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Testing the causality of Hawkes processes with time reversal

Marcus Cordi, Damien Challet, and Ioane Muni Toke
Laboratoire de Mathématiques et Informatique pour les Systémes Complezxes, CentraleSupélec, Université Paris Saclay
(Dated: September 26, 2017)

We show that univariate and symmetric multivariate Hawkes processes are only weakly causal:
the true log-likelihoods of real and reversed event time vectors are almost equal, thus parameter
estimation via maximum likelihood only weakly depends on the direction of the arrow of time. In
ideal (synthetic) conditions, tests of goodness of parametric fit unambiguously reject backward event
times, which implies that inferring kernels from time-symmetric quantities, such as the autocovari-
ance of the event rate, only rarely produce statistically significant fits. Finally, we find that fitting
financial data with many-parameter kernels may yield significant fits for both arrows of time for the
same event time vector, sometimes favouring the backward time direction. This goes to show that a
significant fit of Hawkes processes to real data with flexible kernels does not imply a definite arrow

of time unless one tests it.

PACS numbers: PACS numbers.

I. INTRODUCTION

Hawkes processes (HPs hereafter) extend Poisson pro-
cesses by allowing a modulation of the current event rate
as a function of the past events and are thus self-excited
Poisson processes. Accordingly, they are very useful in
many fields where the occurrence of one event increases
for some time the probability of another event. Exam-
ples may be found in seismology, where an earthquake
typically is followed by aftershocks [5, [0l [13] 20], crim-
inology, where a fight between rival gangs may trigger
various criminal retaliations [10], neurology, where the
spiking activity of individual neurons may depend on the
neuron’s own spiking history [8) [16] [19], and credit risk,
where the default of one company in a portfolio may lead
to the default of other companies [3].

Quite remarkably, in many papers, the goodness of fit
is not quantitatively assessed, but only qualitatively with
Q-Q plots (which often look good), probably because HPs
are assumed to be useful extensions of Poisson processes
that are either totally adequate or cannot possibly de-
scribe precisely the data, which amounts to making un-
verified assumptions about the goodness of fits in either
case. However, recent results show that parametric fits
of HPs to high-frequency financial data do pass goodness
of fit tests provided that a multi-timescale kernel is used
and the non-stationary baseline intensity is properly ac-
counted for for [7, [14].

HPs are causal by construction. Indeed, in the uni-
variate case, the conditional intensity of a HPs Ny, or
equivalently its rate of events, evolves according to

t

) = Dot + / K(t - 5)AN, = ho(t) + 3" K(t — 1),

ti<t

(1)
where \g(¢) is the baseline intensity (hereafter we will as-
sume constant baseline intensity, i.e., A\o(t) = o), K(¥)
is the kernel of the process and t¢; the time of event i: A
is defined in a causal way from past events, hence the di-
rection of time is well-defined. It would thus seem foolish

— 00

to fit a HP to the reverted vector of events, i.e., to the
events taken in the backward direction. Accordingly, the
belief that a time series of events with an inverted arrow
of time cannot possibly be mistaken for a HP is widely
established (see for example Ref. [0]).

However, the strength of the causality of HPs is as of
yet unknown and indeed the extent to which true HPs are
distinctively causal depends on the method used to assess
the fitted model and, when fitting them to data, on the
nature of the data. As shown below, a parametric kernel
estimation of univariate and symmetric multivariate HPs
on synthetic data leads on average to almost the same
values for both time arrows. Why this may be the case
is best gathered from a classic plot that superposes the
activity rate A(t) with the event times (Fig.[I)). The twist
is to plot the activity rate from the same sets of events,
and to let the time run backwards: the activity rate and
the clustering of events are visually plausible for both
directions of the time arrow.

Expectedly, goodness of fit tests are able to discrim-
inate between a forward and a backward arrow of time
for synthetic data (i.e., in an ideal setting), the latter
being very often detected as not HPs. A related issue
is found when one infers kernel with time-reversal sym-
metric quantities, which by definition yield exactly the
same kernel for both arrows of time. For example, the
non-parametric kernel inference of [I] is based on the co-
variance of event rates, which is symmetric with respect
to time reversal. We show here that such kernels only
rarely pass tests of goodness of fit. However, we point
out that this method provides a useful approximation of
the true kernel shape precisely when causality is weak
(i.e. in the limit of small endogeneity), which may then
help choosing a parameteric kernel family.

