim
N→∞

log |Hi(XN)tors|
N

= m(∆j(Hi(X̂))).

We begin by proving this for m = 1, and then use Proposition 2.7 and the Bombieri-
Zannier theorem to deduce the result for m > 1.

3.1 When G is cyclic

Let M be a finitely generated Z[t±1]-module of rank r ; put MN = M/(tN − 1)M . We
use the same notation for a finite complex of free modules C∗, d∗ . We want to show
that:

(3.1) lim
N→∞

log |Hi(CN)Z−tors|
N

= m
(
∆b(2)

i (C)(Hi(C))
)
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and also the corresponding limit for the module M :

(3.2) lim
N→∞

log |(MN)Z−tors|
N

= m
(
∆r(M)

)
We shall deduce (3.1) from (3.2). The latter is proved in three steps: first we consider
torsion-free modules, then torsion modules and finally we combine those two to prove
the general case.

Torsion-free modules

Suppose that M is torsion-free; we want to show that

(3.3)
1
N

log |(MN)tors| −→
N→∞

0.

We will in fact show that the torsion in MN is bounded independantly of N . We can pick
an embedding of M into a free module L ∼= Z[G]n . Put T = L/M ; then the Z-torsion
part of T has a finite exponent: the Z-torsion part of T is isomorphic to M′/M where
M′ = L ∩M ⊗Q. The submodule M′ is finitely generated by x1, . . . , xk ∈ L , and for
each index i there is an integer ni so that nixi ∈ M . It follows that the exponent of
M′/M ,and thus that of T , divides n1 . . . nk . We can use this to bound the exponent of
MN :

Lemma 3.2 For all N the exponent of (MN)tors divides that of the Z-torsion part of
T = L/M .

Proof Suppose that x ∈ M descends to an element of order exactly n in MN ; this means
that there exists y ∈ M , y 6∈ dM for any divisor d > 1 of n such that nx = (tN − 1)y.
In the free module L we see (by applying the Gauss lemma coordinate by coordinate)
that n must divide y. It follows that n−1y has order exactly n in L/M .

For the torsion-free module M , it follows from the above Lemma that the Z-torsion in
MN is always K -torsion with a K not depending on N . Now (3.3) follows from the
following lemma.

Lemma 3.3 Let M be a finitely generated Z[t±1]-module (resp. C∗ a finite Z[t±1]-
complex) and K a nonzero integer. Suppose that the K -torsion part of M (resp. Hi(C∗)
is finite; then the K -torsion in MN (resp. Hi(CN)) is bounded independantly of N .
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Proof Let pk1
1 . . . p

kl
l be the prime factorization of K . The K -torsion part of MN can

be written as:

(MN)K−tors ∼=
l⊕

i=1

 di,N⊕
j=1

Z/pαi,jZ


where di,N = dim(MN ⊗ Fpi)− rkZ(MN) and αi,j ≤ ki . It follows immediately that

|(MN)K−tors| ≤
l∑

i=1

pki
i (dim(MN ⊗ Fpi)− dim(MN ⊗Q)).

Thus, we need only prove that for p = p1, . . . , pl the difference:

dim(MN ⊗ Fp)− dim(MN ⊗Q)

is bounded. This can be seen by examining the proof of Theorem 0.2(i) in [LLS11]
in our very special case; we give a short direct proof here. Note that the proof is very
similar to that of Proposition 2.3.

Suppose that M is torsion-free, let r = rkZ[t±1](M), and choose an embedding of M
into a free module L of rank r . Since we know by Proposition 2.3 that rkZ(MN)− rN
is bounded, we need to show that dim(MN ⊗ Fp)− rN is bounded. In the sequel we
denote abusively M,L the Fp -modules M,L⊗ Fp . There exists a f ∈ Fp[t] such that
fL ⊂ M . We have fNLN ⊂ MN ⊂ LN ; thus we only need to show that dimFp ker(fN) is
bounded. Suppose that L = Fp[t±1]; then we can identify LN with the polynomials
in Fp[t] of degree less than N . Let ` = deg(f ). Then if h ∈ Fp[t] is nonzero with
deg(h) < N − ` the product fh is still a polynomial of degree < N and thus fh is not
zero in LN . It follows that fN is injective on a subspace of dimension N − `, so that its
kernel has dimension less than `. If L ∼= Fp[t±1]n we can make the same argument
coordinate by coordinate.

In general, according to the hypothesis on the p-torsion in M we have rkFp[t±1] M⊗Fp =

r . Thus, to deduce the general case from the torsion-free case we need only show
that for a Fp[t±1]-torsion module T the dimension dim(TN) is bounded. This is easily
deduced from the result above by choosing a surjection from some

(
Fp[t±1]/(f )

)k to T .

The statement about homology is deduced from the statement for modules in the exact
same way as in the proof of Proposition 2.3.

Torsion modules

Let T be a finitely generated torsion module over Z[t±1]; we want to show that:

(3.4) lim
N→∞

log |(TN)tors|
N

= m(∆0(T)).
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We first return to the more general situation where G ∼= Zm to make a number of
considerations.

