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Abstract—This paper proposes a novel online software non-
linearity correction algorithm for acoustic active monitoring
in aquatic environments. Based on irregular time resampling
(time warping), coupled with statistical estimation, the estimated
reference function is available for further match filtering at the
reception.

I. INTRODUCTION

The use of underwater ultrasound as a non-invasive tool
for study and remote inspection of marine environments
and their associated ecology is firmly established, both for
oceanographic research and commercial applications, such as
fisheries assessment. Ultrasonic sonar surveys can provide
useful information about the possibility of free movement of
animals [1], [2] and free sediment transport [3] .

An accurate active transmitter-receiver ultrasonic monitor-
ing system measures continuously the pressure fluctuations in
water. Typically, these systems exploit the resonant behavior
of the ultrasound piezoelectric active element, being designed
to give maximum sensitivity in the bandwidth of interest.
Calibration of such transducers can provide both magnitude
and phase information describing the way in which the sensor
responds to a surface displacement over its frequency range.

A classical issue of any transmitter-receiver ultrasonic sys-
tem consists in the nonlinearity of the transmitted waveforms
time-frequency shape induced by either the impedance miss-
match or non-homogeneities of the transmission media (shal-
low water, multi-path, high-dynamics, vegetal debris ...). This
leads to a deteriorated resolution by spreading a targets signal
in a certain bandwidth during a predefined sweep (linear
Hamming windowed chirp, for example).

In the literature there are different approaches for this
problem. A simple correction method is to employ a pre-
distorted tuning voltage at the transmitter to obtain a linear
frequency modulation. However, this solution has the issue
that the pre-distortion is usually done with the static frequency-
voltage characteristic (measured by applying certain voltages
and reading the resulting frequencies) which may differ from
the dynamic one because it doesnt take into account the prop-
agation through the aquatic media or any change in external
conditions (e.g. sweep speed, temperature, supply voltage).
Other solutions involve actual hardware modifications like the
one proposed in [4].

In this paper, we propose a novel online software non-
linearity correction which exploit the specific time-frequency
structure of the received signal using a time warping approach
[5], [6] coupled with multimodal histogram analysis [7].
Under the hypothesis of sparsity of the target with respect
to the underlying aquatic media, this approach can be applied
continuously without requiring any specific hardware to be
installed on site.

On the basis of the estimated nonlinearity of the acoustic
system in the aquatic environment, we can acquire the desired
signal at the output with as little distortion as possible by
modifying the input signal of the transmission piezoelectric
transducers. Using a Hamming windowed linear chirp as a
test signal, we validate the proposed method over a range of
frequencies.

This paper is structured as follows. Section II illustrates
in several steps the general framework of time warping and
resampling, while Section III presents the nonlinearity esti-
mation scheme. In Section IV, we present both qualitative
and quantitative performance assessment, whereas Section V
concludes the paper.

II. TIME WARPING AND RESAMPLING

The spectral content of signals acquired in under-water
acoustics applications is usually non-stationary in the sense
that its instantaneous frequencies vary in time. This type of
signals require specific analysis tools in order to estimate and
detect their specific time-frequency structure.

If the time-frequency shape of each component is known,
and it can be described by a certain basis function, the modu-
lation rates of the components can be obtained by employing
the Matched Signal Transform (MST) [8] or, equivalently,
applying a time warping of the signal with the basis function
followed by a Fourier Transform (FT). In the MST domain,
non-stationary signals are localized at their frequency modu-
lation rates in a similar manner as a sinusoid is localized at
its frequency by a spectral representation.

Generally, the received analytical signal can be expressed
as the sum of M non-stationary components, for each range
profile. Each of the M components can be a either a specific
target or an echo (multi-path) and has the same time-frequency
shape described by a monotonic one-to-one function of time



θ(t) (basis function) defined on [0, T ]. Therefore, the resulting
received signal is:

sr(t) =

M∑
m=1

Am exp [j2παmθ(t)], (1)

where Am and αm are the complex amplitude and the modu-
lation rate of the mth component. When expressed in a warped
time axis θ = θ(t), the signal from Eq. 1 will appear as a sum
of complex sinusoids:

swpr (t) =

M∑
m=1

Am exp [j2παmθ]. (2)

As a result, its FT will exhibit peaks precisely at the modula-
tion rates αm:

Swpr (α) =

θ=T∑
θ=0

swpr (t) exp (−j2παθ) dθ, (3)

In the warped time axis θ, the samples sr[n] of the signal
in Eq. 1, uniformly sampled at N time instants (t0,..tN−1),
are related to the time instants θ(tn), which leads to a non-
uniformly sampled signal. Hence, the computation of the FT
of sr[n] in the θ time axis can be efficiently implemented by a
resampling of the initial signal (to obtain an uniformly sampled
signal), followed by the Fast Fourier Transform (FFT).