Fitting HPs to real data is more troublesome. For ex-
ample, data collection may further degrade causality if
the time resolution is too coarse. But by far the main
problem is that one does not know the shape of the ker-
nel. We show that the more flexible the kernel, the harder
it becomes for tests of goodness of fit to discriminate be-
tween the forward and backward arrows of time, some-
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Figure 1: Intensity as a function of time of a HP with an
exponential kernel K (t) = ae™”" and Ao = 0.3, a = 0.8 and
B = 1.2 for the true (top) and the time-reversed sequence of
events (bottom). The red points indicate events.

times yielding statistically significant fits for both time
directions of the same set of events. In financial data,
fits usually (and reassuringly) favour the forward arrow
of time. However, there are cases when the backward
arrow of time yields better fits than the forward one, at
odds with the reality of financial markets, which shows
that a significant fit of a weakly causal HP does not nec-
essarily correspond to physical causality. By extension,
inferring from a fit that a system is causal because of the
success of a fit of a weakly causal HP should be avoided.

II. UNIVARIATE PROCESSES

We performed extensive numerical simulations by gen-
erating HPs with a single exponential kernel

K(t) = ae™ P (2)

and constant baseline intensity for a variety of param-
eters with the Ogata thinning method [I2]; results for
a power-law kernel are reported in Appendix [A] and are
similar to those obtained with a single exponential.

The data points are grouped according to the endo-
geneity of the process, defined as

n= 0/ K(s)ds. 3)

The endogeneity (or reflexivity as it might be referred
to in the field of finance [I8]) quantifies the level of the

relative self-excitement of the process [4]. In order for
the process to be stationary the endogeneity must satisfy
n < 1. In the specific case of a HP with an exponential
kernel, the endogeneity is given by n = %

Since the expected number of events of a stationary
simple point process is given by

E[N] = ut, (4)

where p = E [A()] = 2 for HPs, we have adjusted the
time horizon T so that all the simulations have the same
expected number of events in order to allow a proper
comparison between all the results obtained with differ-

ent values of n.

In order to avoid calibration issues, we first of all re-
move ("burn”) the non-stationary part of all simulations.
The time of stationarity tg is defined as the first time the
instantaneous intensity is greater or equal to the average
(expected) intensity, i.e.,

to = inf{t S {ti}i:L..,,n : /\(t) > /.L}. (5)

The process is then shifted: t, =t; —to,t; > to and T' =
T — tg. This requires us to modify the usual likelihood
estimation, as explained below. We shall henceforth drop
the prime symbols for the sake of readability.

The vector of event times obtained from the simu-
lations (or data) correspond by definition to the for-
ward arrow of time and will be denoted henceforth by
{tgf)}izl,__m. The events in the backward arrow of time
simply correspond to taking the last event of the for-
ward time arrow as the first one in the backward arrow

of time, the second last event as the second one and so

b f
z(‘ )= T - tngl—i'

We compare the adequacy of HPs to both forward
and backward event time series with three methods: the
likelihood function calculated with the true parameters,
Maximum Likelihood Estimation (MLE hereafter) and
goodness of fit.

on; mathematically, ¢

A. Log-likelihood

The idea here is to compare the true log-likelihood, i.e.,
computed with the true kernel, of simulations of HPs for
the real (forward) and reversed (backward) event time
vectors. The log-likelihood of a univariate point process
N; with intensity A(t) is written as

T T
InL ((Nt)te[w) - —/)\(s)ds+/1n)\(s)dNS. (6)
0 0
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Figure 2: Relative difference of the log-likelihood between
forward and backward time arrows for a HP with an
exponential kernel. All possible permutations of

Ao = {0.001,0.0025,0.0050,0.0075,0.0100} and

a = {0.010,0.025,0.050, 0.075,0.100}, with B chosen
according to the desired endogeneity n, are considered. The
data points are grouped according to their endogeneity and
averaged over 100 runs for each parameter permutation. The
expected number of events is set to 10°.

In the case of a HP with an exponential kernel and a
constant baseline intensity, the log-likelihood is

0E (ther.) = 3T = 35 (1= 70)

n i—1
+ Zln Ao+ Z aeﬁ(t"'tk)] .
i=1 k=1
(7)

This expression, however, takes into account the initial
non-stationary part of the process. A fair comparison
between the forward and backward processes requires the
removal of the non-stationary part of the process, which
leads to small modifications of the above mathematical
expression.