Lemma 3.4 Let T be a finitely generated Z[G]-torsion module. Then there exists a
finite resolution of T by finitely generated free modules, which we write as:

(3.5) 0→ Fm+2
φm+2→ . . .

φ2→ F1
φ1→ T → 0

The complex F∗, φ∗ is a `2 -acyclic complex and its `2 -torsion equals M(∆0(T))−1 .
Moreover, for all i > 1 there exists finitely generated torsion-free modules Mi such that
for any subgroup H ⊂ G the homology Hi(FH) embeds into Mi,H .

Proof The ring Z[t1, . . . , tm] is a regular ring with dimension m + 1 by [Ser00, IV.D,
Proposition 25]; since its localizations are the same as those of Z[t±1

1 , . . . , t±1
m ] ∼= Z[G]

the latter is also regular, with the same dimension. Now this means that all finitely
generated modules over Z[G] have a projective resolution of length ≤ m + 2. Since it
is known that all projective Z[G]-modules are free (cf. [Lam06, Corollary V.4.12]) we
have in fact that this holds with a free resolution, so that we get (3.5). The complex F∗
is given by the sequence

0→ Fm+2 → . . .→ F1 → 0

so that its homology is zero for i > 1 and T for i = 1. Thus it is a finite `2 -acyclic
complex of free finitely generated Z[G]-modules, and Proposition 1.5 allows to compute
that its `2 torsion equals −m(∆0(T)).

Since Im(φi,H) is equal to the image of Im(φi)H = ker(φi)H , the homology Hi(FH) is
equal to the quotient ker(φi,H)/ ker(φi)H . The map φi embeds Mi = Fi/ ker(φi) into
Fi−1 ; ker(φi,H)/ ker(φi)H is isomorphic to the kernel of the induced map Mi,H → Fi−1,H ,
which is of course embedded in Mi,H .

Now we return to m = 1: it follows from the above Lemma and (3.3) that for i > 1 we
have

1
N

log |Hi(CN)tors| ≤
1
N

log |(Mi,N)tors| −→
N→∞

0.

Thus (3.4) follows from the Corollary to Proposition 2.9 applied to the complex F∗, φ∗
since H1(FN) ∼= TN .
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Conclusion

Now we can prove (3.2): we have the exact sequence

0→ Mtors
i→ M → M′ → 0

where M′ = M/Mtors is torsion free. Tensoring with Z[Z/NZ] yields

(Mtors)N
iN→ MN → M′N → 0.

Lemma 3.5 The map iN : (Mtors)N → MN is injective for all N .

Proof Suppose that x ∈ Mtors and the image of x in (Mtors)N is in the kernel of iN ;
this means that there exists a y ∈ M such that x = (tN − 1)y. But it follows from this
last equality that y ∈ Mtors , so that x is already zero in (Mtors)N .

Thus, for the module M we have the inequality

1 ≤ |(MN)Z−tors|
|(Mtors)N)Z−tors|

≤ (M′N)Z−tors.

Since we have already proved the term on the right is bounded it follows that

lim
N→∞

1
N

log |(MN)Z−tors| = lim
N→∞

1
N

log |
(
(Mtors)N

)
Z−tors|

= m(∆0(Mtors))

= m(∆r(M))

which finishes the proof of (3.2).

If C∗, d∗ is a finite complex of free finitely generated Z[t±1]-modules the map from
ker(di)N to ker(di,N) induces a map jN : Hi(C)N → Hi(CN). The same proof as that of
Lemma 3.51 yields that jN is injective so that we get:

1 ≤ |Hi(CN)tors|
|(Hi(C)N)tors|

≤ | coker(jN)tors|.

To deal with the right-hand side we use the same trick as to prove (3.4): the cokernel of
jN embeds into ker(di,N)/ ker(di)N , which embeds into MN where M = Ci/ ker(di) is
torsion-free, so that | coker(jN)tors| is bounded. Summing up, we get that

lim
N→∞

1
N
|Hi(CN)tors| = lim

N→∞

1
N
|(Hi(C)N)tors| = m(∆b(2)

i (C)(Hi(C)))

where the last equality follows from (3.2) applied to Hi(C).
1Suppose that x ∈ ker(di) is zero in Hi(CN), i.e. x = y+(tN−1)z, y ∈ Im(di+1), z ∈ (tN−1)Ci .

We get that (tN − 1)di(z) = 0, so that in fact z ∈ ker(di) and x is already zero in Hi(C)N .
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3.2 Torsion-free modules, m > 1

Our aim here is to prove the equivalent of (3.3) for some sequence GN obtained from
Proposition 2.7. Recall from the proof of Proposition 2.7 that we have defined, when
m > 1:

(3.6) GN = r∗N ⊕ ZkNvN

where rN , vN ∈ G so that the scalar product (rN , vN) is equal to 1 and α(r∗N) tends to
infinity as N does. By taking kN large enough we can ensure that this sequence satifies
the conclusions (i) and (ii) of Proposition 2.2, for any given finite collection of matrices.
We want to show that given a torsion-free Z[G]-module M we can also choose kN so
that:

(3.7)
1

[G : GN]
log |(MGN )tors| −→

N→∞
0

holds. We remark that Mr∗N is a Z[t±vN ] module (for v ∈ Zm we use the notation tv to
denote the variable tv1

1 . . . tvm
m ). The strategy is then to apply the results of the preceding

section to the Z[t±vN ]-modules M ⊗ Z[G/r∗N] together with the following result, the
proof of which is postponed until the Appendix A.