III. NONLINEARITY ESTIMATION ALGORITHM

In the vast majority of wideband active ultrasound mon-
itoring systems, the received analytical signal of a target, or
echo, over a period Tp, is modeled by a polynomial frequency-
voltage, or charge, dependence (chirp plus a nonlinearity phase
term):

sP (t) = exp

{
j

[
2πf0t+ β0

∫ t

0

θp0(x)dx

]}
, (4)

with f0 the initial frequency, β0 the chirp rate and θp0 a
monotonic function describing the nonlinearity which depends
on certain parameters given by the vector p0 = [p0,1, ...p0,L]

T

with L components. In the following, we consider that the
total received signal sR(t) is a sum of delayed and attenuated
signals received from M different targets:

sR(t) =

M∑
m=1

AksP (t− τm). (5)

τm and Ak are respectively the propagation delay and the
complex amplitude received from target m. It can be rewritten
as:

sR(t) =

M∑
m=1

Am exp {j [φm + β0θp0(t)]}, (6)

where

θp0(t) = t

(
1 +

L∑
k=2

βk
β0
tk−1

)
(7)

is a bijective function (the new resampling time axis). Notice
that in the definition of the nonlinearity coefficients βk are

normalized to the linear chirp rate β0.
As explained in Sect. II, the received signal becomes a sum

of N complex sinusoids in this time axis, This was exactly
the scope of the correction algorithm. The idea is to resample
the received signal from Eq. 6 with different basis functions
obtained from a predefined dictionary.

When the test function matches the real basis function,
the warped signal will be a sum of complex sinusoids and
its spectrum will have the highest degree of concentration.
Consequently, a concentration measure applied to the warped
signals spectrum SR(α) will reach its optimum value when
the time resampling is done with the optimal basis function.
The spectral concentration mesure from [9] has been selected
in this paper:

M [Sp(α)] =

[∫ αmax

αmin
|Sp(α)|dα

]2
∫ αmax

αmin
|Sp(α)|2dα

, (8)

with [αmin, αmax] the support of the resampled signal’s spec-
trum for the corresponding position in space.

Once the optimal parameters are determined, the analytical
signal can be reconstructed from Eq. 6 and directly used as
reference for further match filtering.

The only question remains how to distinguish between an
unperturbed reconstructed reference signal and the received
signal affected by the presence of targets to be detected. This
is done by storing in a reception buffer a sufficiently large
(> 400) number of estimated references and by computing
the empirical probability density function for each βk using
these realizations.

Under the hypothesis that the target presence is sparse with
respect to the system’s frame rate, we propose three parameter
selection strategies:

• statistical estimation - the marginal mean parameter esti-
mates are computed either by averaging (biased by target
occurances) or by more robust estimators like the Huber
M-estimator [10].

• histogram thresholding - on the obtained multi-modal
histogram, conventional thresholding methods, such as
[7], can be applied.

• MST-based detection - the actual detection in the MST
domain is done by peak picking the squared magnitude
and comparing it to a threshold depending on the resam-
pling implementation and the type of noise [6].

IV. RESULTS AND DISCUSSION

The proposed experimentations were carried in France, at
the Poutes dam and at the Aquarium de Paris. The prototype
system is composed of several acoustic barriers operating
at either 500KHz or 1.1MHz central frequency and the
monitored targets are jellyfish [1] or salmon [2] passages,
respectively.

Fig. 1 illustrated one example of transmitted and received
waveforms in time domain. It represents a linear chirp
weighted by a Hamming window.
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Fig. 1. Linear chirp burst: transmitted (up) and received (down) waveforms.

The first step of the proposed algorithm consists in resam-
pling each signal with different basis functions obtained from
a predefined dictionary. For simplicity and without loss of
generality, only two parameters have been selected: the linear
chirp rate β0 and the first nonlinearity coefficient β1. When
the selected spectral concentration measure matches each
waveform basis function, the corresponding time resampling
function is applied.
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Fig. 2. Spectral concentration versus iterations.

The variation of the spectral concentration is illustrated in
Fig. 2. When it reaches the global minimum, we can proceed
with the time resampling. The spectrum of the transmitted and
the received waveforms are presented in Fig. 3 in both initial
and warped domain. The corresponding spectrograms of the
received waveform are shown in Fig. 4.

The next step is to select the set of parameters which
correspond to the desired reference function. Fig. 5 illustrates
the corresponding empirical probability density functions es-
timated over a circular buffer storing the last 400 transmitted
or received waveforms. In this case, the optimum set of
parameters is obtained using MST-based thresholding.
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Fig. 3. Spectrum of the transmitted (up) and received (down) waveforms:
initial and warped.
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Fig. 4. Spectrograms (in dBV) of the received waveform: initial (up) and
warped (down) .

After match filtering with the nonlinearity corrected ref-
erence, the nonlinearity corrected acoustic range profile for
salmon monitoring is illustrated in Fig. 6. On can notice a clear
improvement in resolution with respect to the conventional
match filtering with the emitted signal. It is now possible to
clearly distinguish 4 to 5 echoes in the received signal.

Finally, quantitative performance assessment si provided
in Table I for the salmon monitoring system. The proposed
nonlinearity correction algorithm yields both higher signal-to-
noise ratio (SNR) and better resolution at −3dB (δ−3dB).

The same behavior can be noticed in Fig. 7 for jellyfish
detection.

V. CONCLUSION

This paper proposed a coupling between irregular time
resampling and statistical estimation in order to derive an
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- up) and β1 (first nonlinearity coefficient - down).
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Fig. 6. Nonlinearity correction for salmon monitoring: spectrum of the
estimated nonlinearity (up) and of the corrected acoustic range profile (down).

online software nonlinearity correction scheme for acoustic
active monitoring in the aquatic environments. The results ob-
tained after match filtering indicate close resemblance between
the desired and received signals. Such system calibration is
necessary when using ultrasonic active sonar techniques to
characterize pressure fluctuations in water.
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