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In this paper, we investigate the existence of solution for systems of Fokker-Planck equations coupled through a common nonlinear congestion. Two different kinds of congestion are considered: a porous media congestion or soft congestion and the hard congestion given by the constraint ρ1 + ρ2

1. We show that these systems can be seen as gradient flows in a Wasserstein product space and then we obtain a constructive method to prove the existence of solutions. Therefore it is natural to apply it for numerical purposes and some numerical simulations are included.

Introduction

The modelling of crowd behaviour has become a very active field of applied mathematics in recent years. These models permit to understand many phenomena such as cell migration, tumor growth, etc. Several models already exist to tackle this problem. The first one, microscopic, consists in seeing a population as a high number of individuals which satisfy ODEs, see for instance [START_REF] Maury | Handling of Contacts in Crowd Motion Simulations[END_REF] and the second is macroscopic and consists in describing a population by a density ρ satisfying a PDE, where ρ(t, x) represents the density of individuals in x at time t. In the latter framework, different methods to handle the congestion effect have been proposed. The first one consists in saying that the motion has to be slower when the density is very high, see for example [START_REF] Crippa | Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow[END_REF][START_REF] Colombo | Nonlocal crowd dynamics models for several populations[END_REF][START_REF] Colombo | A class of nonlocal models for pedestrian traffic[END_REF] for a different approach with applications to crowd dynamics. Another way of modelling the congestion effect is to use a threshold: the density evolves as we would expect until it touches a maximal level and then the motion has to be adapted in these regions (to not increase the density there), see for example [START_REF] Maury | A macroscopic crowd motion model of gradient flow type[END_REF] for crowd motion model and [START_REF] Maury | Congestion-driven dendritic growth[END_REF] for application to dendritic growth. For a comparison between microscopic and macroscopic models, we refer to [START_REF] Maury | Handling congestion in crowd motion modeling[END_REF]. In [START_REF] Mészáros | Advection-diffusion equations with density constraints[END_REF], Mészáros and Santambrogio proposed a model for hard congestion where individuals are subject to a Brownian diffusion. This corresponds to modified a Fokker-Planck equation with an L ∞ constraint on the density.

Since in macroscopic models, we have mass conservation, the theory of optimal transportation is a very natural tool to attack them. In [START_REF] Maury | A macroscopic crowd motion model of gradient flow type[END_REF], the authors investigated a model of room evacuation. They showed that if the desired velocity field of the individuals is given by a gradient, say V = ∇D, where D is the distance to a given target, then the problem has a gradient flow structure in the Wasserstein space and the velocity field has to be adapted by a pressure field to handle congestion effect. More recently in [START_REF] Mészáros | Advection-diffusion equations with density constraints[END_REF], a splitting scheme has been introduced to handle velocity fields which are not necessarily gradient field. The scheme consists in combining steps where the density follows the unconstrained Fokker-Planck equation and Wasserstein projections onto the set of densities which cannot exceed 1.

A natural variant of the model of [START_REF] Mészáros | Advection-diffusion equations with density constraints[END_REF], consists in considering two (or more) populations, each of whom is subject to an advection term coming from different potential gradients but coupled through the constraint that the total density cannot exceed a given threshold, say 1, and then subject to a common pressure field. Note that variant problems with total density equal to 1 are treated in [START_REF] Dambrine | A congestion model for cell migration[END_REF]4,[START_REF] Benamou | Numerical analysis of a multi-phasic mass transport problem[END_REF][START_REF] Cancès | Incompressible immiscible multiphase flows in porous media: a variational approach[END_REF] and for more general cross-diffusion systems, we refer, for instance, to [START_REF] Lepoutre | Global well-posedness of a conservative relaxed cross diffusion system[END_REF][START_REF] Desvillettes | On the entropic structure of reaction-cross diffusion systems[END_REF][START_REF] Jüngel | The boundedness-by-entropy method for cross-diffusion systems[END_REF][START_REF] Jüngel | A cross-diffusion system derived from a Fokker-Planck equation with partial averaging[END_REF][START_REF] Kondratyev | A fitness-driven cross-diffusion system from population dynamics as a gradient flow[END_REF]. For a linear diffusion (corresponding to a Brownian noise on each species), the two-species crowd dynamic is expressed by the PDEs

       ∂ t ρ 1 -∆ρ 1 -div(ρ 1 (∇V 1 + ∇p)) = 0, ∂ t ρ 2 -∆ρ 2 -div(ρ 2 (∇V 2 + ∇p)) = 0, p 0, ρ 1 + ρ 2 1, p(1 -ρ 1 -ρ 2 ) = 0, ρ 1 (0, •) = ρ 1,0 , ρ 2 (0, •) = ρ 2,0 (1.1)
on Ω a convex compact subset of R n with smooth boundary such that

|Ω| > 2.
(1.

2)

The assumption (1.2) is made to ensure that the subset

K := (ρ 1 , ρ 2 ) ∈ P ac (Ω) 2 : ρ 1 + ρ 2 1 a.e.
is neither empty nor trivial. We put no-flux boundary conditions to preserve the mass in Ω,

(∇ρ 1 + ρ 1 (∇V 1 + ∇p)) • ν = 0 and (∇ρ 2 + ρ 2 (∇V 2 + ∇p)) • ν = 0 a.e. on R + × ∂Ω,
where ν is the outward unit normal to ∂Ω.

In this paper, we show that this system is the gradient flow for the Wasserstein product distance of the energy

E ∞ (ρ 1 , ρ 2 ) := 2 i=1 ´Ω(ρ i log(ρ i ) + V i ρ i ) + ´Ω χ [0,1] (ρ 1 (x) + ρ 2 (x))dx if ρ i log(ρ i ) ∈ L 1 (Ω), +∞, otherwise,
where χ [0,1] is the indicator function of [0, 1],

χ [0,1] (z) := 0 if z ∈ [0, 1], +∞ otherwise.
In addition, for a different energy of the form

E m (ρ 1 , ρ 2 ) := 2 i=1 ´Ω(ρ i log(ρ i ) + V i ρ i ) + ´Ω 1 m-1 (ρ 1 (x) + ρ 2 (x)) m dx if ρ i log(ρ i ), (ρ 1 + ρ 2 ) m ∈ L 1 (Ω), +∞ otherwise,
for m > 1, the gradient flow of E m leads to the following nonlinear system

       ∂ t ρ 1 = ∆ρ 1 + div ρ 1 ∇ V 1 + m m-1 (ρ 1 + ρ 2 ) m-1 ∂ t ρ 2 = ∆ρ 2 + div ρ 2 ∇ V 2 + m m-1 (ρ 1 + ρ 2 ) m-1 ρ 1 (0, •) = ρ 1,0 , ρ 2 (0, •) = ρ 2,0 (1.3)
with no flux boundary conditions. Then for a given small time step h > 0, the JKO scheme for this energy reads,

(ρ k+1 1 , ρ k+1 2 ) = argmin (ρ1,ρ2) 2 i=1 1 2h W 2 2 (ρ i , ρ k i ) + E m (ρ 1 , ρ 2 ) (1.4)
which, in the particular case of the linear diffusion crowd motion problem with two species, takes the form

(ρ k+1 1 , ρ k+1 2 ) = argmin ρ1+ρ2 1 2 i=1 1 2h W 2 2 (ρ i , ρ k i ) + ˆΩ(ρ i log(ρ i ) + V i ρ i ) .
We want to mention that the results in this paper have been obtained in the authors's PhD thesis, [START_REF] Laborde | Interacting particles systems, Wasserstein gradient flow approach[END_REF], back in 2016. Note that recently, in [START_REF] Kim | On nonlinear cross-diffusion systems: an optimal transport approach[END_REF], Kim and Mészáros studied problems (1.3) and (1.1) without individual diffusions. They prove existence of weak solution in dimension 1 for segregated initial conditions and ordered drifts. In any dimension, they prove existence of very weak solutions.

The difficulty is to handle the cross diffusive term which needs to have strong compactness in ρ 1 , ρ 2 and ρ 1 + ρ 2 . Here, this difficulty is overcome by assuming that individuals of each populations are subject to a Brownian diffusion. This allows us to obtain separated estimates on ρ i and ρ 1 + ρ 2 .

In [START_REF] Laurençot | A gradient flow approach to a thin film approximation of the Muskat problem[END_REF], Laurençot and Matioc give a similar result in R and m = 2. In this paper, we extend this result on Ω ⊂ R n and with m ∈ [1, +∞]. Furthermore, taking advantage of the gradient flow structure, we give numerical simulations implemented by the augmented Lagrangian scheme introduced in [START_REF] Benamou | An augmented Lagrangian approach to Wasserstein gradient flows and applications[END_REF]. We want to point out that uniqueness of systems (1.1) and (1.3) is still an open question due to the lack of geodesic convexity of the common energy and we do not adress this problem in this paper. We refer to [START_REF] Kim | On nonlinear cross-diffusion systems: an optimal transport approach[END_REF] for further discussions on this subject.

This paper is organized as follows. In section 2, we introduce our assumptions and we state our main results. In section 3, we prove the existence of a weak solution for system (1.3). The key ingredient is the flow interchange argument (see [START_REF] Matthes | A family of nonlinear fourth order equations of gradient flow type[END_REF][START_REF] Francesco | Curves of steepest descent are entropy solutions for a class of degenerate convection-diffusion equations[END_REF][START_REF] Laborde | On some nonlinear evolution systems which are perturbations of Wasserstein gradient flows[END_REF] for example) which gives separated estimates on the gradient of ρ 1 + ρ 2 and on the gradient of ρ i . Section 4 provides the proof of existence of a weak solution for system (1.1). In this section we use again the flow interchange argument to obtain stronger estimates. In section 5, we focus on the particular case where ∇V 1 = ∇V 2 . In this case, we are able to show the convergence when m → +∞ of a solution to (1.3) to a solution to (1.1) and we prove a L 1 -contraction theorem. In the final section 6, numerical simulations are presented.

Preliminaries and main results

Throughout the paper, Ω is a smooth convex bounded subset of R n . We start to recall some results from the optimal tranportation theory and then we will state our main results.