The general idea behind the modification is that if the
simulation has already reached a stationary state, then
the (constant) baseline intensity Ag should be replaced by
a time-dependent baseline intensity Aj(¢), which is given
by

w0 =r+ (P -x) 58

A similar procedure is developed in [I7]. In the case of
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Figure 3: Difference of the log-likelihood scaled by T
between forward and backward time arrows for a HP with an
exponential kernel for

Ao = {0.001,0.0025,0.0050,0.0075,0.0100} and

a = {0.010,0.025, 0.050,0.075,0.100}, while B is adjusted to
match the desired n. The data points are grouped according
to their endogeneity and averaged over 100 runs for each
pamrgeter permutation. The expected number of events is set
to 10°.

the exponential kernel we obtain

InL ({ti}i:L.,.,n) =—X\T — <1i0g _ )\0> 1—;_57“
_;5 (1_e BT t))
A i—1
Ao + (1 _Og — )\0> e Pt 4 Zae_ﬁ(ti_tk)l .
B

k=1
(9)

In order to assess the performance of this correction
we content ourselves with comparing the average differ-
ence between the MLE estimates and the true values (see
TableE[)7 and see that the modified log-likelihood does in-
deed generally perform slightly better than the standard
log-likelihood on truncated HPs.

Figure [2] displays the average relative difference of the
log-likelihood calculated with the true parameters for
both time arrows. It turns out that it is surprisingly
small, typically 0.2% on average for a very large number
of events, except for near-critical (n ~ 1) processes. Here
we see that, as one would expect, the likelihood of the
forward event time series is consistently larger than that
of the backward event time series.

+ En: In
i=1




Table I: Average difference between the true parameter
values and the estimations obtained via MLE for the forward
(top) and backward process (bottom)) with the standard
log-likelihood function (SLL) and the modified log-likelihood
function (MLL) for a truncated HP (the same parameter
choice as used in Figs. @, @ and@ except the variable
number of expected events).

Forward )\é” o B8N
SLL. E[Ny] = 107]9.901% |2.496%] 2.751%
MLL E [Nr] = 107[5.497% | 2.204% | 2.192%
SLL E [Nr] = 10° [1.205%0.692%] 0.687%
MLL E [Ny] = 10°|1.056%[0.661% | 0.656%
SLL E[Nr] = 10° [0.332%]0.220% |0.217%
MLL E [Nr] = 10°]0.328%]0.213%|0.210%

Backward )\E,b) a® Y
SLL E[Ny] = 107 [10.476%| 2.674% | 2.886%
MLL E [N7] = 107] 6.100% |2.450% |2.461%
SLL E[Nr] = 10° | 1.637% |0.849%|1.020%
MLL E [Ny] = 10°] 1.496% [0.817% |0.988%
SLL E [Ny] = 10° | 1.088% [0.552%|0.797%
MLL E [Ny] = 10°] 1.083% [0.544%0.790%

On average a lower baseline intensity Ao implies a
larger difference in the log-likelihood, as one might ex-
pect since the Poissonian properties of the process are
less prominent. Similarly, a larger « also implies a larger
difference because each event carries with it a larger im-
pact on the intensity. The difference of the forward and
backward log-likelihood scaled by 7' has a similar be-
haviour (see Fig. [3).

We have checked the fraction of the simulations for
which the true likelihood of the backward process is larger
than that of the forward process. Expectedly, since we
compute the likelihood with the true kernel, we found
8 - 1076, which is to say none. One should however
keep in mind that when dealing with empirical data, one
faces three additional problems that may change this rosy
outcome, as indeed the above situation is an ideal case.
First, one does not know the true kernel shape nor its pa-
rameters. Second, the number of events in the above sim-
ulations is much larger than those of the typical dataset.
Third, the question of how to deal with a non-constant
baseline intensity is fundamental, but still under active
investigation; the issue here is to properly discriminate
between exogenous and endogenous events, i.e., to at-
tribute time variations of the intensity to the kernel or
to the baseline intensity.

B. Parameter estimation

The small difference found in the log-likelihood sug-
gests that the estimation of the parameters based on
maximum likelihood leads to fairly similar parameter val-
ues. We thus perform MLE on synthetic data; we impose
that o < 8 in order to fulfil the requirement for a station-
ary process, both for the original and the time-reversed
sequence of events. The few non-convergent estimations
were excluded from the analysis. Since we choose as ini-

tial points the true parameter values, the optimisation is
typically not required to be bound constrained and an
algorithm by Nelder and Mead [I1] is used. When work-
ing with real-world data as in Section [[II} however, there
is a need for a bound constrained optimisation and the
L-BFGS-B algorithm [2] is used.

