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Abstract

This paper introduces Schur-constant equilibrium distribution models of dimension n for arith-
metic non-negative random variables. Such a model is defined through the (several orders) equi-
librium distributions of a univariate survival function. First, the bivariate case is considered and
analyzed in depth, stressing the main characteristics of the Poisson case. The analysis is then
extended to the multivariate case. Several properties are derived, including the implicit correlation
and the distribution of the sum.
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1 Introduction

Schur-constant models for discrete survival data have been studied by several authors including
Castañer et al. (2015), Lefèvre et al. (2017) and Ta and Van (2017). In this case the discrete
setting means that it is valued at N0 = {0, 1, ...}. There is also a vaste literature regarding Schur-
constant models for continuous survival data valued in R+; let us mention, among others, Caramellino
and Spizzichino (1994), Chi et al. (2009) and Nelsen (2005). Castañer et al. (2015) discuss the
properties of a Schur-constant vector (X1, . . . , Xn) generated by the survival function of an univariate
random variable (r.v.). In that paper, it is shown that this survival function has to be n-monotone.
The present paper aims to develop a class of Schur-constant models generated by an admissible uni-
variate survival function. The admissibility condition is the existence of the (n− 1)− th equilibrium
distribution of the univariate r.v. Because of it, this new model is called Schur-constant (multivariate)
equilibrium distribution model. Some properties of the bivariate continuous case have been previously
studied by Nair and Sankaran (2014). For the sake of completeness, we include in this introduction
some definitions and well-known results.

Let (X1, . . . , Xn) be a vector of n (≥ 2) arithmetic non-negative random variables, called lifetimes.
It is said to have a Schur-constant joint survival function if for all (x1, . . . , xn) ∈ N

n
0 ,

P (X1 ≥ x1, . . . , Xn ≥ xn) = S(x1 + . . .+ xn), (1.1)

where S is an admissible function from N0 to [0, 1]. In fact, S is the survival function of each of
the marginal r.v. Xi and it has to be n-monotone on N0. A function f(x): N0 → R is said to be
n-monotone if it satisfies

(−1)j ∆jf(x) ≥ 0, for j = 0, . . . , n, (1.2)

where ∆ is the forward difference operator (i.e. ∆f(x) = f(x+1)−f(x)) and ∆j is its j− th iterated.
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A general representation (Castañer et al., 2015) valid for any discrete Schur-constant model, putting
(

a
b

)

= 0 when a < b, is:

S(x1 + . . .+ xn) = E

[(

Z − (x1 + . . .+ xn) + n− 1

n− 1

)

/

(

Z + n− 1

n− 1

)]

, (1.3)

where the variable Z is distributed as X1 + . . . + Xn, i.e., with a probability mass function (p.m.f.)
given by

P (Z = z) = (−1)n∆nS(z)

(

z + n− 1

n− 1

)

. (1.4)

As a particular case, for n = 2,
P (Z = z) = ∆2S(z)(z + 1). (1.5)

The p.m.f. of any subvector in (X1, . . . , Xn) can be obtained from the j − th iterated forward
difference of S,

P (X1 = x1, . . . , Xj = xj) = (−1)j ∆jS(x1 + . . .+ xj). (1.6)

For bivariate Schur-constant vectors we can obtain an easy expression of the p.m.f. of the marginal.
This is the next Lemma 1.1, which will be used in the next section of the paper.

Lemma 1.1. If the vector (X1, X2) is Schur-constant, the probability mass function of X1 fulfills

P (X1 = x+ 1) = P (X1 = x)−
P (Z = x)

x+ 1
, (1.7)

for x ≥ 0, with

P (X1 = 0) = E

(

1

Z + 1

)

.

Proof. The survival function of X1, for n = 2, is obtained from (1.3) when x2 = 0,

S(x) = E

[

(Z − x+ 1)+
Z + 1

]

=
∞
∑

z=x

z − x+ 1

z + 1
P (Z = z). (1.8)

From definition, P (X1 = x) = −∆S(x). Then, considering (1.8),

P (X1 = x) =
∞
∑

z=x

1

z + 1
P (Z = z). (1.9)

From (1.9), for x = 0, P (X1 = 0) = E
(

1
Z+1

)

. Now, let us apply again the definition of the survival

function so that ∆2S(x) = P (X1 = x)− P (X1 = x+ 1). Using this expression and (1.5), the desired
result (1.7) is obtained.

