N
N

N

HAL

open science

Using SVDD in SimpleMKL for 3D-Shapes Filtering
Gaélle Loosli, Hattoibe Aboubacar

» To cite this version:

Gagélle Loosli, Hattoibe Aboubacar. Using SVDD in SimpleMKL for 3D-Shapes Filtering. CAp 2016,

Jul 2016, Marseille, France. hal-01593595

HAL Id: hal-01593595
https://hal.science/hal-01593595
Submitted on 26 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01593595
https://hal.archives-ouvertes.fr

Using SVDD in SimpleMKL for 3D-Shapes Filtering

Gaélle Loosli and Hattoibe Aboubacar

Clermont-Université, Université Blaise Pascal, LIMOS, BP 10448, F-63000 Clermont-Ferrand
CNRS, UMR 6158, LIMOS, F-63173 Aubiere

Abstract

This paper proposes the adaptation of Support Vector
Data Description (SVDD) to the multiple kernel case
(MK-SVDD), based on SimpleMKL. It also introduces
a variant called Slim-MK-SVDD that is able to produce
a tighter frontier around the data. For the sake of com-
parison, the equivalent methods are also developed for
One-Class SVM, known to be very similar to SVDD for
certain shapes of kernels. Those algorithms are illus-
trated in the context of 3D-shapes filtering and outliers
detection. For the 3D-shapes problem, the objective is
to be able to select a sub-category of 3D-shapes, each
sub-category being learned with our algorithm in or-
der to create a filter. For outliers detection, we apply
the proposed algorithms for unsupervised outliers de-
tection as well as for the supervised case.

Mots-clef: SVDD, SimpleMKL, One-Class SVM, 3D-
shapes Filtering, Outliers detection.

1 Introduction

Multiple Kernel Learning (MKL) have encountered
a great success since it was introduced |[LCBT04)
SRSS06, BLJ04]. In [RBCGOS], the SimpleMKL algo-
rithm has the nice particularity that different solvers
for different tasks can be plugged in it (given that it
is possible to compute the cost function’s gradient).
Here we derive SimpleMKL for Support Vector Data
Description (SVDD). Observing (see section [3.1)) that
the multiple kernel setting tends to favor large band-
width kernels (in the case of Gaussian kernels) or low
degree kernels (in the case of polynomial kernels), we
also explore a different penalization criteria in order
to produce tighter boundaries around the target class.
Then we compare the resulting algorithms to SVDD
alone, One-Class SVM and SimpleMKL with OneClass
SVM.

2 SVDD in SimpleMKL

SVDD was introduced in [TD04] to deal with one class
classification or outliers detection. We first recall its
formulation, before deriving it for the MKL case. Then
we propose the adaptation to the SimpleMKL algo-
rithm.

2.1 SVDD

We first give some notations. The examples z € X are
associated to labels y € {1,—1}. The training set is
composed of ¢ positive examples, so all training labels
are 1. In SVDD, the idea is to find the smallest sphere
containing all training data:

¢

i R+C i
pn R+0)¢
S.t. f(l‘l) < R+¢;
§& >0

(1)
Viel.. !

Viel.. !

where f(x;) = k(z; — a,z; — a), a is the center of the
sphere and R is the radius. The kernel function k(., .)
is chosen to be symmetric and semi-definite positive
and defines the reproducing kernel Hilbert space (H)
containing f. Note that as discussed in |[cCpLjL14], if
C > 1, then the problem is equivalent to a hard-margin
case.

The dual is obtained using the Lagrangian technique:

E =
(R.f,&,d)

¢ ¢
R—I—CZ& +Zaz‘<f(37i) - R—@)
i=1 i=1
¢
- Zﬁifi
i=1
(2)

witha; >0 Viel...l, ;>0 Viel.... The

KKT conditions are

y4
Zaizl

VR,C =0 =
Vgiﬁ =0 = — Oy — ﬁz =0 (3)
Vfﬁio = :Zai Ii,.)
i=1
One can note that using f(x;) = k(z; — a,2; —a) leads

to

22 ak(z, z5)

The KKT condition are plugged in the Lagrangian
which gives the dual problem

4
+ Z Oéik(ﬂfi, :Ei)
=1

rnax ZZa,a] xz,xj
1=15=1
14

s.t. Oéizl
=1

2.2 MultipleKernel SVDD

In MKL methods, we consider the convex combina-
tion of a set of nk kernels such that k(z; x;) =