Wasserstein space

For a detailed exposition, we refer to reference textbooks [START_REF] Villani | Topics in optimal transportation[END_REF][START_REF] Villani | Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften[END_REF][START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF][START_REF] Santambrogio | Optimal Transport for Applied Mathematicians[END_REF]. We denote M + (Ω) the set of nonnegative finite Radon measures on Ω, P(Ω) the space of probability measures on Ω, and P ac (Ω), the subset of P(Ω) of probability measures on Ω absolutely continuous with respect to the Lebesgue measure. For all ρ, µ ∈ P(Ω), we denote Π(ρ, µ), the set of probability measures on Ω × Ω having ρ and µ as first and second marginals, respectively, and an element of Π(ρ, µ) is called a transport plan between ρ and µ. Then for all ρ, µ ∈ P(Ω), we denote by W 2 (ρ, µ) the Wasserstein distance between ρ and µ, defined as

W 2 2 (ρ, µ) = min ¨Ω×Ω |x -y| 2 dγ(x, y) : γ ∈ Π(ρ, µ) .
Since this optimal transportation problem is a linear problem under linear constraints, it admits a dual formulation given by

W 2 2 (ρ, µ) = sup ˆΩ ϕ(x) dρ(x) + ˆΩ ψ(y) dµ(y) : ϕ, ψ ∈ C(Ω) s.t. ϕ(x) + ψ(y) |x -y| 2 .
Optimal solutions to the dual problem are called Kantorovich potentials between ρ and µ. If ρ ∈ P ac (Ω), a well-known result proved by Brenier, [START_REF] Brenier | Polar factorization and monotone rearrangement of vector-valued functions[END_REF], states that the optimal transport plan, γ, is unique and is induced by an optimal transport map, T , i.e γ is of the form (Id × T ) # ρ, where T # ρ = µ and T is the gradient of a convex function. Moreover, the optimal transport map is given by T = Id -∇ϕ where (ϕ, ψ) is a pair of Kantorovich potentials between ρ and µ.

It is well known that P(Ω) endowed with the Wasserstein distance defines a metric space and since Ω is compact, W 2 metrizes the narrow convergence of probability measures.

Assumptions and main results

For i ∈ {1, 2}, we define V i : P(Ω) → R the potential energy associated to

V i ∈ W 1,∞ (Ω) as V i (ρ) := ˆΩ V i (x) dρ(x).
We introduce the Entropy H defined, for all probabilty measures ρ, as

H(ρ) := ´Ω H(ρ(x)) dx if ρ L |Ω , +∞ otherwise, , H(z) := z log(z) for all z ∈ R + .
Finally, for m ∈ [1, +∞), we define

F m : M + (Ω) → R ∪{+∞} as F m (ρ) := ´Ω F m (ρ(x)) dx if ρ L |Ω , +∞ otherwise, , F m (z) := z log z if m = 1, z m m-1 if m > 1. for all z ∈ R + ,(2.1)
and, for m = +∞,

F ∞ : M + (Ω) → R ∪{+∞} is defined by F ∞ (ρ) := 0 if ρ ∞ 1, +∞ otherwise. Definition 2.1 (Weak solution). • We say that (ρ 1 , ρ 2 ) : [0, +∞) → P ac (Ω) 2 is a weak solution to (1.3) if for all i ∈ {1, 2} and for all T < +∞, ρ i ∈ C 0,1/2 ([0, T ], P ac (Ω)) ∩ L 2-1/m ((0, T ), W 1,2-1/m (Ω)) ∩ L 2m-1 ((0, T ) × Ω), ρ i ∇F m (ρ 1 + ρ 2 ) ∈ L 2-1/m ((0, T ) × Ω) and for all φ ∈ C ∞ c ([0, +∞) × R n ), ˆ+∞ 0 ˆΩ [ρ i ∂ t φ -(ρ i ∇V i + ρ i ∇F m (ρ 1 + ρ 2 ) + ∇ρ i ) • ∇φ] dxdt = -ˆΩ φ(0, x)ρ i,0 (x) dx.
• We say that (ρ 1 , ρ 2 , p) : [0, +∞) → P ac (Ω) 2 × H 1 (Ω) is a weak solution to (1.1) if for all i ∈ {1, 2} and for all T < +∞,

ρ i ∈ C 0,1/2 ([0, T ], P ac (Ω)) ∩ L 2 ((0, T ), H 1 (Ω)), p ∈ L 2 ((0, T ), H 1 (Ω)) with p 0, ρ 1 + ρ 2 1 and p(1 -ρ 1 -ρ 2 ) = 0 a.e. in [0, T ] × Ω. In addition, for all φ ∈ C ∞ c ([0, +∞) × R n ), ˆ+∞ 0 ˆΩ [ρ i ∂ t φ -(ρ i ∇V i + ρ i ∇p + ∇ρ i ) • ∇φ] dxdt = -ˆΩ φ(0, x)ρ i,0 (x) dx.
The main results of this paper are Theorem 2.2. Assume that ρ 1,0 , ρ 2,0 ∈ P ac (Ω) satisfy

H(ρ 1,0 ) + H(ρ 2,0 ) + F m (ρ 1,0 + ρ 2,0 ) < +∞, (2.2) 
then (1.3) admits at least one weak solution.

and

Theorem 2.3. Assume that Ω satisfies (1.2). If (ρ 1,0 , ρ 2,0 ) ∈ K satisfies H(ρ 1,0 ) + H(ρ 2,0 ) < +∞,
then there exists at least one weak solution to (1.1).

Remark 2.4 (Remarks on possible extensions:).

• These models can be generalized to more than two species. Moreover, instead of assuming that individuals of different populations take the same space, we can generalize to densities evolving under the constraints on α 1 ρ 1 + α 2 ρ 2 , for α 1 , α 2 > 0. Then system (1.3) becomes

∂ t ρ i = div(ρ i ∇V i ) + ∆ρ i + α i div(ρ i ∇F m (α 1 ρ 1 + α 2 ρ 2 )), i = 1, 2.
and system with hard congestion becomes

   ∂ t ρ 1 -∆ρ 1 -div(ρ 1 (∇V 1 + ∇p)) = 0, ∂ t ρ 2 -∆ρ 2 -div(ρ 2 (∇V 2 + ∇p)) = 0, p 0, α 1 ρ 1 + α 2 ρ 2 1, p(1 -α 1 ρ 1 -α 2 ρ 2 ) = 0.
• These results can be generalized to more general velocities. Indeed, using the semi-implicit scheme introduced by DiFrancesco and Fagioli in [START_REF] Francesco | Measure solutions for non-local interaction PDEs with two species[END_REF] and developped in [START_REF] Laborde | On some nonlinear evolution systems which are perturbations of Wasserstein gradient flows[END_REF] or the splitting method introduced in [10], we can treat vector fields depending on the densities and which come not necessarily from a potential. These extensions allow to treat nonlocal interactions between different species, of the form

V i [ρ 1 , ρ 2 ] = K i,1 * ρ 1 + K i,2 * ρ 2 where K i,j ∈ W 1,∞ ,
which are subject to a common congestion effect .

• To simplify the exposition, during the whole paper, we deal with linear self-diffusion terms but it is possible to extend Theorems 2.2 and 2.3 to nonlinear self-diffusions. In particular, we can deal with porous medium diffusion of the form ∆ρ qi i . This can be done replacing the Entropy H(ρ i ) by the functional F qi (ρ i ). In the analysis, the individual estimates found in Proposition 3.6 and in Proposition 4.3 become L 2 ((0, T ), H 1 (Ω)) estimates on ρ q1/2 1,h and ρ q2/2 2,h (see for example [START_REF] Laborde | On some nonlinear evolution systems which are perturbations of Wasserstein gradient flows[END_REF]) without modifying the joint estimate. In addition, discret solutions are not globally supported anymore, i.e. Lemma 3.9 and Lemma 4.4 do not hold, but Proposition 3.10 and Proposition 4.7 can be recovered, see for example [START_REF] Santambrogio | Optimal Transport for Applied Mathematicians[END_REF] for m < +∞ and [START_REF] Kim | On nonlinear cross-diffusion systems: an optimal transport approach[END_REF] in the case m = ∞.

Coupling through common soft congestion

In this section, we prove Theorem 2.2 using the implicit JKO scheme, firstly introduced by Jordan, Kinderlherer and Otto in [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF]. Given a time step h > 0, we construct by induction two sequences ρ k 1,h and ρ k 2,h with the following scheme: ρ 0 i,h = ρ i,0 and for all k 0,

(ρ k+1 1,h , ρ k+1 2,h ) ∈ argmin (ρ1,ρ2)∈P ac (Ω) 2 2 i=1 W 2 2 (ρ i , ρ k i,h ) + 2h (H(ρ i ) + V i (ρ i )) + 2hF m (ρ 1 + ρ 2 ) . (3.1)
These sequences are well-defined by standard compactness and l.s.c argument. Then we define the piecewise constant interpolations ρ i,h : R + → P ac (Ω) by

ρ i,h (t) := ρ k+1 i,h , if t ∈ (kh, (k + 1)h].
In the first part of this section, we study the convergence of these sequences and then we give the proof of Theorem 2.2.

Estimates and convergences

We start retrieving classical estimates coming from the JKO scheme, [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF], and then, we develop stronger estimates using the flow interchange argument, [START_REF] Matthes | A family of nonlinear fourth order equations of gradient flow type[END_REF][START_REF] Francesco | Curves of steepest descent are entropy solutions for a class of degenerate convection-diffusion equations[END_REF]. First, the minimization scheme gives Proposition 3.1. For all T < +∞ and for all i ∈ {1, 2}, there exists a constant C < +∞ such that for all k ∈ N and for all h with kh T and let N = T h , we have

H(ρ k i,h ) C, (3.2) 
F m (ρ k 1,h + ρ k 2,h ) C, (3.3) 
N -1 k=0 W 2 2 (ρ k i,h , ρ k+1 i,h ) Ch. (3.4)
Proof. These results are obtained easily taking ρ i = ρ k i,h as competitors in (3.1), see [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF].

Remark 3.2. Notice that estimate (3.4) does not depend on m. This Remark will be useful in section 5 to show that a solution to (1.3) converges to a solution to (1.1).