Proposition 3.6 Let M be a Q[G]-module embedded in a free module L; then for N
big enough there exists a product of cyclotomic polynomials ΦN such that the kernel of
Mr∗N → Lr∗n is annihilated by ΦN(t±vN ).

Let M be a torsion-free Z[G]-module which we embed into a free module L. It
follows from the above Proposition that for N big enough the kernel T of the map
Mr∗N → Lr∗N is annihilated by KΦN where K is the exponent of the Z-torsion in L/M
and ΦN is a product of cyclotomic polynomials in the variable tvN . The submodule
T is the Z[t±vN ]-torsion part of Mr∗N , so that the maps from TN = T/(tkNvN − 1)T to
MGN is injective according to Lemma 3.5. Let M′ be the image of Mr∗N in Lr∗N , and put
M′N = M′/(tkNvN − 1)M′ ; it follows from the exact sequence:

0→ TN → MGN → M′N → 0

that the Z-torsion in MGN is less than the product |(TN)tors| × |(M′N)tors|. The Z[t±vN ]-
module T ′ = KT is annihilated by the polynomial ΦN , so that the order of (T ′k)tors is an
o(k) according to (3.4). The torsion in TN is less than the K -torsion times the torsion
in T ′kN

, and the former is bounded (in k) according to Lemma 3.3; it follows that we
can choose kN so that |(TN)tors| < kN/N (say). Since M′N is Z[t±vN ]-torsion-free (3.3)
allows us to choose kN so that |(M′N)tors| < kN/N . The conclusion (3.7) follows (recall
that kN = [G : GN]).
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3.3 Conclusion

We are now in position to prove the following theorem, from which Theorem 3.1 follows
immediately.

Theorem 3.7 (i) Let M be a finitely generated module of rank r ; then:

(3.8) lim
N→∞

log |(MGN )tors|
[G : GN]

= m(∆r(M)).

(ii) Let C∗, d∗ be a complex of finitely generated free modules, r = rk Hi(C); we
have:

(3.9) lim
N→∞

log |Hi(CGN )tors|
[G : GN]

= m(∆r(Hi(C)))

Proof We use the same scheme of proof as in the cyclic case: we begin by proving
(3.8) for a torsion module, then deduce the case of a finitely generated module, and
finally use it to prove (3.9).

Modules

First of all, the proof of (3.8) does not change from the case m = 1: Lemma 3.4, the
corollary to Proposition 2.9 and (3.7) together imply that for a torsion module T we
can choose kN in (3.6) so that

(3.10)
1

[G : GN]
log |(TGN )tors| −→

N→∞
m(∆0(T)).

Now let M be any finitely generated Z[G]-module; we have an exact sequence:

0→ Mtors → M → M′ → 0

where M′ = M/Mtors . According to (3.7) we can choose the kN so that M′GN
has a

negligible torsion, so that to deduce (3.8) from (3.10) we need only show that:

(3.11)
log | ker

(
(Mtors)GN → MGN

)
Z−tors|

[G : GN]
−→

N→∞
0.

The following result is deduced from Proposition 3.6 in Appendix A.

Proposition 3.8 For N big enough the kernel of the map (Mtors)r∗N → Mr∗N is annihilated
by KΦN where ΦN is a cyclotomic polynomial and K an integer (not depending on N ).
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We use this and an argument similar to that used to prove Lemma 3.5 to deduce
(3.11). Suppose that x ∈ Mtors descends to an element in ker

(
(Mtors)GN → MGN

)
; then

there exists y ∈ M, z ∈ (r∗N − 1)M such that x = (tkNvN − 1)y + z. It follows that
y ∈ Mtors + (r∗N − 1)M , so that we can write x = (tkNvN − 1)y′+ z′ where y′ ∈ Mtors and
z′ ∈ (r∗N − 1)M It follows that x and z′ have the same image in (Mtors)GN , so that the
kernel ker

(
(Mtors)GN → MGN

)
is the image of T = ker

(
(Mtors)r∗N → Mr∗N

)
. According

to Proposition 3.8, (3.3) and (3.4) we can choose kN so that (TkN )tors has order less than
kN/N . This implies that the torsion in the kernel of the map (Mtors)GN → MGN also has
order less than kN/N and (3.11) follows.

Complexes

Let N be fixed. We compare the growth of the Z-torsion of Hi(C)r∗N/(tkvN − 1)Hi(C)r∗N
and Hi(Cr∗N/(tkvN − 1)Cr∗N ); more precisely we show that:
(3.12)

lim
k→∞

1
k

(
log |(Hi(C)r∗N/(tkvN−1)Hi(C)r∗N )Z−tors|−log |(Hi(Cr∗N/(tkvN−1)Cr∗N ))Z−tors|

)
= 0.