S ok (24, 3;) with dy, >0 Vm € 1...nk and
Z:;k_l d,, = 1. Using this multiple kernel, the SVDD
primal problem becomes
¢
min R+C i
R {fm}&d ;5
nk
s.t. > dmfm(z) <R+E& Viel.. d
m=1
& >0 Viel...l
dm >0 VYmel...nk
nk
> dy=1
m=1
(6)

where fp,(2;) = km(z; —a,z; —a), a is the center of the
sphere and R is the radius. The Lagrangian of system

ol is
¢ V4
(R,{ff},s,d) = B+ CZ §i — Z Bi&i
+Zal(2dmfm R_&_)
m=1
nk
- Z Y = (D dyn — 1)
m=1 m=1
(7)

with a; >0 Viel...l, 5, >0 Viel...f and
Ym >0 Vm € 1...nk. The KKT conditions are

VRL=0 = Y o;=1
i=1
Ve, £L=0 = C-a« 51‘—0
Vi L=0 = Z ik (x4,) (8)
Vi, L=0 = Zaifm(xi)—'ym—,uzo
i=1

The KKT condition are plugged in the Lagrangian
which gives the dual problem

max
a, i

™~
2
I
—

s.t.

<.

Siak
£
A
aQ

>k

x’L7 x’L

i=1
Ymel...nk

2.3 SVDD in SimpleMKL

The SimpleMKL algorithm is used to solve this prob-
lem:

min J(d) k

such that Z dm =1 (10)

d >O Ymel...nk

where J(d) =

4
min R+C i
R7{f777,}7§ /Lzzlf
nk
s.t. > dmfm(ri) SR+ & Viel.. .l
m=1
& =0 Viel... !
(11)

To be able to solve this problem, we need to com-
pute the gradient of J(d). Following the methodology
proposed in [RBCGO0Y], from system [5| we have

)4 £ nk
Jd)= =YY ara} Y dmkm(wi,x;)
m=1

i=1 j=1
)4 nk
+ar Y Ak (@i, ;)
i=1 =1

with o maximizes system using k(z;,z;) =

Sy Qi (3, 22).
Differentiating J(d) with respect to d,, gives

(12)

¢ ¢

aJ

.~ E E i &Gk (i, 5) + E Sk (24, ;)
' i=1

i=1 j=1
(13)
which holds for all m € 1...nk
From equations [I2) and [I3] it is fairly easy to imple-
ment SVDD in SimpleMKL, using an SVDD solver to
obtain .

2.4 Slim-MK-SVDD

Multiple kernel SVDD seeks for a combination of ker-
nels that minimizes the radius of the enclosing ball in
the kernel space. In practice, it turns out that if Radial
Basis Function (rbf) kernels with large bandwidths are
available, those will almost always be selected and the
frontier around the data in the feature space is loose.
In the same way, low degree polynomial kernels will
be selected. This may not be what one is looking for.
Hence we propose here to modify the objective func-
tion for the optimization of the kernels weights, such
that it penalizes loose solutions compared to tighter
ones. To do so we observe that tighter solutions rely
on more support vectors than loose ones.

mdin J(d) — X card(«)

such that Z dm =1

m=1
dm >0 VYmel...nk
(14)

where J(d) is the same as previously, A is a parameter
and card(«) is the number of support vectors. From
the implementation point of view, the SVDD solver can
still be used as it is, and the new term only needs to
be added at each computation of J(d) and subtracted
when computing the (dual-gap based) stopping criteria
inside SimpleMKTL.

2.5 Slim-MK-OCSVM

The slim extension applied to MK-SVDD is easily ap-
plied to MK-OCSVM (multiple kernel one-class SVM)
so it was also implemented for the sake of fair compar-
isons in the experimental part.

3 Algorithm evaluation

In this section we use different one-class algorithms:
e SVDD,
e OCSVM,
e MK-OCSVM ,
e Slim-MK-OCSVM,
e MK-SVDD
e Slim-MK-SVDD.

The two first algorithms are standard while the third is
described in [RBCGOS]. The others are contributions
of this paper.

3.1 [Illustration of the behavior depend-

ing on A\

For this illustration, a 2D target classes is randomly
generated. Figure [I] shows the decision boundaries
given by Slim-MK-SVDD for different values of A\. We
observe that the introduction of this constraint in the
problem leads to more fitted results.