On the basis of these definitions, we develop our analysis. The paper is organized as follows. In
Section 2, we introduce the discrete Schur-constant bivariate equilibrium distribution model and pro-
vide its characteristics. We prove that in the Poisson bivariate Schur-constant equilibrium distribution
model, Z is also Poisson distributed. In Section 3, we extend the analysis to the multivariate case.
The paper ends with some concluding remarks.
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2 Schur-constant bivariate equilibrium distribution model

In renewal theory, the asymptotic distribution of the age or residual life in a renewal process is
known as the univariate equilibrium distribution (Cox, 1962). Let X be a non negative discrete
random variable representing the lifetime of a component with finite mean µ and survival function
S(x) = P (X ≥ x), x ≥ 0. The (first order) equilibrium distribution is defined through the probability
mass function, as

p∗(x) =
S(x+ 1)

µ
, for x ∈ N0, (2.1)

or, via the survival function, as

S∗(x) =
∞
∑

h=x+1

S(h)

µ
, for x ∈ N0. (2.2)

Expression (2.2) is well defined as survival function as long as it is a decreasing function and S∗(0) = 1.
This latter condition can be easily checked taking into account that E(X) =

∑

∞

h=1 S(h).
Much attention has been paid to the equilibrium distributions (of first and higher orders) associated

with a given distribution function, but most studies are for continuous univariate random variables (see
for instance Deshpande et al. (1986), Sunoj (2004) and the references therein). Regarding the discrete
univariate case, two papers should be mentioned: Li (2011) and Willmot et al. (2005). In addition,
Lefèvre and Loisel (2010) introduce a specific discrete version of the stationary-excess operator for
discrete non-negative random variables. This discrete stationary-excess operator H maps any non-
negative discrete random variable X to an associated discrete non-negative random variable XH whose
probability mass function is

P (XH = x) =
P (X ≥ x+ 1)

E(X)
, x ∈ N0.

Notice that the equilibrium distribution can be also obtained by applying this discrete stationary-
excess operator.

In this section, we discuss a (first order) bivariate equilibrium distribution of discrete random
variables. It represents in fact a family of discrete Schur-constant distributions, that we call Schur-
constant bivariate equilibrium distributions. Although it has been recently analized by Gupta (2012)
and Nair and Sankaran (2014) in a continuous setting, as far as we know, the bivariate discrete case
has not previously been evaluated. The asymptotic joint distribution of age and residual life is defined
by the survival function

G(x, y) =
1

µ

∞
∑

h=x+y+1

S(h) = S∗(x+ y). (2.3)

Now we prove, in the next proposition, that this survival function corresponds to a Schur-constant
survival function.

Proposition 2.1. The random vector (X∗, Y ∗) with survival function G given by (2.3) is Schur-
constant and its marginal distribution is the equilibrium distribution of X given by (2.2).
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Proof. It is enough to put y = 0 in expression (2.3) to check that X∗ is the equilibrium distribution
of X. With respect to the Schur-constancy property, from (2.3), we obtain

∆S∗(x) = −
S(x+ 1)

µ
≤ 0, (2.4)

and

∆2S∗(x) = −
S(x+ 2)

µ
+

S(x+ 1)

µ
=

1

µ
[P (X ≥ x+ 1)− P (X ≥ x+ 2)]

=
P (X = x+ 1)

µ
≥ 0. (2.5)

Then, from (2.4) and (2.5), S∗(x) is always 2-monotone although S(x) may not.

Now we derive several useful formulas. As (X∗, Y ∗) is Schur-constant,

P (X∗ = x, Y ∗ = y) = ∆2S∗(x+ y) =
P (X = x+ y + 1)

µ
, (2.6)

and the p.m.f of the sum Z = X∗ + Y ∗, by (1.5) and (2.5), is

P (Z = z) =
P (X = z + 1)(z + 1)

µ
. (2.7)

In fact, Z turns out to be the (first) length-biased type transform of X (as defined in Lefèvre and
Loisel, 2013).