In the next proposition, stronger estimates are obtained in order to pass to the limit in the nonlinear diffusive term. The main argument to prove this proposition is the flow interchange argument, introduced in [START_REF] Matthes | A family of nonlinear fourth order equations of gradient flow type[END_REF]. First we recall the definition of a κ-flow. Definition 3.3. A semigroup S Ψ : R + ×P ac (Ω) → P ac (Ω) is a κ-flow for the functional Ψ : P ac (Ω) → R ∪{+∞} with respect to W 2 if, for all ρ ∈ P ac (Ω), the curve s → S s Ψ [ρ] is absolutely continuous on R + and satisfies the evolution variational inequality (EVI)

1 2 d + dσ | σ=s W 2 2 (S s Ψ [ρ], ρ) + κ 2 W 2 2 (S s Ψ [ρ], ρ) Ψ(ρ) -Ψ(S s Ψ [ρ]), (3.5) 
for all s > 0 and for all ρ ∈ P ac (Ω) such that Ψ(ρ) < +∞, where

d + dt f (t) := lim sup s→0 + f (t + s) -f (t) s .
In [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF], the authors showed that the fact a functional admits a κ-flow is equivalent to κdisplacement convexity. Proposition 3.4. For all T > 0, there exists a constant C T > 0 such that,

ρ 1/2 1,h 2 L 2 ((0,T ),H 1 (Ω)) + ρ 1/2 2,h 2 L 2 ((0,T ),H 1 (Ω)) + 1 m (ρ 1,h + ρ 2,h ) m/2 2 L 2 ((0,T ),H 1 (Ω)) C T . (3.6)
Proof. We use the flow interchange argument, introduced in [START_REF] Matthes | A family of nonlinear fourth order equations of gradient flow type[END_REF], to find a stronger estimate as in [START_REF] Francesco | Curves of steepest descent are entropy solutions for a class of degenerate convection-diffusion equations[END_REF][START_REF] Laborde | On some nonlinear evolution systems which are perturbations of Wasserstein gradient flows[END_REF]. In other words, we perturb ρ k 1,h and ρ k 2,h by the heat flow. Let η i be the solution to

   ∂ t η i = ∆η i in (0, T ) × Ω, ∇η i • ν = 0 in (0, T ) × ∂Ω, η i|t=0 = ρ k i,h . (3.7) 
Since the Entropy is geodesically convex then the heat flow is a 0-flow of the Entropy H, and satisfies the Evolution Variational Inequality, (3.5), see [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF][START_REF] Villani | Topics in optimal transportation[END_REF][START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF][START_REF] Daneri | Eulerian calculus for the displacement convexity in the Wasserstein distance[END_REF][START_REF] Santambrogio | Optimal Transport for Applied Mathematicians[END_REF],

1 2 d + dσ |σ=s W 2 2 (η i (s), ρ) H(ρ) -H(η i (s)), (3.8) 
for all s > 0 and ρ ∈ P ac 2 (Ω). Taking (η 1 (s), η 2 (s)) as a competitor in the minimization (3.1), we get

2 i=1 1 2 d + ds W 2 2 (η i (s), ρ k-1 i,h ) |s=0 +h d + ds 2 i=1 (H(η i (s)) + V i (η i (s))) + F m (η 1 (s) + η 2 (s)) |s=0 0.
(3.9)

Since η i (s) is a smooth positive function for s > 0, the following computations are justified

∂ s 2 i=1 H(η i (s)) +V i (η i (s))) + F m (η 1 (s) + η 2 (s)) = 2 i=1 ˆΩ ∆η i (s)((1 + log(η i (s))) + V i + ˆΩ ∆(η 1 (s) + η 2 (s))F m (η 1 (s) + η 2 (s)) = - 2 i=1 ˆΩ |∇η i (s)| 2 η i (s) + ˆΩ ∇V i • ∇η i (s) -ˆΩ |∇(η 1 (s) + η 2 (s))| 2 F m (η 1 (s) + η 2 (s)).
(3.10)

In addition, Young's inequality gives

-ˆΩ ∇V i (s) • ∇η i ˆΩ |∇V i ||∇η i (s)| 1 2 ˆΩ |∇V i | 2 η i (s) + 1 2 ˆΩ |∇η i (s)| 2 η i (s)
Then, we have

∂ s 2 i=1 (H(η i (s)) + V i (η i (s))) + F m (η 1 (s) + η 2 (s)) 2 i=1 - 1 2 
ˆΩ |∇η i (s)| 2 η i (s) + 1 2 ˆΩ |∇V i | 2 η i (s) -ˆΩ |∇(η 1 (s) + η 2 (s))| 2 F m (η 1 (s) + η 2 (s)). (3.11) By definition of F m , for m 1, F m (z) = mz m-2 for all z 0 and, since V i ∈ W 1,∞ (Ω), ∂ s 2 i=1 (H(η i (s)) + V i (η i (s))) + F m (η 1 (s) + η 2 (s)) C - 1 2 2 i=1 ˆΩ |∇η i (s) 1/2 | 2 - 4 m ˆΩ |∇(η 1 (s) + η 2 (s)) m/2 | 2 . (3.12)
By a lower semi-continuity argument,

1 2 2 i=1 ˆΩ |∇(ρ k i,h ) 1/2 | 2 + 4 m ˆΩ |∇(ρ k 1,h + ρ k 2,h ) m/2 | 2 C - d + ds 2 i=1 (H(η i (s)) + V i (η i (s))) + F m (η 1 (s) + η 2 (s)) |s=0 .
Combining with (3.9) and (3.8), we obtain

h 2 i=1 ˆΩ |∇(ρ k i,h ) 1/2 | 2 + 4h m ˆΩ |∇(ρ k 1,h + ρ k 2,h ) m/2 | 2 2 i=1 H(ρ k-1 i,h ) -H(ρ k i,h ) + Ch.
Then summing over k, we obtain

ρ 1/2 1,h 2 L 2 ((0,T ),H 1 (Ω)) + ρ 1/2 2,h 2 L 2 ((0,T ),H 1 (Ω)) + 1 m (ρ 1,h + ρ 2,h ) m/2 2 L 2 ((0,T ),H 1 (Ω)) C T ,
where we use the fact that ρ

1/2 i,h 2 
L 2 ((0,T )×Ω) = T and 1 m (ρ 1,h + ρ 2,h ) m/2 2 L 2 ((0,T )×Ω)
CT by (3.3).

Remark 3.5. The bound on ρ 1/2 i,h L 2 ((0,T ),H 1 (Ω)) does not depend on m. However, if we multiply the Entropy H by a small parameter ε > 0 in the JKO scheme (3.1), individual bounds blow up as ε goes to 0. Now we can deduce the following convergences. Proposition 3.6. For all T < +∞, there exist ρ 1 and ρ 2 in C 0,1/2 ([0, T ], P ac (Ω)) such that, up to a subsequence,

1. ρ i,h converges to ρ i in L ∞ ([0, T ], P ac (Ω)), 2. ρ i,h converges strongly to ρ i in L 1 ((0, T ) × Ω), 3. (ρ 1,h + ρ 2,h ) m/2 converges strongly to (ρ 1 + ρ 2 ) m/2 and ∇(ρ 1,h + ρ 2,h ) m/2 converges weakly to ∇(ρ 1 + ρ 2 ) m/2 in L 2 ((0, T ) × Ω).
Proof.

1. The first convergence is classical. We use the refined version of Ascoli-Arzelà's Theorem, [3, Proposition 3.3.1], and we immediately deduce that there exists a subsequence such that, for i = 1, 2, ρ i,h converges to

ρ i ∈ C 1/2 ([0, T ], P ac (Ω)) in L ∞ ([0, T ], P ac (Ω)).
The next two strong convergence results are obtained applying an extension of the Aubin-Lions Lemma proved by Rossi and Savaré in [START_REF] Rossi | Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces[END_REF]Theorem 2]. In the sequel, we work with the convergent subsequence obtained in the first step.

Let

G : L 1 (Ω) → (-∞, +∞] and g : L 1 (Ω) × L 1 (Ω) → [0, +∞] defined by G(ρ) := ρ 1/2 H 1 (Ω) if ρ ∈ P ac (Ω) and ρ 1/2 ∈ H 1 (Ω) +∞ otherwise, and 
g(ρ, µ) := W 2 (ρ, µ) if ρ, µ ∈ P(Ω) +∞ otherwise,
G is l.s.c and its sublevels are relatively compact in L 1 (Ω) (see [START_REF] Francesco | Curves of steepest descent are entropy solutions for a class of degenerate convection-diffusion equations[END_REF][START_REF] Laborde | On some nonlinear evolution systems which are perturbations of Wasserstein gradient flows[END_REF]) and g is a pseudodistance. According to (3.4) and (3.6), we have

sup h 1 ˆT 0 G(ρ i,h (t)) dt < +∞, and lim τ 0 sup h 1 ˆT -τ 0 g(ρ i,h (t + τ ), ρ i,h (t)) dt = 0,
then applying Rossi-Savaré's Theorem, there exists a subsequence, not-relabeled, such that for i = 1, 2, ρ i,h converges in measure with respect to t in L 1 (Ω) to ρ i . Moreover by Lebesgue's dominated convergence Theorem, ρ i,h converges to ρ i strongly in L 1 ((0, T ) × Ω) .