3.2 Comparison to others one-class ker-
nel methods on 2d problems

We present here 2 experiments sharing the same set-
ting. We use each of the above mentioned algorithms
on 2D targets classes, randomly generated such that
there are from 1 to 3 areas. All algorithms share the pa-
rameter C that varies in [0.05, 0.5] by steps of 0.05. For
multiple kernel, we use a Gaussian kernel with the fol-
lowing possible bandwidths : [0.1,0.5,1,5, 10,50, 100]

- Target class
+ Training points
=0 (MK-SVDD) |
——3=0.02
mnng = 0,05
==3=0.1

Figure 1: Decision boundaries for Slim-MK-SVDD for
increasing values of A

and a Polynomial kernel of degree 1 to 4. For single
kernel methods, we run them for each kernel parameter
and keep the best on a validation set (containing only
positive examples).

First we present the decision boundaries for each al-
gorithm on figure [2] for one of the generated problems.

Slim-hK-SVDD

Slim-hik-OneClass

Figure 2: Visual comparison of performances of dif-
ferent one-class algorithms

Second we provide a performance evaluation, com-
puted on average over 25 different target classes. Note
that OCSVM-based methods are penalized by the fact
that polynomial kernels are used. If removed from the
experiment, SVDD-based and OC-SVM based meth-

Method Perf o Perf o
(rbf) (rbf+poly)

Slim-MK-SVDD 85.1 7.4 91.4 4.0
Slim-MK-OCSVM | 745 16.8 58.0 10.7
MK-SVDD 76.1 7.8 87.9 6.3
MK-OCSVM 33.0 18.,5 40.5 9.1
SVDD 66.1 30.4 87.0 7.1
OCSVM 60.5 334 80.2 19.9

Table 1: Average performance and standard deviation

on 25 runs

ods are much more comparable.

3.3 Unsupervised outliers detection

In this part we present experiments using a real
dataset, namely Breast Cancer from UCI [AN07], mod-
ified in order to propose outliers detection task by
[AGAT3]. The resulting dataset contains 367 examples
described by 30 attributes, with 10 outliers. We also
work with Pen-digit local, from the same source, which
contains 809 examples described by 16 attributes, with
90 outliers. In the unsupervised case, the complete
dataset is used for training, then we check which ex-
amples where considered as outliers (i.e. misclassified).

On figure[3al the Precision/Recall curves are plot for
Slim-MK-SVDD and Slim-MK-OCSVM on the modi-
fied Breast Cancer dataset. For each we present the
curve corresponding to the highest AUC (Area Un-
der Curve). Here Slim-MK-SVDD clearly outperforms
Slim-MK-OCSVM. Moreover, 9 of the 10 outliers can
be discarded with a recall of 0, that is to say before
any false alarm.

Similarly, figure [Bb] present the same results for the
Pen Digits dataset. This dataset is more difficult.
The Slim-MK-SVDD produces the best precision-recall
curve, and the Slim variants improve the performance
of both MK-SVDD and MK-OCSVM.

3.4 Supervised outliers detection

In this section we use the same dataset based on Breast
Cancer, but the experiment setting is different since the
training is supervised, meaning that only positive ex-
amples are used at the training stage, and the resulting
models are evaluated on a separated test set, composed
of both positive and negative examples. Moreover, the
size of the training set varies in order to observe how
many examples are required to be able to obtain a good
performance. This performance is measured by the
AUC criteria (Area Under Curve). For each training
set size, training examples are picked randomely among

05 //—'—'/** o ‘//
L 7 i
08 08 A
r
0.7 [~
| /
| 0.6 _/}" / 4
c 06 5 { /
° 2 .
805 3 / ,/
& —MK-OCSVM S04 a4 / MK-SVDD
041 ——MK-SVDD] —a —MK-OCSVM
—Slim-MK-OCSVM - —+—Slim-MK-SVDD
o2 ~+Slim-MK-SVDD e — Slim-MK-OCSVM
0.2 i 0.2r /) / J
/ J
0.1] 7 -
U A F B — ———— R | — . :
0 01 02 03 04 05 06 07 08 09 0 02 0.4 06 0.8 1

Recall

(a) Breast Cancer dataset

Recall
(b) Pen Digits dataset

Figure 3: Precision/Recall curves for unsupervised outliers detection, comparing Slim-MK-SVDD and Slim-
MK-OCSVM. For each, we present the best ROC curve depending on the C' and A\ parameters.

positive ones. For each training set, A and C are cross-
validated. The process is repeated 10 times and results
are given on average.