Unsurprisingly, Fig. [4] reveals that the estimated pa-
rameters only weakly depend on the direction of the time
arrow of the event time series. One notes that the base-
line intensity is somewhat overestimated for the time-
reversed process. One interpretation is that since causal-
ity is lost, the fitting process must attribute more events
to the Poisson process.

Similarly, the estimates of «, in conjunction with the
estimates of 3, for the backward process are overesti-
mated. This also suggests that for the backward process
too much importance is given to the short term effect
or impact of the previous events, and that the memory
extends less into the history of the process. It is worth
noting that since the estimations of o and g are similarly
overestimated, the resulting estimates of the endogeneity
n is relatively close to the true value. Finally, closer to
criticality there is an apparent tendency of the estimates
for both arrows of time to converge.

It is also worth mentioning here that if we compare
the forward and backward likelihood calculated with the
MLE parameters for medium-size data sets (around 10%
events) we see that in 1.3% of the cases that the backward
likelihood actually is larger, and for even smaller data
sets (around 500 events) it is 16%. In practice, available
data sets are typically quite small, and therefore the log-
likelihood is not a guaranteed way to distinguish between
the two arrows of time.

C. Goodness of fit test

For a given kernel K, baseline intensity Ay and a time
series {t;}i=1,.., one defines the compensators

t; t;

Altiy,t) = / A(s)ds = /(A0+ > K(s—t))ds

ti—1 ti—1 te<s

(10)
which are exponentially distributed with an average rate
of 1 if the data comes from a HP [I5]. Thus we choose
here the Kolmogorov-Smirnov test (KS test hereafter) to
test the equality between the distribution of the compen-
sators and the exponential distribution. The same test
was used to find statistically valid fits of HP to high fre-
quency data both in the foreign exchange market [7] and
in the equity market [14].

Let us start with parametric estimation. We first test
if the estimated kernel corresponds to the true one, i.e.,
the kernel obtained with the a priori known true param-
eter values (u*, o* and *). Figure [5] displays the his-
togram of the p-values corresponding to this hypothesis.
As expected for the forward case (upper plot), a uniform
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Figure 4: Relative difference in the estimation of Ao, «, B
and n in the MLE of the exponential HP for the forward
(blue) and the backward process (red). All possible
permutations of Ao = {0.001,0.0025,0.0050,0.0075,0.0100}
and o = {0.010, 0.025, 0.050,0.075,0.100}, with B chosen
according to the desired endogeneity n, are considered. The
data points are grouped according to their endogeneity and
averaged over 100 runs for each parameter permutation. The
expected number of events is set to 10°.
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Figure 5: Histogram of the p-values from the KS-test
obtained for the forward (upper) and backward (lower)
exponential HP with the true parameter values. The
parameters used for the simulations are fized to Ao = 0.001
and o = 0.01, with B chosen to the desired endogeneity

n = {0.50,0.75,0.90,0.95,0.99}. The data is collected over
100 runs for each parameter permutation and the expected
number of events is set to 10°.

distribution is obtained since the null hypothesis holds.
In the backward case, most fits are rejected. In a real-life
situation, however, one does not know the true kernel. In
this case, as shown by Fig. [6] where the parameters ob-
tained via MLE are used (fiyr, dmr, and BML), the test
accepts more samples as being HPs processes, for both
arrows of time. This is due to the additional freedom one
has to find slightly over-fitting parameters.

Thus, we see that the KS-test performs satisfactorily in
the sense that it is clearly able to distinguish between the
forward and backward process both for the MLE parame-
ters (where in a sense the MLE ”overfits” the parameters
to the underlying data) and the true parameters. This
emphasizes the need to assess the goodness of fits when
fitting HPs to data.

The fact that the KS test is able to discriminate be-
tween the two arrows of time has a clear implication for
the non-parametric kernel estimation method introduced
by [1]: since it is based on the auto-covariance of the
event rate, which is time-symmetric by definition, this
methods yields the same kernel for both directions of
time. As a consequence, in view of the power of the KS
test in that respect, it is understandable that this method
does not yield kernels that may be deemed statistically
significant, as shown by Fig. [7] where the parameters
used (finp, Gnp and BNP) are estimated from the non-
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Figure 6: Histogram of the p-values from the KS-test
obtained for the forward (upper) and backward (lower)
exponential HP with the MLE parameter values. The
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n = {0.50,0.75,0.90,0.95,0.99}. 100 runs for each
parameter combination; expected number of events set to 10°.

parametrically obtained kernels by linear interpolation.
More specifically, by taking the logarithm of the non-
negative kernel estimate, estimates of anp and BNP are
obtained by linear regression, and by Eq. [d] we may ob-
tain an estimate of fnp. It is worth noting here that
this method, which is quite crude, produces a consider-
able amount of invalid results for the higher endogeneities
(hence the smaller sample in Fig. @

We stress nevertheless that the non-parametric method
is an invaluable tool to assess the global shape of HPs
in a preliminary exploration, and to choose a suitable
parametric family which itself may pass goodness of fit
tests.