3. With the same argument, we get a strong convergence on a nonlinear quantity of

ρ 1,h + ρ 2,h . Let G define by G(ρ) := ρ m/2 H 1 (Ω) if ρ ∈ P ac (Ω) and ρ m/2 ∈ H 1 (Ω) +∞ otherwise,
and g defined as before. We want to apply Theorem 2 of [START_REF] Rossi | Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces[END_REF] in L m (Ω) over the sequence

ρ 1,h +ρ 2,h 2 
. By (3.6), we obtain

sup h 1 ˆT 0 G ρ 1,h (t) + ρ 2,h (t) 2 dt < +∞.
Since, it is well-known that for all ρ 1 , ρ 2 , µ 1 , µ 2 ∈ P ac (Ω),

W 2 2 ρ 1 + ρ 2 2 , µ 1 + µ 2 2 1 2 W 2 2 (ρ 1 , µ 1 ) + 1 2 W 2 2 (ρ 2 , µ 2 ),
by (3.4), we obtain

lim τ 0 sup h 1 ˆT -τ 0 g ρ 1,h + ρ 2,h 2 (t + τ ), ρ 1,h + ρ 2,h 2 (t) dt = 0.
Theorem 2 in [START_REF] Rossi | Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces[END_REF] and Lebesgue's dominated convergence Theorem imply that ρ 1,h + ρ 2,h converges strongly to 

ρ 1 + ρ 2 in L m ((0, T ) × Ω). In addition, Krasnoselskii's Theorem, [17, Chapter 2], implies that (ρ 1,h + ρ 2,h ) m/2 converges to (ρ 1 + ρ 2 ) m/2 in L 2 ((0, T ) × Ω). To conclude, ∇(ρ 1,h + ρ 2,h ) m/2 is bounded in L 2 ((0, T ) × Ω), thanks to (3.6), then ∇(ρ 1,h + ρ 2,h ) m/2 weakly converges to ∇(ρ 1 + ρ 2 ) m/2 in L 2 ((0, T ) × Ω). Remark 3.7. It is possible to obtain a strong convergence result in L 1 ((0, T ) × Ω) for the pressure F m (ρ 1,h + ρ 2,h ). Indeed, since ρ 1,h + ρ 2,h strongly converges in L m ((0, T ) × Ω), then up to a subsequence, F m (ρ 1,h +ρ 2,h ) → F m (ρ 1 +ρ 2 ) a.e
(0, T ) × Ω. Consequently, ρ 2,h = (ρ 1,h + ρ 2,h ) -ρ 1,h converges pointwise on (0, T ) × Ω. Moreover, ˆT 0 ˆΩ ρ 2,h (t, x) m dxdt ˆT 0 ˆΩ(ρ 1,h (t, x) + ρ 2,h (t, x)) m dxdt C T .
Then Vitali's convergence Theorem implies that ρ 2,h strongly converges to ρ 2 in L 1 ((0, T ) × Ω).

Existence of weak solutions to (1.3)

In this section, we start by giving the optimality conditions for (3.1). Instead of using horizontal perturbations, ρ i,ε = Φ ε# ρ k+1 i,h , as introduced in [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF] by Jordan, Kinderlherer and Otto, we will perturb ρ k+1 i,h with vertical perturbations introduced in [START_REF] Buttazzo | A model for the optimal planning of an urban area[END_REF][START_REF] Carlier | A variational model for urban planning with traffic congestion[END_REF], and revisited in [START_REF] Santambrogio | Gradient flows in Wasserstein spaces and applications to crowd movement[END_REF][START_REF] Santambrogio | Optimal Transport for Applied Mathematicians[END_REF], which consist in taking ρ i,ε = (1 -ε)ρ k+1 i,h + ερ i , for any ρi ∈ L ∞ (Ω). Before giving the optimality conditions for (3.1), we state the following Lemma. Lemma 3.9. For all k 1, ρ k i,h > 0 a.e. and log(ρ k i,h ) ∈ L 1 (Ω).

Proof. The proof is the same as [START_REF] Santambrogio | Optimal Transport for Applied Mathematicians[END_REF]Lemma 8.6].

This Lemma ensures the uniqueness (up to a constant) of the Kantorovich potential in the transport from ρ k+1 i,h to ρ k i,h and then, we can easily compute the first variation of W 2 (•, ρ k i,h ) according to [START_REF] Santambrogio | Optimal Transport for Applied Mathematicians[END_REF]Proposition 7.17]. Proposition 3.10. For i ∈ {1, 2}, ρ k+1 i,h satisfies

∇V i + ∇ log(ρ k+1 i,h ) + ∇F m (ρ k+1 1,h + ρ k+1 2,h ) + ∇ϕ k+1 i,h h = 0 ρ k+1 i,h -a.e, (3.13) 
where ϕ k+1 i,h is the (unique) Kantorovich potential from ρ k+1 i,h to ρ k i,h .

Proof. The proof is a straightforward adaptation of classical result, see for instance [START_REF] Santambrogio | Optimal Transport for Applied Mathematicians[END_REF].

A classical consequence of the previous Proposition is that ρ 1,h and ρ 2,h are solutions to a discrete approximation of system (1.3).

Proposition 3.11. Let h > 0, for all T > 0, let N such that N = T h . Then for all (φ 1 , φ 2 ) ∈ C ∞ c ([0, T ) × R n ) 2 and for all i ∈ {1, 2}, ˆT 0 ˆΩ ρ i,h (t, x)∂ t φ i (t, x) dxdt + ˆΩ ρ i,0 (x)φ i (0, x) dx = h N -1 k=0 ˆΩ ∇V i (x) • ∇φ i (t k , x)ρ k+1 i,h (x) dx + h N -1 k=0 ˆΩ ∇ρ k+1 i,h (x) • ∇φ i (t k , x) dx + h N -1 k=0 ˆΩ ∇F m (ρ k+1 1,h + ρ k+1 2,h ) • ∇φ i (t k , x)ρ k+1 i,h (x) dx + N -1 k=0 ˆΩ×Ω R[φ i (t k , •)](x, y)dγ k i,h (x, y)
where

t k = hk (t N := T ) and γ k i,h is the optimal transport plan in W 2 (ρ k i,h , ρ k+1 i,h ). Moreover, R is defined such that, for all φ ∈ C ∞ c ([0, T ) × R n ), |R[φ](x, y)| 1 2 D 2 φ L ∞ ([0,T )×R n ) |x -y| 2 .
Proof. We multiply by ρ k+1 i,h and take the L 2 -inner product between the l.h.s. of (3.13) and

∇φ i (t k , •), for any φ i ∈ C ∞ c ([0, T ) × R n
) and the proof is the same as in [START_REF] Agueh | Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory[END_REF][START_REF] Laborde | On some nonlinear evolution systems which are perturbations of Wasserstein gradient flows[END_REF], for example. Another consequence of (3.13) is an improvment of the regularity of ρ i,h . Proposition 3.12. For all T > 0 and i = 1, 2, we have

• (ρ 1,h + ρ 2,h ) 1/2 ∇F m (ρ 1,h + ρ 2,h ) is bounded in L 2 ((0, T ) × Ω), • ρ i,h , ρ 1,h + ρ 2,h are bounded in L 2m-1 (((0, T ) × Ω), • ∇F m (ρ 1,h +ρ 2,h )ρ i,h is bounded in L 2-1/m ((0, T )×Ω) and ρ i,h is bounded in L 2-1/m ((0, T ), W 1,2-1/m (Ω)).
Proof. The first item is a direct consequence of (3.13), using Proposition 3.6, see for example [START_REF] Kim | On nonlinear cross-diffusion systems: an optimal transport approach[END_REF], and by Poincaré-Wirtinger inequality, we prove the second item. Now we will prove the third item. The first part is straightforward applying Hölder's inequality,

∇F m (ρ 1,h + ρ 2,h )ρ i,h L 2-1/m ∇F m (ρ 1,h + ρ 2,h )ρ 1/2 i,h 1-1/2m L 2 ρ i,h 1/2m
L 2m-1 < +∞. According to (3.13), we obtain a.e.

|∇ρ k+1 i,h | 2-1/m C   ∇ϕ k+1 i,h ρ k+1 i,h h 2-1/m + (|∇V i |ρ k+1 i,h ) 2-1/m + (|∇F m (ρ k+1 1,h + ρ k+1 2,h )|ρ k+1 i,h ) 2-1/m   .
We have already seen that ∇F m (ρ

1,h + ρ 2,h )ρ i,h is bounded in L 2-1/m ((0, T ) × Ω) and since ρ i,h ∈ L 1 ∩ L 2m-1 ((0, T ) × Ω), ∇V i ρ i,h L 2-1/m C.
To deal with the last term, notice that by Hölder's inequality,

ˆΩ ∇ϕ k+1 i,h ρ k+1 i,h h 2-1/m 1 h 2-1/m W 2 (ρ k i,h , ρ k+1 i,h ) 2-1/m ρ k+1 i,h (2m-1)/2m L 2m-1
, and then,

h N -1 k=0 ˆΩ ∇ϕ k+1 i,h ρ k+1 i,h h 2-1/m Ch 1/m-1 N 1/2m N -1 k=0 W 2 2 (ρ k i,h , ρ k+1 i,h ) (2m-1)/2m CT 1/2m N -1 k=0 W 2 2 (ρ k i,h , ρ k+1 i,h ) h (2m-1)/2m
C T , by (3.2) where T = N h. Then ∇ρ i,h is bounded in L 2-1/m ((0, T ) × Ω) and we conclude the proof with Poincaré-Wirtinger inequality. Now we are able to prove Theorem 2.2.

Proof of Theorem 2.2. We have to pass to the limit in all terms in Proposition 3.11 as h 0. The remainder term converges to 0 using the total square distance estimate (3.4) and the linear term converges to

ˆT 0 ˆΩ ρ i ∂ t φ i - ˆT 0 ˆΩ ∇V i • ∇φ i ρ i ,
when h goes to 0 thanks to Proposition 3.6. Furthermore, since ∇ρ i,h is bounded in L 2-1/m ((0, T )×Ω), because of Proposition 3.12 and the fact that ρ i,h strongly converges to ρ i in L 1 ((0, T ) × Ω), we conclude that ∇ρ i,h converges weakly to ∇ρ i in L 2-1/m ((0, T ) × Ω). This implies that the individual diffusion term converges to

ˆT 0 ˆΩ ∇φ i • ∇ρ i dxdt.
It remains to study the convergence of the nonlinear cross diffusion term. First, we remark that ∇F m (ρ k+1 1,h + ρ k+1 2,h ) can be rewritten as

∇F m (ρ k+1 1,h + ρ k+1 2,h ) = 2 (ρ k+1 1,h + ρ k+1 2,h ) m/2 ρ k+1 1,h + ρ k+1 2,h ∇(ρ k+1 1,h + ρ k+1 2,h ) m/2 . Then ∇F m (ρ k+1 1,h + ρ k+1 2,h )ρ k+1 i,h = 2G 1-m/2 (ρ k+1 1,h , ρ k+1 2,h )∇(ρ k+1 1,h + ρ k+1 2,h ) m/2 ,
where G α : R + × R + → R is the continuous function (for α < 1) defined by