Let φ denote the map from (Hi(C)r∗N )tors to Hi(Cr∗N )tors ; we prove that there exists
a cyclotomic polynomial ΦN which annihilates ker(φ). Let x ∈ ker(di) map to an
element in ker(φ); we can write x = y + z where z ∈ ker(di) ∩ (r∗N − 1)Ci . By
proposition 3.6, since there is no Z-torsion in Ci/ ker(di), we get that there exists
ΦN such that ΦNz ∈ (r∗N − 1) ker(di), so that ΦNx maps to 0 in (Hi(C)r∗N )tors . As for
coker(φ), applying Proposition 3.6 to the embedding of Ci/ ker(di) into Ci−1 we get
that there is an integer K independant of N and a cyclotomic polynomial Φ′N such that
KΦ′N coker(φ) = 0. It follows from these remarks and (3.2), (3.1) that:

0 ≤ lim
k→∞

1
k

(
log(Hi(Cr∗N/(tkvN − 1)Cr∗N ))− log(Hi(C)r∗N/(tkvN − 1)Hi(C)r∗N )

)
≤ lim

k→∞

1
k

log |(Hi(Cr∗N/(tkvN − 1)Cr∗N ))K−tors|.

It follows from Lemma 3.3 that the limit on the right is zero, proving (3.12). By
choosing kN big enough we can thus suppose that

lim
N→∞

log |(Hi(C)GN )Z−tors| − log |Hi(CGN )Z−tors|
[G : GN]

= 0,

so that we deduce (3.9) from (3.8) applied to Hi(C).
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4 Cyclic coverings of 3–manifolds

In the case m = 1, Theorem 3.1 yields that for any finite CW-complex X with an
infinite cyclic covering X̂ and XN = NZ \ X̂ we have:

log |Hi(XN)tors|
N

−→
N→∞

∆b(2)
i (X̂)(Hi(X̂)).

Letting X be a cell structure on a compact n–manifold we get Theorem 0.2.

4.1 A presentation for the Alexander module

It would be nice to have an explicit formula for the Alexander polynomial ∆i(M̂). The
simplest case is that of a manifold fibering over the circle, which is `2 -acyclic and thus
already treated in [BV, Corollary 7.7]: if ϕ is the diffeomorphism gluing the fiber S and
ϕ∗ its action on H1(S) we have ∆0(M̂) = det(1− tϕ∗). In the general case, the covering
M̂ is obtained from an epimorphism π1(M) → Z, and all such morphisms are given
by the intersection form with an embedded incompressible two-sided nonseparating
surface in M : see the proof of Lemma 6.6 in [Hem76]. From here on we suppose
we have a closed 3-manifold M containing an embedded incompressible two-sided
nonseparating surface S . Let M̂ be the infinite cyclic covering of M associated with
S . Let U ∼= S× (−1, 1) be a tubular neighbourhood of S in M and let M′ = M − U .
We denote by S± the connected components of ∂M′ corresponding to S× {±1} in U .
The fundamental group of M is then given by an HNN-extension: we consider π1(S±)
as subgroups of π1(M′), and there is an isomorphism α : π1(S+)→ π1(S−) such that

π1(M) = 〈π1(M′), t| ∀g ∈ π1(S+), tgt−1 = α(g)〉.

Let us denote by α∗ the induced map H1(S+)→ H1(S−). We were not able to get a
formula as explicit as that above, but only to obtain a presentation of H1(M̂).

We can give an explicit construction of M̂ using S: M̂ is diffeomorphic to the manifold
obtained from M′ × Z by identifying S+ × {n} with S− × {n + 1} using α . Let i be
the embedding of S in M′ corresponding to S+ . We know that H0(M̂) = 0 and the map
from H1(S+) to H1(M′) is injective; thus the homology long exact sequence coming
from:

S× Z −→
(1−tα)i

M′ × Z→ M̂

yields the short exact sequence:

(4.1) Z[t±1]⊗ H1(S) −→
(1−tα∗)i∗

Z[t±1]⊗ H1(M′)→ H1(M̂)→ 0.
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which is a presentation of H1(M̂). However, in all generality it seems rather difficult to
compute the minors of the matrix (1− tα∗)i∗ due to the unknown nature of i∗ .

4.2 Examples

Computation for rational homology cylinders

Suppose that M′, i± is a rational homology cylinder, that is, the homology map i∗
induces an isomorphism between rational homologies. Then we can compute the
Alexander polynomial, generalising a result for knot complements:

Lemma 4.1 In the situation described above, M̂ is `2 -acyclic and ∆0(H1(M̂) =

τ (M′, S+) det(1− tα∗) where τ (M′, S+) denotes the order of H1(M′)/i∗H1(S).

Proof This is an immediate consequence of (4.1) since in this case the map (1−tα∗)◦i∗
is represented by a square matrix with nonzero determinant.

In the case where M is a knot exterior we retrieve the result of [Lic97, Theorem 6.5].
Note also that by the Dehn-Nielsen theorem α corresponds to an element φ in the
mapping class group of S and we have det(1− tα∗) = det(1− tφ∗), so that we also
retrieve the case where M is fibered.