The basic characteristics of (X∗, Y ∗) are available in terms of the expectations of simple functions
of X and this is our next proposition.

Proposition 2.2. Let (X∗, Y ∗) be as in Proposition 2.1. Then,

µ∗ = E(X∗) =
1

2

(

E(X2)

µ
− 1

)

, (2.8)

V (X∗) =
4µE(X3)− 3

(

E(X2)
)2

− µ2

12µ2
. (2.9)

Proof. Considering (2.1), we have

µ∗ = E(X∗) =
1

µ

∞
∑

x=0

xS(x+ 1). (2.10)

It is a simple exercise that ∆
(

x2
−x
2

)

= x, so that we can apply summation by parts to the last sum

in (2.10). This leads to

∞
∑

x=0

xS(x+ 1) =
1

2

(

∞
∑

x=0

p(x+ 1)(x+ 1)2 −
∞
∑

x=0

p(x+ 1)(x+ 1)

)

=
1

2

(

∞
∑

x=0

p(x)x2 −
∞
∑

x=0

p(x)x

)

. (2.11)
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Substituting this in (2.10), we obtain (2.8). Let us derive now a formula for the second ordinary
moment of X∗,

E((X∗)2) =
∞
∑

x=0

x2
S(x+ 1)

µ
. (2.12)

We know that ∆
(

x3

3 − x2

2 + x
6

)

= x2. Considering this, summation by parts yields

E((X∗)2) =
1

µ

(

E(X3)

3
−

E(X2)

2
+

µ

6

)

. (2.13)

By (2.8) and (2.13), we obtain formula (2.9).

Castañer et al. (2015) presented simple formulas for the Pearson correlation coefficient, ρ, between
any two variables in a Schur-constant vector. One of them allows to compute ρ in terms of the
expectation and the variance of one of the marginal random variables. But in these Schur-constant
discrete bivariate equilibrium distributions, it is convenient to relate ρ to the main characteristics of
the original variable X, the building block of the model.

Proposition 2.3. In terms of E(X∗) and V (X∗),

ρ =
V (X∗)− (E(X∗))2 − E(X∗)

2V (X∗)
, (2.14)

and, in terms of the ordinary moments of X,

ρ =
2µE(X3)− 3

(

E(X2)
)2

+ µ2

4µE(X3)− 3 (E(X2))2 − µ2
. (2.15)

Proof. Formula (2.14) is direct from Proposition 6.2. in Castañer et al. (2015). Let us now establish
(2.15). We could evaluate E(X∗Y ∗) directly using (2.6). However, a simpler method consists in using
(2.14) in which E(X∗) is substituted by (2.8) and V (X∗) is substituted by (2.9). Simple algebra yields
the desired formula.

The corresponding formulas (2.8), (2.9) and (2.15) for continuous random variables can be found
in Nair and Sankaran (2014).

Now, we apply these results to two specific models generated by well-known distributions, the
Poisson one and the geometric one.

2.1 Poisson Schur-constant bivariate equilibrium model

Let us consider that the Schur-constant equilibrium distribution model (X1, X2) is generated by a r.v.

X that follows a Poisson distribution with parameter λ; i.e., P (X = k) = e−λ λk

k! . This model is an
interesting and particular one, because of its properties. Using (2.7), it is immediate to conclude that
Z = X1 +X2 also follows a Poisson distribution of parameter λ,

P (Z = z) =
λz+1e−λ(z + 1)

λ(z + 1)!
=

λze−λ

z!
, z = 0, 1, . . . . (2.16)
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Proposition 2.4. Let (X1, X2) be a Schur-constant equilibrium distribution model generated by a r.v.
X and Z = X1 +X2. Then, Z =d X if and only if X follows a Poisson distribution.