G α (x, y) := x (x+y) α if x > 0, y 0, 0 otherwise.
As m 1, 1 -m 2 < 1 so G 1-m/2 is continuous and since, up to a subsequence, ρ i,h converges to ρ i a.e., we obtain that G 1-m/2 (ρ 1,h , ρ 2,h ) converges to G 1-m/2 (ρ 1 , ρ 2 ) a.e. in (0, T ) × Ω. In addition,

G 1-m/2 (ρ 1,h , ρ 2,h ) = (ρ 1,h + ρ 2,h ) m/2 ρ 1,h ρ 1,h + ρ 2,h (ρ 1,h + ρ 2,h ) m/2 . (3.14)
Up to a subsequence, ρ i,h and ρ 1,h + ρ 2,h converge a.e. in (0, T ) × Ω, and, since

(ρ 1,h + ρ 2,h ) m/2 converges to (ρ 1 + ρ 2 ) m/2 in L 2 ((0, T ) × Ω), there exists a function g ∈ L 2 ((0, T ) × Ω) such that, |(ρ 1,h + ρ 2,h ) m/2 | g. Then Lebesgue's dominated convergence Theorem implies that G 1-m/2 (ρ 1,h , ρ 2,h ) converges strongly in L 2 ((0, T ) × Ω) to G 1-m/2 (ρ 1 , ρ 2 ). Moreover, ∇(ρ k+1 1,h + ρ k+1 2,h ) m/2 converges weakly in L 2 ((0, T ) × Ω), by Proposition 3.6, then ∇F m (ρ 1,h + ρ 2,h )ρ i,h converges weakly in L 1 ((0, T ) × Ω) to ∇F m (ρ 1 + ρ 2 )ρ i and h N -1 k=0 ˆΩ ∇F m (ρ k+1 1,h + ρ k+1 2,h ) • ∇φ i (t k , x)ρ k+1 i,h (x) dx → ˆT 0 ˆΩ ∇F m (ρ 1 + ρ 2 ) • ∇φ i ρ i dxdt.
In addition, by Proposition 3.12, we obtain that ∇F m (ρ 1 + ρ 2 )ρ i ∈ L 2-1/m ((0, T ) × Ω), which concludes the proof.

Coupling by hard congestion

In this section we prove the existence of a weak solution to (1.1), i.e. Theorem 2.3. This system can be seen as gradient flow in a Wasserstein product space. Using the Jordan-Kinderlherer-Otto scheme, we construct two sequences defined in the following way: let h > 0 be a time step, we construct a sequence

(ρ k 1,h , ρ k 2,h ) with (ρ 0 1,h , ρ 0 2,h ) = (ρ 1,0 , ρ 2,0 ) and (ρ k+1 1,h , ρ k+1 2,h ) is a solution to inf (ρ1,ρ2)∈K 2 i=1 1 2h W 2 2 (ρ i , ρ k i,h ) + H(ρ i ) + V i (ρ i ) , (4.1) 
where

K := (ρ 1 , ρ 2 ) ∈ P ac (Ω) 2 : ρ 1 + ρ 2 1 and |Ω| > 2.
The direct method shows that these sequences are well-defined. As before, we define the piecewise constant interpolations ρ i,h : R + → P ac (Ω) by

ρ i,h (t) := ρ k+1 i,h , if t ∈ (kh, (k + 1)h].

Estimates and convergences

In the following proposition, we list the classical estimates coming from the Wasserstein gradient flow theory.

Proposition 4.1. Let T > 0. Then there exists C > 0 such that for i ∈ {1, 2} and for all k 0 such that k N := T h ,

ρ k 1,h + ρ k 2,h 1, H(ρ k i,h ) C, N -1 k=0 W 2 2 (ρ k i,h , ρ k+1 i,h ) Ch. (4.2)
As in the previous section, we need stronger estimates in order to handle the very degenerate cross diffusion term, div(ρ i ∇p). Proposition 4.2. For all T > 0, there exists a constant C T > 0 such that

ρ 1/2 1,h L 2 ((0,T ),H 1 (Ω)) + ρ 1/2 2,h L 2 ((0,T ),H 1 (Ω)) C T . (4.3)
Proof. We apply the flow interchange technique as previously, Proposition 3.4. Keeping the same notations as in the previous section, we denote by η i the heat flow with initial condition ρ k i,h . Since the heat flow decreases the L ∞ -norm, (η 1 (s), η 2 (s)), defined in (3.7), is admissible for the minimization problem (4.1), for all s 0. Then the same computations as in Proposition 3.4 give the result.

Consequently, we deduce the following convergences.

Proposition 4.3. For all T > 0, there exist ρ 1 and ρ 2 in C 0,1/2 ([0, T ], P ac (Ω)) such that, up to a subsequence,

1. ρ i,h converges to ρ i in L ∞ ([0, T ], P ac (Ω)),
2. ρ i,h converges strongly to ρ i in L p ((0, T ) × Ω), for all p ∈ [1, +∞) and ∇ρ i,h converges narrowly to ∇ρ i .

Proof. The total square distance estimate (4.2) and the refined version of Ascoli-Arzelà's Theorem, [3, Proposition 3.3.1], implies that ρ i,h converges to

ρ i ∈ C 1/2 ([0, T ], P ac (Ω)) in L ∞ ([0, T ], P ac (Ω)).
As in Proposition 3.6, applying [42, Theorem 2], we obtain that ρ i,h converges strongly to ρ i in L 1 ((0, T ) × Ω). And noticing that ρ i,h , ρ i 1 a.e., we deduce that the strong convergence holds in L p ((0, T ) × Ω), for all p ∈ [1, +∞). To conclude, we remark that ∇ρ i,h = 2ρ

1/2 i,h ∇ρ 1/2 i,h , ρ 1/2 i,h strongly converges to ρ 1/2 i in L 2 ((0, T ) × Ω) and ∇ρ 1/2 i,h weakly converges to ∇ρ 1/2 i in L 2 ((0, T ) × Ω).
We end this section by a lemma implying the uniqueness of the pair of Kantorovich potentials from ρ k+1 i,h to ρ k i,h and then the existence of the first variation of W 2 2 (•, ρ k i,h ) (Propositions 7.18 and 7.17 from [START_REF] Santambrogio | Optimal Transport for Applied Mathematicians[END_REF]).

Lemma 4.4. Minimizers of (4.1) satisfy ρ k i,h > 0 a.e. and log(ρ k i,h ) ∈ L 1 (Ω). Proof. The proof is the same as in [START_REF] Santambrogio | Optimal Transport for Applied Mathematicians[END_REF]Lemma 8.5]. Indeed we can use a constant perturbation ρ because (ρ, ρ) is admissible in (4.1) (ρ + ρ = 2/|Ω| 1 by (1.2)).

Pressure field associated to the constraint

In this section, we introduce a discrete pressure associated to the constraint ρ k+1 1,h + ρ k+1 2,h

1. This common pressure is obtained arguing as in [START_REF] Maury | A macroscopic crowd motion model of gradient flow type[END_REF] in the case of one population.

Lemma 4.5. Let (ρ k+1 1,h , ρ k+1 2,h ) be the unique solution to (4.1). Then for all (ρ 1 , ρ 2 ) ∈ K, ˆΩ ψ k+1

1,h (ρ 1 -ρ k+1 1,h ) + ˆΩ ψ k+1 2,h (ρ 2 -ρ k+1 2,h ) 0, (4.4) 
where

ψ k+1 i,h = ϕ k+1 i,h h + V i + 1 + log(ρ k+1 i,h
) and ϕ k+1 i,h is the optimal (up to a constant) Kantorovich potential in W 2 (ρ k+1 i,h , ρ k i,h ). Proof. The proof of this result is the same as Lemma 3.1 in [START_REF] Maury | A macroscopic crowd motion model of gradient flow type[END_REF].

Remark 4.6. Notice that (4.4) can be rewritten as

ˆΩ ψ k 1,h f 1 + ˆΩ ψ k 2,h f 2 0, for all functions f 1 , f 2 ∈ L ∞ (Ω) such that f 1 + f 2 1 -ρ k 1,h -ρ k 2,h ε , f i -ρ k i,h ε and ˆΩ f i = 0, (4.5) 
for all 0 < ε 1.

In the next proposition, we introduce the common discrete pressure.

Proposition 4.7. There exists p k h 0 such that for all, k 1,

p k h (1 -ρ k 1,h -ρ k 2,h ) = 0 a.e.
In addition, p k h satisfies

∇p k h = - ∇ϕ k i,h h -∇V i -∇ log(ρ k i,h ) a.e, (4.6 
)

for i = 1, 2.
Proof. Let S := {ρ k 1,h + ρ k 2,h = 1} be the set where the constraint is saturated. Firstly, we choose f 2 = 0 on Ω and f 1 = 0 on S in Remark 4.6. Then we have ˆSc

ψ k 1,h f 1 0, for all f 1 ∈ L ∞ (Ω)
. This implies that there exists a constant C 1 such that ψ k 1,h = C 1 a.e. on S c . Applying the same argument with f 1 = 0 on Ω and f 2 = 0 on S, we find a constant C 2 such that ψ k 2,h = C 2 a.e. on S c . And since f 1 and f 2 satisfy (4.5), we have

ˆΩ(ψ k 1,h -C 1 )f 1 + ˆΩ(ψ k 2,h -C 2 )f 2 0.
Now, choosing f 1 = f and f 2 = -f on S and by symmetry (f 1 = -f and f 2 = f ), we find ˆS((ψ k

1,h -C 1 ) -(ψ k 2,h -C 2 ))f = 0, for all f ∈ L ∞ (Ω). We conclude that (ψ k 1,h -C 1 ) = (ψ k 2,h -C 2 ) =: ψ k h a.e.

on S and consequently

ˆS ψ k h (f 1 + f 2 ) 0.
On the other hand, since f 1 + f 2 0 on S, ψ k h 0 a.e on S, then we define p k h by

p k h := (C 1 -ψ k 1,h ) + = (C 2 -ψ k 2,h ) + .
By definition, we have p k h (1 -ρ k 1,h -ρ k 2,h ) = 0 a.e. and since ψ k i,h is differentiable a.e., the proof is completed.

Now, we define the piecewise interpolation p

h : R + → L 1 (Ω) by p h (t) := p k+1 h , if t ∈ (kh, (k + 1)h].
Notice that p h (t) 0 and for all t 0, p h (t)(1-ρ 1,h (t)-ρ 2,h (t)) = 0 a.e. Therefore, we immediately deduce the following estimate on the pressure.