On figure[da] the evolution of the AUC depending on
the training set size (from 3 to 200) is represented for
Slim-MK-SVDD, MK-SVDD, Slim-MK-OCSVM and
MK-OCSVM. We observe that for small training set
size, the SVDD based methods performs much better
than OCSVM based methods. We also observe that
MK-OCSVM is completely out of the run, mainly be-
cause the linear kernel available in the dictionary of
kernels is almost always selected. Added the Slim mod-
ification significantly help in this case.

Similarely, figure D] presents the same results for the
Pen Digits dataset. In this case, we observe that Slim-
MK-OCSVM performs better than Slim-MK-SVDD
except for very small training sizes. However we ob-
serve the same improvement by applying the Slim vari-
ant.

4 3D-shapes filtering

In this section we present our motivating application
for the development of those algorithms.

4.1 Overview of the applicative context

The 3D-shapes filtering task comes from a large appli-
cation system dealing with the retrieval of relevant 3D-
shapes from a semantic request. Basically, the user is

supposed to query for a concept, defined by a (known)
class and a (possibly new) adjective or descriptor. For
instance, a valid query would be a standing humanoid
or a low chair. The complete process is described in
[ABLI4]. One step of the process, composed of fil-
ters, is meant to select shapes that match the query.
The candidate shapes are all generated according to
the query class, but it is the filter’s task to select those
corresponding to the adjective or descriptor. In this
context, the filter is likely to be trained with very few
examples (typically no more than 5) and the proposed
shapes are all quite similar (for instance, humanoids in
any kind of positions - but always head up). Moreover,
examples going through the filter are proposed to the
user, hence it is important that the first result (having
the highest output value) corresponds to the query, or
that at least the first correct shape appears in the few
first proposals.

To evaluate our algorithms outside the whole ap-
plication but in a similar context, we use a 3D-shape
database called Shrec09, described in the next section.

4.2 Shrec 2009 dataset and graph ker-
nels

Shrec 2009 is a database of 3D-shapes proposed in
[AABT09]. It contains 200 shapes from 14 labeled
classes and 6 unlabeled ones. Its first objective is to
compare retrieval methods, which consist in search-
ing among available shapes the closest one to a can-
didate shape. Classes in this database goes by pairs

AUC average performance depending on the training set size

0.9 : ‘
‘T\ L e, "-;r---;--;\w"‘___;_______::\
08 I T .
//
07- i
/
o/ — Slim-MK-SVDD 1
=) / MK
205", Slim-MK-OCSVM
s vV | MK-SVDD
So04r MK-OCSVM 1
Z
0.3f ,
0.2f
o1 |
0 - .
10 10

Traning size (from 3 to 200, log scale)

(a) Breast Cancer dataset

AUC average performance depending on the training set size
0.9 T T

0.85-

o0
2
g
@
o
©
g
<
— Slim-MK-SVDD
Slim-MK-OCSVM
06- MK-SVDD 1
fffff MK-OCSVM
0.55
05 » .

Training size (from 3 to 200, log scale)

(b) Pen Digits dataset

Figure 4: AUC criteria depending on the size of the training set in the supervised case. The traning set size

goes from 3 to 200.

of similar things (from a structural point of view), like
chairs and tables or bikes and motorbikes. A picture
of all shapes can be found in [HSAT09]. 3D-shapes
are in general represented using VRML (Virtual Real-
ity Modeling Language) formats. To manipulate such
objects with kernel methods, one has to engineer a spe-
cial kernel. In [BB13], the authors use Extended Reeb
graphs to represent the shapes and then apply graph
kernels. The Extended Reeb graphs representation is
based on the computation of a scalar function on the
initial mesh (see [BDEFT08]), the graph coding then
exhibiting the invariance properties of this function.

To conduct our experiments, we took graphs com-
puted from 6 different functions (we refer the reader
to [BB13] for the description of a functions we used)
and computed graph kernels based on bags of paths
[SRBOT].