Given an homology cylinder M′, i± (i.e. i± are embeddings of S in ∂M′ which induce
an isomorphism in homology), [CFK11, Section 4.3] construct by surgery on the interior
another homology cylinder. Their construction does not affect the Alexander polynomial
of the infinite cyclic covering of the 3-manifold M = M′/{∀x ∈ S, i+(x) = i−(x)} dual
to S .

Positive `2 -Betti number

There indeed are cases where the infinite cyclic covering is not `2 -acyclic. A somewhat
artificial example is obtained as follows: suppose that M0 is a three-manifold having
an infinite cyclic covering M̂0 and that N is another three-manifold with positive b1 .
Then the connected sum M = M0]N has an infinite cyclic covering M̂ difeomorphic
to M̂0](N × Z) (if M′0 is M0 cut along a surface dual to the covering, it is obtained by
attaching a copy of N to each copy of M′0 in M̂0 ). Thus we have

H1(M̂) ∼= H1(M̂0)⊕ (Z[t±1]⊗ H1(N))
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and it follows that b(2)
1 (M̂) ≥ b1(N). Note that we also have ∆b1(N)+i(H1(M̂)) = ∆i(M̂0).

A more interesting example is given by manifolds with large fundamental group. Recall
that a group is said to be large when it has a finite-index subgroup surjecting onto
a noncyclic free group. Suppose that π1(M) surjects onto the free product Z ∗ Z;
then we can take the surjection from π1(M) to Z obtained by projection onto the
second free factor. Then the associated infinite cyclic covering M̂ has b(2)

1 (M̂) ≥ 1.
Indeed, the kernel of the map Z ∗ Z → Z/NZ is the subgroup freely generated by
aN , b, aba−1, . . . , aN−1ba1−N , so that π1(MN) surjects onto a free group of rank N and
thus we have b1(MN) = b1(π1(MN)) ≥ N (any three-manifold with infinite fundamental
group is aspherical) so that b(2)

1 (M̂) ≥ 1 by Lück’s theorem.

Lots of arithmetic three-manifolds are known to have a large fundamental group, and it
is expected that in fact all hyperbolic three-manifolds have a large π1

2. See for example
[Lac10] for recent progress on this and its links with other conjectures in 3-manifold
topology.

A Loose ends

We shall prove here the results used in the proof of Theorem 3.7. Recall that, for a
subgroup H ⊂ Zm′ , we denote by H∗ the subgroup of vectors orthogonal to H in Zm′ ;
α(H) is the smallest length of a nonzero vector in H . We introduce notation we shall
use throughout this Appendix: if A is an m × m′ matrix with coefficients in Z we
denote by HA the subgroup of Zm′ spanned by its lines. We will continue to denote by
A the induced morphism from Z[Zm′] to Z[Zm]. Recall that we identify the group ring
Z[Zm′] with the Laurent polynomials Z[t±1

1 , . . . , t±1
m′ ]; we denote this identification by

v 7→ tv .

A.1 The Bombieri-Schinzel-Zannier theorem

The following result is an immediate generalisation of a theorem by Bombieri and
Zannier (improving on a previous result by Schinzel):

2Ian Agol recently announced that he had a proof of this conjecture, following a previous
work of Dani Wise on the subject.
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Theorem A.1 Let f1, . . . , fk ∈ Z[Zm′] be coprime polynomials. Then there exists
a constant c = c(f1, . . . , fm) such that if the gcd of Af1, . . . ,Afk is not equal to a
cyclotomic polynomial then α(H∗A) ≤ c.

Proof This follows from an easy induction using the theorem as stated in [Sch00,
Theorem 45 and page 517]; see also [Le, Proposition 5.2].

In the sequel we shall use the term “cyclotomic polynomial” to design multivariate
generalised cyclotomic polynomials , i.e. the evaluations of a cyclotomic polynomial at
a monomial, as well as their finite products.

A.2 Proof of Proposition 3.6

In the sequel we denote by An the map induced by A from Z[Zm′]n , i.e. An(f1, . . . , fn) =

(Af1, . . . ,AfN).

Proposition A.2 Let M be a submodule in Q[Zm′]n ; there exists a constant cM such
that for all A with α(H∗A) > cM , there exists a cyclotomic polynomial ΦA so that:

ΦA ker(An) ∩M ⊂ ker(A)M.

Proof In this proof we denote the group ring Q[Zm′] by R, and Q[AZm′] by R′ . It
suffices to prove the result when the image of A is of rank one (i.e. A is a line matrix).

Suppose first that M = fR is a nonzero principal ideal. For α(H) big enough the support
of f injects into Zm′/H , in particular for α(H∗A) big enough Af 6= 0. The ideal ker(A)
is prime (because R/ ker(A) ∼= R′ is a domain), so that if fg ∈ ker(A) then g ∈ ker(A).
This means that fR ∩ ker(A) = f ker(A).

We next take M to be an ideal in R, and prove the result by induction on the number of
generators. First we reduce to the case where M is not contained in any principal ideal.
Suppose that f is the gcd of M ; then we can write M = fM′ where M′ is not contained
in any principal ideal. We have ker(A) ∩ fM′ = f ker(A) ∩ fM′ by the principal case, so
that if the result is true for the embedding of M′ in fR it is also true for M .