Proposition 4.8. For all T > 0, p h is bounded in L 2 ((0, T ), H 1 (Ω)).

Proof. First, we prove that ∇p h is bounded in L 2 ((0, T ) × Ω) and then we will conclude using Poincaré's inequality. By definition of p k+1 h , we have

ˆΩ |∇p k+1 h | 2 (ρ k+1 1,h + ρ k+1 2,h ) = 2 i=1 ˆΩ |∇ψ k+1 i,h | 2 ρ k+1 i,h C 2 i=1   ˆΩ ∇φ k+1 i,h h 2 ρ k+1 i,h + ˆΩ |∇V i | 2 ρ k+1 i,h + ˆΩ |∇ρ k+1 i,h | 2 ρ k+1 i,h   C 2 i=1 1 h 2 W 2 2 (ρ k i,h , ρ k+1 i,h ) + C + (ρ k+1 i,h ) 1/2 H 1 (Ω) ,
where the last line is obtained using the fact that ∇V i ∈ L ∞ (Ω). Summing the previous inequalities over k and by (4.1) and (4.3), we obtain that

ˆT 0 ˆΩ |∇p h (t)| 2 (ρ 1,h (t) + ρ 2,h (t)) C.
Since p h (t) = 0 a.e. on {ρ 1,h (t) + ρ 2,h (t) < 1}, we deduce

ˆT 0 ˆΩ |∇p h (t)| 2 = ˆT 0 ˆΩ |∇p h (t)| 2 (ρ 1,h (t) + ρ 2,h (t)) C.
We conclude with the same argument as [START_REF] Mészáros | Advection-diffusion equations with density constraints[END_REF]. Using Poincaré's inequality, since

|{p h (t) = 0}| |{ρ 1,h (t) + ρ 2,h (t) < 1}| |Ω| -2 > 0, by (1.
2), we obtain that p h is bounded in L 2 ((0, T ), H 1 (Ω)).

Using Proposition 4.8, the regularity of ρ i can be improved.

Corollary 4.9. For all T > 0 and i = 1, 2, ρ i,h is bounded in L 2 ((0, T ), H 1 (Ω)).

Proof. By (4.6) combined with ρ k+1 i,h

1, we obtain that

|∇ρ k+1 i,h | 2 C |∇ϕ k+1 i,h | 2 h 2 ρ k+1 i,h + |∇V i | 2 ρ k+1 i,h + |∇p k+1 h | 2 a.e.
Since, by Proposition 4.8, ∇p h is bounded in L 2 ((0, T ) × Ω) and

h N -1 k=0 ˆΩ |∇ϕ k+1 i,h | 2 h 2 ρ k+1 i,h C,
because of (4.1), we have

∇ρ i,h L 2 ((0,T )×Ω) C.
The proof is concluded noticing that

ρ i,h L 2 ((0,T )×Ω) ρ i,h 1/2 L ∞ ((0,T )×Ω) ρ i,h 1/2 L 1 ((0,T )×Ω) T 1/2 .
To analyse the pressure field p h , we recall the following lemma, [START_REF] Maury | A macroscopic crowd motion model of gradient flow type[END_REF][START_REF] Mészáros | Advection-diffusion equations with density constraints[END_REF] 

p h 0, p h (1 -ρ h ) = 0, ρ h 1,
and that p h p weakly in L 2 ([0, T ], H 1 (Ω)) and ρ h → ρ uniformly in P(Ω).

Then p(1 -ρ) = 0.

Consequently, one has

Proposition 4.11. There exists p ∈ L 2 ([0, T ], H 1 (Ω)) such that p h converges weakly in L 2 ([0, T ], H 1 (Ω)) to p, where p satisfies

p 0, p(1 -ρ 1 -ρ 2 ) = 0, ρ 1 + ρ 2 1 a.e. in [0, T ] × Ω.
In addition, ρ i,h ∇p h narrowly converges to ρ i ∇p.

Proof. We apply Lemma 4.10 to ρ h := ρ 1,h + ρ 2,h and p h . According to Proposition 4.8, p h weakly converges in L 2 ((0, T ), H 1 (Ω)) to p such that

p 0, p(1 -ρ 1 -ρ 2 ) = 0, ρ 1 + ρ 2 1. (4.7)
Moreover, using the estimate on p h , we know that ∇p h weakly converges to ∇p in L 2 ((0, T ) × Ω). Then since ρ i,h strongly converges to ρ i in L 2 ((0, T ) × Ω) (Proposition 4.3), by strong-weak convergence, we obtain that ρ i,h ∇p h narrowly converges to ρ i ∇p.

Existence of weak solutions to (1.1)

Arguing as in Proposition 3.11, (ρ 1,h , ρ 2,h ) is solution to a discrete approximation of system (1.1).

Proposition 4.12. Let h > 0, for all T > 0, let

N such that N = T h . Then for all (φ 1 , φ 2 ) ∈ C ∞ c ([0, T ) × R n ) 2 and for all i ∈ {1, 2}, ˆT 0 ˆΩρ i,h (t, x)∂ t φ i (t, x) dxdt + ˆΩ ρ i,0 (x)φ i (0, x) dx = h N -1 k=0 ˆΩ ∇V i (x) • ∇φ i (t k , x)ρ k+1 i,h (x) dx + h N -1 k=0 ˆΩ ∇ρ k+1 i,h (x) • ∇φ i (t k , x) dx + h N -1 k=0 ˆΩ ∇p k+1 h • ∇φ i (t k , x)ρ k+1 i,h (x) dx + N -1 k=0 ˆΩ×Ω R[φ i (t k , •)](x, y)dγ k i,h (x, y)
where t k = hk (t N := T ) and γ k i,h is the optimal transport plan in

W 2 (ρ k i,h , ρ k+1 i,h ). Moreover, R is defined such that, for all φ ∈ C ∞ c ([0, T ) × R n ), |R[φ](x, y)| 1 2 D 2 φ L ∞ ([0,T )×R n ) |x -y| 2 .
Combining Propositions 4.1, 4.3, 4.11 and 4.12, the rest of the proof of Theorem 2.3 is identical to the proof of Theorem 2.2 in the previous section.

Remark 4.13. As in Remark 3.8, it is possible to drop one diffusion. Say we drop the individual Entropy for the second species, ρ 2 . The difficulty is to pass to the limit in the nonlinear term ρ 2,h ∇p h . This term can be rewritten as

(ρ 1,h + ρ 2,h )∇p h -ρ 1,h ∇p h .
Taking advantage of the definition of p h , we deduce that (ρ 1,h + ρ 2,h )∇p h = ∇p h a.e and then converges weakly to ∇p = (ρ 1 + ρ 2 )∇p in L 2 ((0, T ) × Ω). Moreover, since ρ 1,h strongly converges in L 2 ((0, T ) × Ω) by Proposition 4.3 and ∇p h converges weakly in L 2 ((0, T ) × Ω) we can pass to the limit in the second term by strong-weak convergence. Then we deduce that ρ 2,h ∇p h weakly converges to ρ 2 ∇p.

Systems with a common drift

In this section, we focus on the special case where ∇V 1 = ∇V 2 =: ∇V ∈ L ∞ (Ω). Although this asumption is very restrictive, it allows us to obtain better estimates on solutions (Proposition 5.2 and Proposition 3.12) which are hard to get in the general case due to the lack of convexity of F m (ρ 1 + ρ 2 ), see Remark 5.1. Therefore, in this case, we will be able to prove the convergence of a solution to (1.3) to a solution to (1.1), when m goes to +∞. Moreover, under some regularity we give a L 1 -contraction result for systems (1.1) and (1.3).

Remark 5.1. It is well-known in the Wasserstein gradient flow theory that the λ-geodesic convexity of the functional implies a W 2 -contraction of the flow. Unfortunately, as mentioned in [START_REF] Kim | On nonlinear cross-diffusion systems: an optimal transport approach[END_REF], in general, (ρ 1 , ρ 2 ) ∈ P ac (Ω) 2 → F m (ρ 1 + ρ 2 ) is not displacement convex. Indeed, for m = 2, we can rewrite the functional as

F 2 (ρ 1 + ρ 2 ) = F 2 (ρ 1 ) + F 2 (ρ 2 ) + 2 ˆΩ ρ 1 ρ 2 .
Let ρ 2 be a fixed density, we study the displacement convexity of ρ → F 2 (ρ) + 2 ´Ω ρ 2 ρ. We know, see [START_REF] Mccann | A convexity principle for interacting gases[END_REF], that ρ ∈ P ac (Ω)

→ F 2 (ρ) is displacement convex but ρ → ´Ω ρ 2 ρ is displacment convex if ρ 2 is λ-convex.
To overcome this lack of convexity, we need to obtain a stronger estimate, independent on m, on ∇F m (ρ 1,m + ρ 2,m ), where (ρ 1,m , ρ 2,m ) is a solution to (1.3). In the case of a common drift, this estimate can be found observing that ρ m := ρ 1,m + ρ 2,m is the Wasserstein gradient flow of E + V + F m and then, solves

∂ t µ -∆µ -div(µ∇V ) -div(µ∇F m (µ)) = 0, (5.1) 
with initial condition

µ |t=0 = ρ 1,0 + ρ 2,0 . Proposition 5.2. Let (ρ 1,m , ρ 2,m ) be a solution to (5.1) in L 2 ((0, T ), H 1 (Ω)) with ∇V 1 = ∇V 2 =: ∇V ∈ L ∞ (Ω). Then ρ m := ρ 1,m + ρ 2,m is unique and F m (ρ m ) is bounded independently of m in L 2 ((0, T ), H 1 (Ω))
, for all T < +∞.