We briefly describe those kernels, considering that
for each graph Gr;, we collect a bag of paths H; (from
random walk for instance) of size |H;|. A path h,,
stored in a bag of path is composed of L vertices de-
noted v and L — 1 edges denoted e. We use a kernel
function k, (resp. k.) that compute similarities be-
tween the labels on vertices (resp. edges). From this,
the graph kernel is computed as follows:

S0 kay (hmi)

m:h, €H; l:hy€Hj

k(GTZ'7G7’j) |H | |H |

(15)
where k4, measures the similarity between two paths

of length L:
dr, (R, hy)?
ka, (hm,) = exp<_%) (16)
and
dL(h’r‘ru hl) = ,U[(l))

k(v (1)
*Hz 2(E(em -),61(2171,%‘))
o (o (i), 0(0)))
(17)
Note that the similarity between two paths of different
length is 0.

4.3 Experiment settings

The evaluation is based on AUC. For each run, pos-
sible values of A are in [0,0.001,0.01,0.1, 1] and pos-
sible values of C' are in [0.01,0.05,0.1,0.2]. In each
experiment, we apply Slim-MK-SVDD and Slim-MK-
OCSVM. When A = 0, they are identical to MK-SVDD
and MK-OCSVM. Finally, the kernel’s dictionary con-
tains 216 kernels from 6 different graphs on each 3D-
Shape, depending on the maximum length L of paths
in the bag of paths and on the kernel’s bandwidths (on
edges, vertices and dy, - eq. .

Experiment 1. The first experiment evaluates the
ability of our algorithm to differentiate similar classes,
when the model is trained on only one class. To do so,
we extract in Shrec09 database two similar classes (1

and 2, or 3 and 4, etc.), train on half of the available
example from one class (target class), and test on the
remaining examples (target and similar). In practice,
the training is done on 5 examples. Results are given
on average, on 10 random sampling of the training set.
For each sampling, the hyper-parameters A and C' are
cross-validated. Results are reported in table [2] and
commented in section [4.4

Experiment 2. The second experiment evaluates
the performance of our algorithm on the complete
database. The process is similar to the previous one
except that the training set is obtained by using 80%
of the available examples of the target class. As a con-
sequence, only 2 positive examples remains in the test
set. At each run, the position of the first proposed
target class (sorting the output of all test example by
descending order) is checked, as well as the position
of the first similar class example. Results, given on
average over 10 random split of the target class, are
reported in table [3] and commented in section [£.4]

4.4 Results

Experiment 1. Results provided in table [2[show for
each tested class the best AUC on average, and the
corresponding rank 1 performance (Win Ratio). The
rank 1 performance corresponds to the proportion of
trained filter for which the highest ranked test example
is from the target class. We observe that this criteria is
not always corresponding to the best AUC. From this
table we can conclude that:

e some pairs of classes are more difficult to distin-
guish than others

e SVDD based methods tends to perform better
than OCSVM based methods

e OCSVM based methods fails really badly for 6 of
the 14 classes (never rank first a target class ex-
ample in any of the 10 runs)

e SVDD based methods seem to be more stable in
terms of accuracy

Moreover we observed that in general, while the Slim
version does not necessarily improve the AUC score or
the Win Ratio, it does not degrade the results either
(for reasonable values of \).

Experiment 2. Results provided in table [2[show for
each tested class, the best AUC on average, and the
corresponding average position of the first examples

from the target and similar class. From those results,
we can conclude that:

e In most cases, SVDD based methods outperforms
OCSVM based methods.

e The Slim variant can improve the performances

e It remains a difficult task to filter out the similar
class

5 Discussion and conclusion

From an applicative problem, consisting in filtering 3D-
shapes based on a few examples of valid shapes, we
explored the idea of using the SVDD algorithm within
the SimpleMKL method. The main reasons for this was
the large amount of available kernels to be compared
and the fact that SVDD is known to be more flexible
than OCSVM, when considering kernel shapes that can
be used.

Plugging SVDD in SimpleMKL is almost straight
forward but due to the objective function of the MKL
(that seeks for the kernel combination corresponding to
the ”simplest” decision boundary), the proposed solu-
tions are not always well adapted for filtering. Indeed,
we may need a boundary that is able to exclude parts of
the feature space that are not covered by examples. We
propose a derivation of MK-SVDD by adding an ”over-
fitting” term to the objective function of SimpleMKL,
consisting in penalizing the solutions based on fewer
support vectors. While this approach is not fully ex-
plored on a theoretical point of view, the experimental
results show that this method can help one-class al-
gorithms such as SVDD or OCSVM to improve their
performances in the context of multiple kernel training.