Thus, let f1, . . . , fk be a minimal generating family for M with no common factor.
Suppose that α(H∗A) > c = c(f1, . . . , fk) with c the constant from Theorem A.1; then
the gcd of Af1, . . . ,Afk must be equal to a cyclotomic polynomial Φ ∈ AR (we identify
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it with its evaluation at the monomial tvA where vA generates a supplementary for H∗A ).
Let h =

∑
i hifi ∈ ker(A) ∩M ; we get that:

−Ah1Af1 =
∑
i≥2

AhiAfi

and so the gcd of Af2, . . . ,Afk divides ΦAh1 . We can write this gcd as
∑

i≥2 AgiAfi for
some gi ∈ R since R′ is a principal ring (because AZm′ is a cyclic group). Thus we get
ΦAh1 =

∑
i≥2 Ah′iAfi for some h′i ∈ R. It follows that we have:

Φh1 =
∑
i≥2

h′ifi + h′1

for some h′1 ∈ ker(A), and from that:

Φh = Φh′1f1 +
∑
i≥2

(hi + h′if1)fi.

By the induction hypothesis, if α(H∗A) > cM′ (with M′ = (f2, . . . , fk)) then
∑

i≥2(hi +

h′if1)fi ∈ Φ′ ker(A)M′ , so we get the result with cM = max(c, cM′).

Suppose now that rk(M) = 1 and M is embedded in Rn ; up to passing to a larger free
module (in R⊗Q(Zm′)n ) we may suppose that M is contained in a copy of R that is a
direct factor of Rn ; then we can apply the above arguments to this embedding of M in
R and get the result.

Now let us prove the general result by induction on the rank. Let M have rank k > 1
and be embedded in Rn ; let l < n so that the intersection M0 = M ∩ (Rl × 0) has rank
one. Put M1 = M/M0 ; this is torsion-free and we have a commutative diagram:

0 −−−−→ M0 −−−−→ M −−−−→ M1 −−−−→ 0y y y
0 −−−−→ Rl × 0 −−−−→ Rn −−−−→ Rn−l −−−−→ 0

Suppose that x ∈ ker(An)∩M ; its projection x1 in M1 lies in ker(An−l)∩M1 and, by the
induction hypothesis, there exists a cyclotomic Φ such that Φx1 ∈ ker(A)M1 . It follows
that Φx = y + x0 for some y ∈ ker(A)M and x0 ∈ ker(An) ∩M0 . By the induction
hypothesis we get that there exists a cyclotomic Φ′ such that Φ′x0 ∈ ker(A)M0 . Finally,
we have that ΦΦ′x ∈ ker(A)M .

Proof of Proposition 3.6 The kernel ker(A) is easily seen to be equal to (H∗A − 1)R;
indeed, the groups AZm′ and Zm′/H∗A are isomorphic via A so that the kernels of the
maps Z[Zm′]→ Z[AZm′] and Z[Zm′]→ Z[Zm′/H∗A] must be equal. The first is ker(A)

Algebraic & Geometric Topology XX (20XX)



1036 Jean Raimbault

and the second (H∗A − 1)Z[Zm′]. Thus if M ⊂ L is a submodule of a free module, the
above Proposition yields that there exists a cyclotomic ΦA such that ΦA annihilates the
kernel of the map

MH∗A = M/(H∗A − 1)M → L/(H∗A − 1) = LH∗A .

Proposition 3.6 follows by taking A to be the line matrix rN since α(r∗N) tends to
infinity.

A.3 Proof of Proposition 3.8

We will in fact prove Proposition 3.8 for any sequence of subgroups of finite index
which all contain a direct factor and whose smallest length tends to infinity. The method
is to use induction on the rank. Here is the result that allows this:

Lemma A.3 Let H be a subgroup of Zm′ which contains a direct factor of Zm′ of
rank m′ − 1, and such that α(G) > c. Then there exists subgroups H = H1 ⊃ H2 ⊃
. . . ⊃ Hm′ = 0 such that all inclusions are of corank one and all Hi, i ≥ 2 are direct
factors. Moreover, they all satisfy α(H∗i ) ≥ c.

Proof Let H2 be a direct factor contained in H . It has rank m′ − 1, so the intersection
H2∩ (0×Z2) is not empty. Let v = (0, a, b) be in this intersection; we may suppose that
gcd(a, b) = 1 since H2 is a direct factor, and then we have min(|a|, |b|) ≥ α(H) > c.
Thus we see that α(v∗) > c. Now we only have to choose a basis {v1 = v, v2, . . . , vm′−1}
of H and put Hi =

∑i
j=1 Zvi ; the Hi all contain v and so α(H∗i ) ≥ α(v∗) > c, and it is

clear that they satisfy the other conclusions.

In consequence, Proposition 3.8 follows from:

Proposition A.4 Let M be a finitely generated module over R. There exists a constant
c depending on M such that the following holds. If H is a subgroup of Zm′ of corank
≥ 1 having a sequence of subgroups H2 ⊃ . . . ⊃ Hm′ such that all inclusions are of
corank one, all Hi are direct factors and they all satisfy α(H∗i ) > c, then the kernel of
the map (Mtors)H → MH is annihilated by a cyclotomic polynomial.