Proof. It is well known from Panjer (1981) that the Poisson distribution is the only one that fulfills a
recursive equation on its probabilities of the form

P (X = k + 1) = P (X = k)
b

k + 1
, k = 0, 1, 2, . . . , (2.17)

being b = λ. Then, substituting (2.17) in (2.7), we obtain

P (Z = z) = P (X = z), z = 0, 1, 2, . . . . (2.18)

For the other implication, if Z is Poisson distributed with parameter λ, from (2.7), P (X = z + 1) =
P (Z=z)λ

z+1 , which implies that X is Poisson distributed with the same parameter.

The distribution of X1 can be found using the property that X1 is the equilibrium distribution of
X. Since X is Poisson distributed, S(x) =

∑

∞

h=x
e−λλh

h! and then

P (X1 = x) =
1− Γ(x+1,λ)

x!

λ
, x = 0, 1, . . . , (2.19)

being Γ(· , ·) the incomplete Gamma function. The same result can be obtained using (1.7) and
Proposition 2.4. The correlation coefficient between X1 and X2 in this model, computed using (2.15),
is ρ = −λ

6+λ
.

2.2 Geometric Schur-constant bivariate equilibrium model

Let us consider a geometric r.v. X with survival function S(x) = qx. From this survival function we
build a Schur-constant equilibrium vector (X1, X2). The r.v. X1 is the equilibrium distribution of X.
It immediately follows that S∗(x) = S(x) = qx. Then, X1 and X2 are independent r.v. (Castañer et
al., 2015). So, the Pearson correlation coefficient ρ computed from (2.14) is equal to 0.

3 Schur-constant multivariate equilibrium distribution model

In this section we generalize the results of the previous section. The first order equilibrium distribution
of a discrete random variable X has been used in Section 2 to define a special class of bivariate Schur-
constant models. In the present section, this analysis is extended to the general multivariate case
through the use of the n− th order equilibrium distribution.

Let X be a non negative discrete random variable with finite mean µ and survival function S(x).
The second order equilibrium distribution can be defined by its survival function

S2∗(x) =
∞
∑

h=x+1

S∗(h)

µ1:1
, for x ∈ N0, (3.1)

or, alternatively, by its p.m.f

p2∗(x) =
S∗(x+ 1)

µ1:1
, for x ∈ N0, (3.2)
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being µ1:1 the first order moment of X∗ (the first order equilibrium distribution of X). Likewise, we
can define recursively the n− th order equilibrium distribution,

Sn∗(x) =

∞
∑

h=x+1

S(n−1)∗(h)

µn−1:1
, for x ∈ N0, (3.3)

and

pn∗(x) =
S(n−1)∗(x+ 1)

µn−1:1
, for x ∈ N0, (3.4)

being µi:1 < ∞ the first order moment of the i− th order equilibrium distribution of X, with µ0:1 = µ,
and S(0)∗(x) = S(x).

Following the same procedure than in Section 2, lets us define the random vector (X1, . . . , Xn)
with survival function

P (X1 ≥ x1, . . . , Xn ≥ xn) = S(n−1)∗(x1 + . . .+ xn). (3.5)

Our next proposition is the parallel of Proposition 2.1 in the bivariate case. Now, we prove that
the survival function (3.5) corresponds to a Schur-constant survival function.

Proposition 3.1. The vector (X1, . . . , Xn) with survival function (3.5) is Schur-constant and the
marginal X1 is the (n− 1)− th order equilibrium distribution of X ((3.3) and (3.4)).

Proof. We know from Proposition 2.1 that it is true for n = 2, because S∗(x) is 2-monotone. We
assume now that it is true for n− 1, i.e., S(n−2)∗ is (n− 1)-monotone. From (3.3),

(−1)n∆nS(n−1)∗(x) = (−1)n∆(n−1)∆S(n−1)∗(x) = (−1)(n−1)∆(n−1)S
(n−2)∗(x+ 1)

µn−2:1
. (3.6)

Since S(n−2)∗ is (n−1)-monotone, expression (3.6) is equal or greater than zero, which in turn implies
that S(n−1)∗ is n-monotone. Putting x2 = . . . = xn = 0 in (3.5), P (X1 ≥ x1) = S(n−1)∗(x1), and thus,
the marginal distribution X1 is the (n− 1)− th order equilibrium distribution of X.