Apart form our application, we believe that MK-
SVDD and Slim-MK-SVDD can be successfully applied
in other contexts, such as outliers detection. In sections
and [3.4] we illustrate the ability of the presented al-
gorithm to detect outliers in the supervised case (only
positive examples are used for training) and unsuper-
vised case (some outliers are contained in the training
dataset). Of course those applications require some
more extended studies and this is a path we want to
follow in the continuation of our researches, together
with a deeper study of the theoretical aspects.

Acknowledgment

The authors wish to thank Silvia Biasotti for the com-
putation of the Extended Reeb Graphs and Vincent
Barra for helpful comments and discussions.

Target (Similar) Best Win Ratio
Method AUC (rank 1)
12
MK-SVDD 0.71 100%
Slim-MK-OCSVM | 0.56 80%
2 (1)
MK-SVDD 0.48 50%
MK-OCSVM 0.51 40%
3 (4)
MK-SVDD 0.57 70%
MK-OCSVM 0.62 0%
4 (3)
Slim-MK-SVDD 0.48 30%
MK-OCSVM 0.43 70%
5 (6)
MK-SVDD 0.52 60%
MK-OCSVM 0.80 100%
6 (5)
MK-SVDD 0.71 100%
MK-OCSVM 0.40 0%
7(8)
MK-SVDD 0.73 90%
MK-OCSVM 0.60 20%
8 (7)
Slim-MK-SVDD 0.58 80%
MK-OCSVM 0.51 100%
9 (10)
Slim-MK-SVDD 0.56 80%
MK-OCSVM 0.41 50%
10 (9)
MK-SVDD 0.54 70%
MK-OCSVM 0.66 0%
11 (12)
MK-SVDD 0.59 90%
MK-OCSVM 0.90 100%
12 (1)
MK-SVDD 0.90 100%
MK-OCSVM 0.01 0%
13 (14)
Slim-MK-SVDD 0.53 60%
MK-OCSVM 0.57 60%
14 (13)
MK-SVDD 0.46 20%
MK-OCSVM 0.48 0%

Table 2: Task: differentiate similar classes. The filter
(using either Slim-MK-SVDD or Slim-MK-OCSVM) is
trained with a few examples of the target class and is
evaluated using both examples from the target class
and the similar class. Results are given on average
over 10 random splits train/test data. The Win Ratio
reports the frequency at which the the example with
the highest output value is from the target class. Note
that the random Win Ratio is 33%, results in italic are
better than random.

Target (Similar) Best Rank of Rank of
Method AUC 1° target 1°f similar
1(2)
MK-SVDD 0.94 4.5 2
Slim-MK-OCSVM | 0.64 55.6 34.2
2 (1)
MK-SVDD 0.80 13.5 4.8
Slim-MK-OCSVM | 0.66 54.9 38
3(4)
Slim-MK-SVDD 0.945 2.6 2.5
MK-OCSVM 0.28 119.2 57.5
4 (5)
Slim-MK-SVDD 0.79 15.9 1.9
Slim-MK-OCSVM 0.35 98 85.1
5 (6)
MK-SVDD 0.63 41.2 10.1
MK-OCSVM 0.64 52.7 74.6
6 (5)
MK-SVDD 0.63 48.7 48.9
Slim-MK-OCSVM | 0.48 82.3 53.9
7 (8)
MK-SVDD 0.66 194 7.9
Slim-MK-OCSVM 0.88 9.2 1.8
8 (7)
MK-SVDD 0.44 63.9 21.9
MK-OCSVM 0.83 104 24
9 (10)
Slim-MK-SVDD 0.90 7.5 2.5
MK-OCSVM 0.39 90.1 57.7
10 (9)
MK-SVDD 0.85 12.1 3.6
Slim-MK-OCSVM 0.56 63.6 42.1
11 (12)
Slim-MK-SVDD 0.90 4.0 107.3
MK-OCSVM 0.93 8.7 128.1
12 (11)
MK-SVDD 0.91 10.6 82.3
MK-OCSVM 0.34 114.6 2.4
13 (14)
Slim-MK-SVDD 0.69 29.7 16.2
MK-OCSVM 0.48 68.7 40.9
14 (13)
MK-SVDD 0.73 18.2 4.8
MK-OCSVM 0.44 86.3 17.4

Table 3: Task: differentiate a given class from all oth-
ers. The filter (using either Slim-MK-SVDD or Slim-
MK-OCSVM) is trained with 8 examples of the target
class and is evaluated using all remaining examples (all
other classes and the 2 remaining positive examples).
Results are given on average over 10 random selection
of the training examples. When the best average result
is obtained for A = 0 (or when A = 0 performs as well
as A > 0), the method is noted without Slim.