Proof If H has rank one, we proved that the kernel is 0 in Lemma 3.5. We need the
following result to carry out the induction step:

Lemma A.5 There is a constant c so that for α(H∗A) > c there exists a cyclotomic
polynomial Φ such that the map MR−tors → ΦA(AM)R′−tors is surjective .
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Proof We put M′ = M/Mtors , embed M′ in a free module L and denote by π the
map M → L this yields. Suppose that x ∈ M maps to a R′ -torsion element in AM ;
this means that there exists a f ∈ R with Af 6= 0 such that π(fx) ∈ ker(A)π(M). Let
c be the constant for M′ ⊂ L from Proposition 3.6; we get that for α(H∗A) > c there
exists a cyclotomic Φ such that Φπ(fx) ∈ ker(A)M′ . It follows that Φx = y + x′ where
y ∈ MR−tors = ker(π) and x′ ∈ ker(A)M , and thus that AΦAx is in the image of MR−tors

in AM .

Write H = Zv⊕ H2 where H2 is a direct factor of Zm′ . Let x ∈ Mtors , suppose that
x ∈ (H − 1)M . Then we can write x = (tv − 1)x′ + z where z ∈ (H2 − 1)M . Let
A be a matrix with ker(A) = H2 (this is possible since H2 is a direct factor); we get
that Ax = (tAv − 1)Ax′ , so that x′ is R′ -torsion in AM′ (we have to suppose that the
annihilator of x is not contained in (H2−1)R, but this is true for α(H2) big enough). By
the Lemma above we get that Φx′ = y + z′ where z′ ∈ ker(A)M = (H− 1)M, y ∈ Mtors .
It follows that Φx = (tv − 1)y + z + z′ , and we get that Φ′(z + z′) ∈ (H − 1)Mtors for
some cyclotomic Φ′ , by the induction hypothesis.

B The `2-volume and `2-torsion

We introduce here a new `2 -invariant, the aim of which is to be able to mimic the
arguments leading to (1.4). In particular, we deduce (1.5) as a particular case.

B.1 Definition

We want to define a `2 -volume for submodules of Z[G]n by analogy with the lattices in
a finite-dimensional Hermitian space. It is quite natural to do this for free submodules:
if L ⊂ Z[G]n is free of rank r , then all morphisms Z[G]r → Z[G]n with image L
have the same Fuglede-Kadison determinant since if we fix one such morphism f , then
any other one can be written f ◦ u for a change of basis u in Z[G]r , and all change
of basis morphisms for free Z[G]-modules have a unit for determinant and thus their
Fuglede-Kadison determinant is equal to one by equation (1.1). Thus, choosing a matrix
A ∈ Mn,r(Z[G]) with image L we can put, as in the finite-dimensional case:

vol(2)(L) = detN (G)(A) =M(det(A∗A)).

When M is a submodule of Z[G]n with rank r , we can pick a free submodule of maximal
rank (lemma 1.2). The quotient M/L is torsion by lemma 1.3, so it has nonzero first
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Alexander polynomial. In the finite dimensional case, if we have a finite index sumodule
V ′ of a module V then for any metric on M the equality vol(V) = [V : V ′] vol(V ′)
holds. Since we are interested in approximation problems the analogue of the index we
shall consider for the maximal rank submodule L ⊂ M is ∆0(M/L) (this is justified by
(3.10)). We put:

vol(2)(M) =
vol(2)(L)

M(∆0(M/L))
.

First of all, we have of course to check this is well-defined:

Lemma B.1 The real number vol(2)(L)
M(∆0(M/L)) does not depend on the free submodule of

maximal rank L ⊂ M .

Proof Let L1,L2 be two free submodules of maximal rank in M . Then L1 ∩ L2 is
a submodule of maximal rank, and thus contains a free submodule of maximal rank.
Thus it is enough to prove that the `2 -volume is the same when computed for two free
submodules of maximal rank L ⊃ L′ . Let Q be the coordinate matrix of some basis of
L′ in a basis of L . We have:

vol(2)(L′) = detN (G)(Q) vol(2)(L) =M(∆0(L/L′)) vol(2)(L)

On the other hand, we have a short exact sequence 0→ L/L′ → M/L′ → M/L→ 0
which gives:

M(∆0(M/L′)) =M(∆0(L/L′))M(∆0(M/L))

(by multiplicativity of ∆0 and the Mahler measure). Thus:

vol(2)(L′)
M(∆0(M/L′))

=
vol(2)(L)

M(∆0(M/L′))M(∆0(L/L′))

=
vol(2)(L)

M(∆0(M/L))
.

This concludes the proof.

B.2 Metric rank formula

We can now state the `2 metric rank formula; the proof is similar to that of the
finite-dimensional case.

Lemma B.2 Let M,M′ be Z[G]-submodules of free modules and f a morphism from
M to M′ ; we have then that:

(B.1) vol(2)(f (M)) =
detN (G)(f ) vol(2)(M)

vol(2)(ker(f ))
.