Proof. As we remark above, ρ m is solution to (5.1). By geodesic convexity of E and F m , we know that solution to (5.1) is unique (see [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF]). To conclude, we reason as in [START_REF] Gallouët | An unbalanced optimal transport splitting scheme for general advection-reaction-diffusion problems[END_REF]Lemma 5.6]. The proof is based on the flow interchange technique with the (smooth) solution to

   ∂ t η = ∆η m-1 + ε∆η in (0, T ) × Ω, (∇η m-1 + ε∇η) • ν = 0 in (0, T ) × ∂Ω, η |t=0 = ρ k h,m ,
where ρ k h,m is constructed using the JKO scheme. We obtain, when ε goes to 0 and using a lower semi-continuity argument, ∇F m (ρ m ) L 2 ((0,T ),H 1 (Ω)) C T , for all T > 0, where C T is a constant independent on m. The L 1 -estimate of F m (ρ m ) and the Poincaré-Wirtinger inequality conclude the proof. Now, we show that (ρ 1,m , ρ 2,m ) converges to a solution to (1.1), (ρ 1,∞ , ρ 2,∞ ), as m +∞.

Theorem 5.3. Assume that the initial data satisfy ρ 1,0 + ρ 2,0

1. Up to a subsequence, as m → +∞, a solution to

(1.3), (ρ 1,m , ρ 2,m ), converges strongly in L 2 ((0, T ) × Ω) to (ρ 1,∞ , ρ 2,∞ ) and p m := F m (ρ 1,m + ρ 2,m ) converges weakly in L 2 ((0, T ), H 1 (Ω)) to p ∞ , where (ρ 1,∞ , ρ 2,∞ , p ∞ ) is a solution to (1.1).
Proof. First we prove the convergence of ρ i,m . We start noticing that the estimate (3.6) does not depend on m and then by Remark 3.2, we have

ρ 1/2 i,m L 2 ((0,T ),H 1 (Ω)) C T and W 2 (ρ i,m (t), ρ i,m (s)) C T |t -s| 1/2 ,
for all t, s T and where C T is a contant independent on m. Then using the Rossi-Savaré Theorem we obtain that ρ i,m converges to

ρ i,∞ in L 1 ((0, T ) × Ω). In fact, ρ i,m converges strongly to ρ i,∞ in L 2 ((0, T ) × Ω). Indeed, for m 2, ρ i,m L m ((0,T )×Ω) is uniformly bounded in m so (ρ 2 i,m ) m is uniformly integrable. Then, ρ i,m converges weakly in L 2 ((0, T ) × Ω) to ρ i,∞ and Vitali's convergence Theorem implies that ρ i,m L 2 ((0,T )×Ω) = ρ 2 i,m 1/2 L 1 ((0,T )×Ω) → ρ 2 i,∞ 1/2 L 1 ((0,T )×Ω) = ρ i,∞ L 2 ((0,T )×Ω)
. Furthermore, p m converges weakly in L 2 ((0, T ), H 1 (Ω)) to p ∞ , Proposition 5.2, and obviously p ∞ 0. Consequently, we can pass to the limit in the weak formulation of the system (1.3) to obtain the weak formulation of sytem (1.1).

To conclude the proof, it remains to prove that

ρ 1,∞ + ρ 2,∞ 1 and p ∞ (1 -ρ 1,∞ -ρ 2,∞ ) = 0 a.e.
We start to show that ρ 1,∞ + ρ 2,∞ 1. The argument is the same as in [2, Lemma 4.3]. The estimate (3.3) does not depend on m so we have

ˆT 0 ˆΩ(ρ 1,m + ρ 2,m -1) 2 + dxdt 2C m → 0, (5.2) 
when m → +∞, which implies that ρ 1,∞ + ρ 2,∞ 1 a.e.

To obtain the second part of the claim, we start proving

ˆT 0 ˆΩ p m (1 -ρ 1,m -ρ 2,m )ϕ dxdt → ˆT 0 ˆΩ p ∞ (1 -ρ 1,∞ -ρ 2,∞ )ϕ dxdt, for all ϕ ∈ C ∞ c ((0, T ) × Ω).
With the same argument as before, ρ 1,m + ρ 2,m → ρ 1,∞ + ρ 2,∞ strongly in L 2 ((0, T ) × Ω) and p m p ∞ weakly in L 2 ((0, T ) × Ω), then by strong-weak convergence, we obtain the result. Now, we show that

ˆT 0 ˆΩ p m (1 -ρ 1,m -ρ 2,m )ϕ dxdt → 0, for all nonnegative ϕ ∈ C ∞ c ((0, T ) × Ω). We start splitting the integral, ˆT 0 ˆΩ p m (1 -ρ 1,m -ρ 2,m )ϕ dxdt = ¨{ρ1,m+ρ2,m 1} p m (1 -ρ 1,m -ρ 2,m )ϕ dxdt + ¨{ρ1,m+ρ2,m 1} p m (1 -ρ 1,m -ρ 2,m )ϕ dxdt. Remark that, since ρ 1,m + ρ 2,m → ρ 1,∞ + ρ 2,∞ strongly in L 1 ((0, T ) × Ω), up to a subsequence, ρ 1,m (t, x) + ρ 2,m (t, x) → ρ 1,∞ (t, x) + ρ 2,∞ (t, x) (t, x)-a.e. Let (t, x) ∈ [0, T ] × Ω be a point where the convergence a.e. holds. If ρ 1,∞ (t, x) + ρ 2,∞ (t, x) < 1, then ρ 1,m (t, x) + ρ 2,m (t, x) (1 -ε), for large m and p m (t, x) m m-1 (1 -ε) m-1 → 0, therefore p m (t, x)(1 -ρ 1,m (t, x) -ρ 2,m (t, x)) → 0. On the other hand, if ρ 1,∞ (t, x) + ρ 2,∞ (t, x) = 1 and, for large m, ρ 1,m (t, x) + ρ 2,m (t, x) 1, then 1 -ρ 1,m (t, x) -ρ 2,m (t, x) → 0 and p m (t, x) m m-1 remains bounded. Thus, p m (t, x)(1 - ρ 1,m (t, x) -ρ 2,m (t, x)) → 0 a.e. and since on {ρ 1,m + ρ 2,m 1}, ρ 1,m + ρ 2,m is bounded by 1 and p m m m-1 2, by Lebesgue convergence Theorem, we obtain ¨{ρ1,m+ρ2,m 1} p m (1 -ρ 1,m -ρ 2,m )ϕ dxdt → 0.
The convergence of the second term is obtained by applying Cauchy-Schwarz inequality, (5.2) and Proposition 5.2,

¨{ρ1,m+ρ2,m 1} p m (1 -ρ 1,m -ρ 2,m )ϕ dxdt p m L 2 ((0,T )×Ω) C m 1/2 → 0, when m +∞. Then, for all ϕ ∈ C ∞ c ((0, T ) × Ω), ˆT 0 ˆΩ p ∞ (1 -ρ 1,∞ -ρ 2,∞ )ϕ dxdt = 0. Since p ∞ (1 -ρ 1,∞ -ρ 2,∞ ) 0, we conclude that p ∞ (1 -ρ 1,∞ -ρ 2,∞ ) = 0 a.e. in (0, T ) × Ω.
To end this section, we give a L 1 -contraction result for m ∈ [1, +∞] under some regularity on solutions but first we establish maximum principle for m ∈ [1, +∞).

Proposition 5.4. Assume that ρ i,0 + ρ 2,0 M 0 . For all m ∈ [1, +∞) and T < +∞, there exists a constant M T > 0 such that ρ 1,m + ρ 2,m L ∞ ((0,T )×Ω)
M T . In addition, we have

∇ρ i,m , ∇F m (ρ 1,m + ρ 2,m ) ∈ L 2 ((0, T ) × Ω).
Proof. It is well known that the solution µ to (5.1) satisfies a maximum principle, see for instance [START_REF] Otto | Double Degenerate Diffusion Equations as Steepest Descent[END_REF][START_REF] Agueh | Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory[END_REF][START_REF] Petrelli | Variational principle for general diffusion problems[END_REF][START_REF] Laborde | Interacting particles systems, Wasserstein gradient flow approach[END_REF][START_REF] Santambrogio | Optimal Transport for Applied Mathematicians[END_REF]. Then by uniqueness of the solution, there exists M T such that ρ 1,m + ρ 2,m L ∞ ((0,T )×Ω) M T . We obtain then

|∇ρ i,m | 2M 1/2 T |∇ρ 1/2 i,m | and |ρ i,m ∇F m (ρ 1,m + ρ 2,m )| M T |∇F m (ρ 1,m + ρ 2,m )|.
Since, ∇ρ 1/2 i,m and ∇F m (ρ 1,m + ρ 2,m ) are in L 2 ((0, T ) × Ω) (Proposition 5.2), the proof is concluded.

Remark 5.5. In the sepcial case of a common drift, by Proposition 5.4, we can improve the regularity of solutions to (1.3) in Definition 2.1 if we start with L ∞ initial conditions. Then, as in [26, Remark 3.2 (a)], we notice that, by density, we can consider test functions in W 1,1 ((0, T ), L 1 (Ω)) ∩ L 2 ((0, T ), H 1 (Ω)) in Definition 2.1 for system (1.3) and system (1.1).

Theorem 5.6.