A Schur-constant vector of n components can be defined using a survival function not necessarily
n-monotone, using the previous proposition; we say then that such vector follows a Schur-constant
multivariate equilibrium distribution model. By exchangeability, all of the Xi’s have the same ordinary
moments, and the same Pearson correlation coefficient. In this model we are able to obtain all of
them from the ordinary moments of the original distribution X, as long as Xi is the (n− 1)− th order
equilibrium distribution of X. Let us first establish the following lemma.

Lemma 3.2. The set of discrete functions F (x) such that ∆F (x) = xn−1 is given by Pn(x)+C, being
C a constant and Pn(x) a polynomial of degree n, such that Pn(x) =

∑n
r=0 ar(n)x

r with a0(n) = 0
and ar(n), for r = 1, . . . , n, that can be computed recursively,

an(n) =
1

n
,

an−h+1(n) =
−1

n− h+ 1

n
∑

r=n−h+2

(

r

n− h

)

ar(n), h = 2, . . . , n. (3.7)
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Proof. Let us consider F (x) = Pn(x) + C being Pn(x) =
∑n

r=0 ar(n)x
r whit a0(n) = 0, a polynomial

of degree n on x. The difference of any of these functions is exactly the same and equals

∆Pn(x) =
n
∑

r=0

ar(n)∆xr =
n
∑

r=0

ar(n)

(

r
∑

s=0

(

r

s

)

xs − xr

)

=
n−1
∑

r=0

ar(n)
r
∑

s=0

(

r + 1

s

)

xs =
n−1
∑

s=0

xs
n−1
∑

r=s

(

r + 1

s

)

ar+1(n). (3.8)

From (3.8), we observe that ∆Pn(x) is a new polynomial of degree n− 1 and coefficients bs, that can
be derived from the coefficients of the original polynomial, ar(n),

bs =
n
∑

r=s+1

(

r

s

)

ar(n), s = 0, . . . , n− 1. (3.9)

From (3.8) and (3.9) and imposing the condition that ∆Pn(x) = xn−1, that is bn−1 = 1, and bs = 0 for
s = 0, . . . , n − 2, a linear system of n equations on ar(n) is defined. The value of an = 1

n
is obtained

when s = n− 1. When s = n− h, the corresponding equation is

0 =
n
∑

r=n−h+1

(

r

n− h

)

ar(n). (3.10)

Isolating an−h+1(n) from (3.10) the statement of the lemma is obtained.

Table 1 below gives the values of ar(n), for the first values of n.

Table 1: Some coefficients ar(n)

❍
❍
❍

❍
❍❍

r
n

2 3 4 5 6 7 8 9 10

1 −1/2 1/6 0 −1/30 0 1/42 0 −1/30 0
2 1/2 −1/2 1/4 0 −1/12 0 1/12 0 −3/20
3 1/3 −1/2 1/3 0 −1/6 0 2/9 0
4 1/4 −1/2 5/12 0 −7/24 0 1/2
5 1/5 −1/2 1/2 0 −7/15 0
6 1/6 −1/2 7/12 0 −7/10
7 1/7 −1/2 2/3 0
8 1/8 −1/2 3/4
9 1/9 −1/2
10 1/10

Proposition 3.3. The j − th ordinary moment of the i − th order equilibrium distribution, µi:j =

E
[

(

Xi∗
)j
]

, j = 1, 2, ..., i = 1, 2, ..., is given by the recurrence formula

µi:j =
1

µi−1:1

j+1
∑

r=1

µi−1:rar(j + 1), (3.11)

with ar(·) as in Lemma 3.2, and µ0:r = E(Xr).
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Proof. By definition,

µi:j =
1

µi−1:1

∞
∑

x=0

xjS(i−1)∗(x+ 1). (3.12)

From Lemma 3.2, ∆
(

∑j+1
r=1 ar(j + 1)xr

)

= xj , where the coefficients ar(·) are given by expression

(3.7). Therefore, the sum in (3.12) can be computed by applying summation by parts,

∞
∑

x=0

p(i−1)∗(x)

j+1
∑

r=1

ar(j + 1)xr =

j+1
∑

r=1

ar(j + 1)
∞
∑

x=0

p(i−1)∗(x)xr. (3.13)

In Li (2011) an equivalent expression relating the n− th factorial moments is found.
We focus now on the study of the Pearson correlation coefficient, ρ, in this Schur-constant multi-

variate equilibrium model. We see that ρ is a function of some ordinary moments of X.