References

[AAB*09]

[ABL14]

[AGA13]

[ANO7]

[BB13]

[BDFF+08]

[BLJ04]

[cCpLjL14]

[HSA*09]

C Akgul, A Axenopoulos, B Bustos,
M Chaouch, P Daras, H Dutagaci, T Fu-
ruya, A Godil, S Kreft, Z Lian, et al. Shrec
2009-generic shape retrieval contest. In
30th international conference on EURO-
GRAPHICS 2009, workshop on 3D object
retrieval, 2009.

Hattoibe Aboubacar, Vincent Barra, and
Gaélle Loosli. 3d shape retrieval using
uncertain semantic query: a preliminary
study. In Proceedings of International
Conference on Pattern Recognition Appli-
cations and Methods, 2014.

Mennatallah Amer, Markus Goldstein,
and Slim Abdennadher. Enhancing one-
class support vector machines for unsu-
pervised anomaly detection. In Proceed-
ings of the ACM SIGKDD Workshop on
Outlier Detection and Description, pages
8-15. ACM, 2013.

Arthur Asuncion and David Newman. Uci
machine learning repository, 2007.

Vincent Barra and Silvia Biasotti. Learn-
ing kernels on extended reeb graphs for
3d shape classification and retrieval. In
3DOR, pages 25-32, 2013.

Silvia Biasotti, Leila De Floriani, Bianca
Falcidieno, Patrizio Frosini, Daniela
Giorgi, Claudia Landi, Laura Papaleo,
and Michela Spagnuolo. Describing shapes
by geometrical-topological properties of
real functions. ACM Computing Surveys
(CSUR), 40(4):12, 2008.

Francis R Bach, Gert RG Lanckriet, and
Michael T Jordan. Multiple kernel learn-
ing, conic duality, and the smo algorithm.
In Proceedings of the twenty-first inter-
national conference on Machine learning,

page 6. ACM, 2004.

Wei cheng Chang, Ching pei Lee, and
Chih jen Lin. A revisit to support vector
data description (svdd), 2014.

Jurrian Hartveldt, Michela Spagnuolo,
Apostolos Axenopoulos, Silvia Biasotti,
Petros Daras, Helin Dutagaci, Takahiko

[LCB*04]

[RBCGOS]

[SRBO7]

[SRSS06]

[TDO4]

Furuya, Afzal Godil, Xiaolan Li, Athana-
sios Mademlis, et al. Shrec’09 track: struc-
tural shape retrieval on watertight mod-
els. In Proceedings of the 2nd Eurographics
conference on 3D Object Retrieval, pages
77-83. Eurographics Association, 2009.

Gert RG Lanckriet, Nello Cristianini, Pe-
ter Bartlett, Laurent El Ghaoui, and
Michael I Jordan. Learning the kernel ma-
trix with semidefinite programming. The

Journal of Machine Learning Research,
5:27-72, 2004.

Alain Rakotomamonjy, Francis R Bach,
Stéphane Canu, and Yves Grandvalet.
Simplemkl. Journal of Machine Learning
Research, 9(11), 2008.

Frédéric Suard, Alain Rakotomamonjy,
and Abdelaziz Benrshrair. Kernel on
bag of paths for measuring similarity of
shapes. In ESANN, pages 355-360, 2007.

Soren Sonnenburg, Gunnar Ratsch,
Christin Schéafer, and Bernhard Scholkopf.
Large scale multiple kernel learning. The
Journal of Machine Learning Research,
7:1531-1565, 2006.

David MJ Tax and Robert PW Duin. Sup-
port vector data description. Machine
learning, 54(1):45-66, 2004.

	Introduction
	SVDD in SimpleMKL
	SVDD
	MultipleKernel SVDD
	SVDD in SimpleMKL
	Slim-MK-SVDD
	Slim-MK-OCSVM

	Algorithm evaluation
	Illustration of the behavior depending on
	Comparison to others one-class kernel methods on 2d problems
	Unsupervised outliers detection
	Supervised outliers detection

	3D-shapes filtering
	Overview of the applicative context
	Shrec 2009 dataset and graph kernels
	Experiment settings
	Results

	Discussion and conclusion