Let (ρ 1 1,m , ρ 1 2,m ) and (ρ 2 1,m , ρ 2 2,m ) be two solutions to (1.3) (or (1.1) if m = +∞) with intial conditions (ρ 1 1,0 , ρ 1 2,0 ) and (ρ 2 1,0 , ρ 2 2,0 ), respectively. Assume there exists M 0 > 0 such that ρ 1 1,0 + ρ 1 2,0 L ∞ (Ω) , ρ 2 1,0 + ρ 2 2,0 L ∞ (Ω) M 0 . If ∂ t ρ 1 i,m , ∂ t ρ 2 i,m ∈ L 1 ((0, T ) × Ω), then ρ 1 i,m (t, •) -ρ 2 i,m (t, •) L 1 (Ω) ρ 1 i,0 -ρ 2 i,0 L 1 (Ω) .
Proof. First if m < +∞, since ρ 1,m +ρ 2,m solves (5.1), then it is unique and according to Proposition 5.2,

p m := F m (ρ 1,m + ρ 2,m ) is in L 2 ((0, T ), H 1 (Ω))
. Moreover, we have already shown in Theorem 2.3 that the pressure p ∞ associated to the constraint ρ 1,∞ + ρ 2,∞ 1 is in L 2 ((0, T ), H 1 (Ω)) and, according to [START_REF] Marino | Uniqueness issues for evolution equations with density constraints[END_REF],

(ρ 1,∞ + ρ 2,∞ , p ∞ ) is unique. Then, for m ∈ [1, +∞], ρ i 1,m solves ∂ t ρ i 1,m -∆ρ i 1,m -div(ρ i 1,m (∇V + ∇p m )) = 0.
Now, by the same argument as [START_REF] Otto | L 1 -contraction and uniqueness for quasilinear elliptic-parabolic equations[END_REF][START_REF] Agueh | Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory[END_REF], we prove the L 1 -contraction. We prove the result for i = 1 and the argument is the same for i = 2. We note Ω T := (0, T ) × Ω. Define the smooth function, for z ∈ R, f (z) = e -1/z e -1/(1-z) if z ∈ (0, 1) and 0 otherwise and M := f L ∞ . Then for δ > 0, define the smooth function φ δ by

φ δ (z) := 1 Z ˆz/δ 0 f (ξ) dξ, where Z := ˆ1 0 f (ξ) dξ. Consider ζ δ := φ δ (ρ 1 1,m -ρ 2 1,m ). By definition, ζ δ ∈ W 1,1 ((0, T ), L 1 (Ω)) ∩ L 2 ((0, T ), H 1 (Ω)) ∩ L ∞ (Ω T ).
Then taking ζ δ as an admissible test function in Definition 2.1, see Remark 5.5, we obtain

¨ΩT ∂ t (ρ 1 1,m -ρ 2 1,m )ζ δ = - ¨ΩT (ρ 1 1,m -ρ 2 1,m )(∇V + ∇p m ) • ∇ζ δ + ∇(ρ 1 1,m -ρ 2 1,m ) • ∇ζ δ dxdt.
We introduce

Ω δ T := Ω T ∩ {0 < ρ 1 1,m -ρ 2 1,m < δ}. Then by definition of ζ δ ¨ΩT ∂ t (ρ 1 1,m -ρ 2 1,m )ζ δ = - 1 Zδ ¨Ωδ T (ρ 1 1,m -ρ 2 1,m )(∇V + ∇p m ) • ∇(ρ 1 1,m -ρ 2 1,m )f ρ 1 1,m -ρ 2 1,m δ dxdt - 1 Zδ ¨Ωδ T |∇(ρ 1 1,m -ρ 2 1,m )| 2 f ρ 1 1,m -ρ 2 1,m δ dxdt.
Young's inequality gives

¨ΩT ∂ t (ρ 1 1,m -ρ 2 1,m )ζ δ M 2Zδ ¨Ωδ T (ρ 1 1,m -ρ 2 1,m ) 2 |∇V + ∇p m | 2 dxdt - 1 2Zδ ¨Ωδ T |∇(ρ 1 1,m -ρ 2 1,m )| 2 f ρ 1 1,m -ρ 2 1,m δ dxdt M 2Z ∇V + ∇p m 2 L 2 (Ω T ) δ.
Then, when δ 0, by Fatou's Lemma,

¨ΩT ∩{ρ 1 1,m -ρ 2 1,m 0} ∂ t (ρ 1 1,m -ρ 2 1,m ) 0.
Reversing the roles of ρ 1 1,m and ρ 2 1,m , we have

¨ΩT ∂ t (|ρ 1 1,m -ρ 2 1,m |) 0,
which concludes the proof.

Numerical simulations

To end this paper, we use the algorithm introduced in [START_REF] Benamou | An augmented Lagrangian approach to Wasserstein gradient flows and applications[END_REF] to present numerical simulations in dimension 2 on the square Ω = -1 2 , 1 2 2 . Simulations are carried out using a 50 × 50 discretization in space with a time step h = 0.01. The first system we study is the transport equation with common porous media congestion, without individual diffusions,

∂ t ρ i -α i div(ρ i ∇F m (α 1 ρ 1 + α 2 ρ 2 )) -div(ρ i ∇V i ) = 0, i = 1, 2, (6.1) 
which, at least formally, is the gradient flow in Wasserstein space for the energy

E(ρ 1 , ρ 2 ) := ˆΩ V 1 ρ 1 + ˆΩ V 2 ρ 2 + ˆΩ F m (α 1 ρ 1 + α 2 ρ 2 ).
Arguing as in [START_REF] Benamou | An augmented Lagrangian approach to Wasserstein gradient flows and applications[END_REF], setting φ = (φ 1 , φ 2 ), (Dφ

1 , Dφ 2 ) := (∂ t φ 1 , ∇φ 1 , ∂ t φ 2 , ∇φ 2 ), q = (q 1 , q 2 ) = (a 1 , b 1 , c 1 , a 2 , b 2 , c 2 ), σ = (σ 1 , σ 2 ) = ((µ 1 , m 1 , µ 1 ), (µ 2 , m 2 , µ 2 
)) and defining the convex set

K := {(a, b) ∈ R n+1 : a + 1 2 |b| 2 0}
, one can rewrite one step of the JKO scheme, (3.1), with E as a saddle-point problem for the augmented Lagrangian

L r (φ, q, σ) = 2 i=1 ˆΩ φ i (0, x)ρ k i,h (x)dx + 2 i=1 ˆ1 0 ˆΩ χ K (a i (t, x), b i (t, x))dxdt + 2 i=1 ˆ1 0 ˆΩ (µ i , m i ) • (Dφ i -(a i , b i )) + r 2 |Dφ i -(a i , b i )| 2 dxdt + 2 i=1 ˆΩ r 2 |φ i (1, x) + c i (x)| 2 dx -(φ i (1, x) + c i (x)) µ i (x) dx + hE * c 1 h , c 2 h ,
where E * is the Legendre tranform of E extended by +∞ on (-∞, 0]. A saddle point of L r satisfies µ i (1, •) = μi and the solution to one JKO step is ρ k+1 i,h = μi . Then, we use the augmented Lagrangian algorithm, ALG2-JKO, introduced in [START_REF] Benamou | An augmented Lagrangian approach to Wasserstein gradient flows and applications[END_REF] to compute numerically (ρ k+1 1,h , ρ k+1 2,h ) and we refer to [START_REF] Benamou | An augmented Lagrangian approach to Wasserstein gradient flows and applications[END_REF] for a detailed exposition. The motion is imposed by potentials V 1 (x, y) = 4 (x, y) -(0.3, 0.3) 2 and V 2 (x, y) = 4 (x, y) + (0.3, 0.3) 2 . We remark that the two populations have the same behaviour and when they cross each other, the density has to spread. In Figure 2, we study the same behaviour but subject to the porous medium constraint on ρ 1 + 2ρ 2 . We can see that the population where the constraint plays a higher role, ρ 2 , has to deviate in order to let pass ρ 1 through. Although the theory is not fully understood for system (6.1) (see discusions in [START_REF] Kim | On nonlinear cross-diffusion systems: an optimal transport approach[END_REF]), we notice that in Figures 1 and2, it seems that the unique discrete solutions behave numerically stable.

In the two populations crowd motion model with linear diffusion, we saw that we can find a solution as the gradient flow of

E(ρ 1 , ρ 2 ) := ˆΩ(V 1 + ε log(ρ 1 ))ρ 1 + ˆΩ(V 2 + ε log(ρ 2 ))ρ 2 + F ∞ (α 1 ρ 1 + α 2 ρ 2 ).
In this context, we use the same initial datas and potentials as previously. The small parameter ε = 0.01 in the simulations is taken to reduce the effect of the diffusion. In Figure 3, we see two populations which cross each other. When they start to cross each other at time t = 0.05, we remark that the density of ρ 1 and ρ 2 decrease and the sum is saturated. In this situation, individuals of both populations take the same space. Now assume that an individual of the second population takes twice the space than an individual of the first population. Then if we study the one population model (without interaction), populations ρ 1 and ρ 2 are subject to constraints ρ 1 (x) 1 and ρ 2 (x) 1 2 . In our case, where populations interact each other, ρ 1 and ρ 2 are subject to the common constraint ρ 1 (x) + 2ρ 2 (x) 1. Notice that when ρ 1 (x) = 0 or ρ 2 (x) = 0, we recover the expected behaviour, ρ 2 (x) 1 2 and ρ 1 (x) 1. In Figure 4, we represent two populations crossing each other subject to this constraint. Immediately, the second population sprawls to saturate the constraints ρ 2 (x) 1 2 and then when they start crossing the density of ρ 1 and ρ 2 decrease and we have ρ 1 (x) + 2ρ 2 (x) = 1.

In Figures 5 and6, the same situations as in Figures 3 and4 are presented adding an obstacle in the middle of Ω. This can be done using a potential with very high value in this area. 

Figure 1

 1 represents two populations crossing each other subject to porous media congestion with α 1 = α 2 = 1 and m = 50. Initial conditions are given by ρ 1,0 = 1 [-0.45,-0.15] 2 and ρ 2,0 = 1 [0.15,0.45] 2 .

  . In addition using De La Vallée Poussin's Theorem, we show that (F m (ρ 1,h + ρ 2,h )) h is uniformly integrable. We conclude applying Vitali's convergence Theorem.Remark 3.8. Notice that we can drop one individual diffusion. Assume that we drop the individual Entropy in the JKO scheme (3.1) for one of the two densities, for instance ρ 2 . The difficulty is to obtain a strong convergence for the sequence (ρ 2,h ) h . Proposition 3.6 gives the strong convergence of ρ 1,h and ρ 1,h + ρ 2,h in L

1 

((0, T ) × Ω) and L m ((0, T ) × Ω) respectively, and then pointwise on

,

  Lemma 4.10. [38,Lemma 3.5] Let (p h ) h>0 be a bounded sequence in L 2 ([0, T ], H 1 (Ω)) and (ρ h ) h>0 a sequence of piecewise constant curves valued in P(Ω) which satisfiy W 2 (ρ h (t), ρ h (s)) C √ t -s -h for all s < t ∈ [0, T ] and ρ h C for a fixed constant C. Suppose that

  Figure 1: Evolution of two species crossing each other with porous media congestion, m = 50. Top row: display of ρ 1 + ρ 2 . Bottom row: display of ρ 1 .Figure 2: Evolution of two species crossing each other with weighted porous media congestion, (ρ 1 + 2ρ 2 ) m , m = 50. Top row: display of ρ 1 + ρ 2 . Middle row: display of ρ 1 . Bottom row: display of ρ 2 .
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