Proposition 3.4. Consider the vector (X1, . . . , Xn) with survival function (3.5). In terms of ex-
pectation and variance of the (n − 1)-th order equilibrium distribution of X, the Pearson correlation
coefficient is given by

ρ =
V (X(n−1)∗)−

(

E
(

X(n−1)∗
))2

− E(X(n−1)∗)

2V (X(n−1)∗)
. (3.14)

Proof. It is direct from Proposition 6.2. in Castañer et al. (2015).

Thanks to (3.11), an equivalent expression of ρ as a function of the ordinary moments of X can be
deduced. For instance, let us make explicit the formula when n = 3 and n = 4. Let (X1, X2, X3) be
a Schur-constant multivariate equilibrium distribution model defined by X. The Pearson correlation
coefficient can be computed as

ρ =
1

2
−

(

µ− E(X3)
) (

2µ− 3E(X2) + E(X3)
)

2µ2 + 2(E(X3))2 + 3E(X2)(E(X2)− E(X4)) + µ (−3E(X2)− 4E(X3) + 3E(X4))
.

If we consider now the Schur-constant multivariate equilibrium distribution model (X1, X2, X3, X4),

ρ =
1

2
−

5
(

6µ− 11E(X2) + 6E(X3)− E(X4)
) (

2µ− E(X2)− 2E(X3) + E(X4)
)

2(D − 4µJ)
,

being

D = 36µ2+65(E(X2))2+20(E(X3))2−70E(X2)E(X4)+5(E(X4))2+24E(X2)E(X5)8E(X3)E(X5),

and
J = 21E(X2) + 8E(X3)−15E(X4) + 4E(X5).

As an example, Tables 2 and 3 include the values of the Pearson correlation coefficient in a Schur-
constant multivariate equilibrium distribution model built from a Poisson distributed random variable
of mean λ, as a function of n, the number of elements of the random vector.
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Table 2: ρ in a Poisson Schur-constant multivariate equilibrium model (X1, . . . , Xn)

n 2 3 4 5

ρ
−λ

6 + λ

−λ

12 + 2λ

−λ

20 + 3λ

−λ

30 + 4λ

Table 3: ρ in a Poisson Schur-constant multivariate equilibrium model (X1, . . . , Xn) for different values
of λ

❍
❍
❍
❍
❍❍

n
λ

0.01 0.5 1 5 10 100

2 −0.00166 −0.07692 −0.14286 −0.45455 −0.62500 −0.94340

3 −0.00083 −0.03846 −0.07143 −0.22727 −0.31250 −0.47170

4 −0.00050 −0.02326 −0.04348 −0.14286 −0.20000 −0.31250

5 −0.00033 −0.01563 −0.02941 −0.10000 −0.14286 −0.23256

One interesting property of these models is that the probability mass function of Z = X1+ . . .+Xn

is easily calculated from the survival function of X. This is our next proposition.

Proposition 3.5. Consider the vector (X1, . . . , Xn) with survival function (3.5). The p.m.f. of
Z = X1 + . . .+Xn is

P (Z = z) =
P (X = z + n− 1)

µ · µ1:1 · · ·µ(n−2):1

(

z + n− 1

n− 1

)

. (3.15)

Proof. From Proposition 3.1, the survival function of X1 is S(n−1)∗(x), and from its definition (3.3),

∆nS(n−1)∗(x) = (−1)n
P (X = x+ n− 1)

µ · µ1:1 · · ·µ(n−2):1
. (3.16)

Inserting (3.16) in (1.4) yields (3.15).

4 Conclusions

Discrete Schur-constant models (of dimension n) can be generated by univariate survival functions
that are n-monotone. This paper introduces a class of Schur-constant models that are generated by a
wider class of univariate survival functions, i.e., those survival functions such that their (n − 1) − th
equilibrium distribution exists.
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