Algebraic & Geometric Topology XX (20XX)



Exponential growth of torsion in abelian coverings 1039

Proof Renormalizing by an homothety we may suppose vol(2)(M) = 1. Let L′ ⊂ ker(f )
and L′′ ⊂ ker(f )⊥ be free submodules of maximal rank; the direct sum L′ ⊕ L′′ is then
a free submodule of maximal rank in M . Put T ′ = ker(f )/L′ , T ′′ = Im(f )/f (L′′) ∼=
M/ ker(f )⊕ L′′ and T = M/L′ ⊕ L′′ . We get a short exact sequence 0→ T ′ → T →
T ′′ → 0, for example by applying the Snake Lemma to the diagram:

0 −−−−→ ker(f ) −−−−→ M −−−−→ Im(f ) −−−−→ 0x x xf

0 −−−−→ L′ −−−−→ L′ ⊕ L′′ −−−−→ L′′ −−−−→ 0

It follows that:

M(∆0(T)) =M(∆0(T ′′))M(∆0(T ′)).

On the other hand, since L′ and L′′ are orthogonal we have:

vol(2)(L′) vol(2)(L′′) = vol(2)(L′ + L′′);

and since M has unit volume this yields:

vol(2)(L′) vol(2)(L′′) = M(∆0(T))

= M(∆0(T ′′))M(∆0(T ′)).

As f|L′′ is injective, f (L′′) is a free submodule of maximal rank in Im(f ) and thus:

vol(2)(Im(f )) = vol(2)(f (L′′))/M(∆0(Im(f )/f (L′′)));

= vol(2)(f (L′′))/M(∆0(T ′′)).

Finally we have:

vol(2)(f (L′′)) = detN (G)(f ) vol(2)(L′′).

From the three equalities above it follows that:

vol(2)(Im(f )) =
detN (G)(f ) vol(2)(L′′)
M(∆0(T ′′))

=
detN (G)(f )M(∆0(T ′))

vol(2)(L′)

=
detN (G)(f )

vol(2)(ker(f ))
,

and this concludes the proof of (B.1).
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B.3 Computation of the `2 -torsion

Let C∗, d∗ be a finite complex of free finitely generated Z[G]-modules. Let L be a free
maximal rank submodule in Hi(C); then L lifts to a free submodule L′ in the orthogonal
of Im(di+1) in ker(di). Let T be the quotient (Hi(C)/Hi(C)tors)/L; we define:

vol(2)(Hi(C)) =M(∆0(T)) vol(2)(L′).

In particular, when C∗ is `2 -acyclic this is equal to one since the orthogonal of Im(di+1)
in ker(di) is zero.

Lemma B.3 With notation as above, the following equality holds:

τ (2)(C) =
∏

i

(M(∆b(2)
i (C)(Hi(C))

vol(2)(Hi(C))

)(−1)i

Proof We denote by Mi the orthogonal of Im(di+1) in ker(di); this is a submodule of
Ci of rank b(2)

i (C). Let L′ be a maximal rank free submodule in Im(di−1) and L′′ in Mi ;
put L = L′ ⊕ L′′ , which is a free maximal rank submodule in ker(di). Since Mi and
Im(di−1) are orthogonal we get vol(2)(L) = vol(2)(L′) vol(2)(L′′). Putting T = ker(di)/L
it follows that:

vol(2)(ker(di)) =
vol(2)(L)
M(∆0(T))

=
vol(2)(L′) vol(2)(L′′)
M(∆0(T))

.

Put T ′′ = Mi/L′′ and T ′ = Im(di−1)/L′ ; there is a natural injection of T ′ ⊕ T ′′ into
T , whose cokernel is naturally isomorphic to Hi(C)/Mi =: T0 . Thus we get an exact
sequence 0→ T ′ ⊕ T ′′ → T → T0 → 0, and the equality:

M(∆0(T)) =M(∆0(T ′))M(∆0(T ′′))M(∆0(T0)).

Finally, putting T1 = Ĥi(C)/Mi we get the exact sequence 0 → T1 → T0 →
Hi(C)tors → 0 and we can compute:

M(∆0(T0)) =M(∆0(T1))M(∆0(Hi(C)tors)).

Putting the three equalities above together gives:

vol(2)(ker(di)) =
vol(2)(L′)
M(∆0(T ′))

× vol(2)(L′′)
M(∆0(T ′′))

× 1
M(∆0(T0))

= vol(2)(Im(di−1))× vol(2)(Mi)
M(∆0(T1))

× 1
M(∆0(Hi(C)tors))

=
vol(2)(Im(di−1)) vol(2)(Ĥi(C))

M(∆0(Hi(C)tors))
.

Algebraic & Geometric Topology XX (20XX)



Exponential growth of torsion in abelian coverings 1041

From this and (B.1) it follows that:

vol(2)(ker(di)) =
detN (G)(di−1) vol(2)(Ĥi(C))

M(∆0(Hi(C)tors)) vol(2)(ker di−1)
.

Taking the alternating product over i we obtain:

1 =
∏

i

(
detN (G)(di−1) vol(2)(Ĥi(C))
M(∆0(Hi(C)tors))

)(−1)i

.
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