D. Multivariate processes

The above findings generalize to multivariate HPs, in
which several univariate HPs may also mutually excite
each other. More precisely, an M-dimensional (M com-
ponents) HP is defined as

Alt) = Ao +/G(t—s)st (11)
0
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Figure 7: Histogram of the p-values from the KS-test
obtained for the forward (upper) and backward (lower)
exponential HP with parameters extracted from the
non-parametrically estimated kernels. The parameters are
fized to Ao = 0.001 and o = 0.01, with B chosen to the
desired endogeneity n = {0.50,0.75,0.90,0.95,0.99}. 100
runs for each parameter combination; expected number of
events set to 10°.

where the (exponential) kernel is given by

G(t) = (amne—ﬁm"(t—8>) . (12)

mn=1,....M

The intensity may thus be written as (with a constant
baseline intensity)

M
AT =AF YD amme AT (13)

n=1tP<t

The expected number of events is

E[N(t)] = pt, (14)
where
p=|I- [ Gludu Ao. (15)
/

M
Here we define N; = > N/™.
m=1

For the multidimengional HP, denoting {t;};=1...n~
the ordered pool of all events {{t}"}n=1,.. a}, the log-
likelihood can be computed as the sum of the likelihood



of each coordinate, namely

M
L ({t:}izr,.n) = > L™ ({t:}),  (16)
m=1
where
T T
In L™ ({t;}) = AT (s)ds + [ In A (s)dN*. (17)
[

Equation may be written as

AT Zzﬂmn(

n=1 t?

L™ ({t:}) = — e fTTI=t)

Zln )\m+2 Z QB (b=t

n=1¢p<tm

(i8)

If we, as in the one-dimensional case, remove the non-
stationary part of the process, we obtain

iR

In L™ ({t;}) = —\I'T +

I (e
mn
n=1 t? 6
> "
aMmne~
+3 In | A7 Ap) 2=
M
tm Z amn
n=1
M
DI
n=1tp<t;

(19)

Analogously to the univariate case, we can find an ap-

propriate limit to the non-stationary period by consider-
ing

M M
ty, = inf {t €{titi=1,. N : Z AT(t) > Z p"
m=1

m=1
(20)
The process is then shifted ¢/ = t™ — t,, " > t, and
T =T —t.
A sufficient condition for stationarity is
p(I') = max |a|] <1, (21)

aeS(T)

where S(I") denotes the set of all eigenvalues of I" and

= /G )du = ( )
0 ﬂmn m,n=1....M

(22)

Here we focus on symmetric multivariate HPs, where
the mutual excitation matrix can be written as

ap «
a = 0 m ,
Qm Qg

For the sake of simplicity, we fix the baseline intensities
and timescales to the same values for both components
of the process, i.e., A\g = (A, Ao) and 8 = (8, 8).

In the symmetric case p(I') = 20Z2=. For the pre-
sentation of the results in the multivariate setting, the
largest eigenvalue p(I') was chosen as the control param-
eter instead of the endogeneity n since it is directly linked
to the expected total number of events in the process (i.e.,
summed over all components).

Figures[8] [0 and [I0]show that the results for symmet-
ric multidimensional HP are in many ways analogous to
those of the univariate HP, i.e., the log-likelihood plots
display a similar behaviour and the parametric estima-
tions do not deviate significantly from each other in the
forward and backward case. Our remarks regarding the
non-parametric method of [I], which is only valid for sym-
metric HPs, still hold.

The above findings are however not true for asymmet-
ric multivariate HPs, in which changing the direction of
time leads to clearly different log-likelihoods and param-
eters (see Appendix , hence significantly increases the
effective causality of such processes.

III. APPLICATION TO DATA

Since the difference between forward and backward es-
timates is related to the endogeneity of the process, it is
worth discussing some typical values found empirically.
As an example of an application of the HP, we studied
some fits of the HP to price data of the Exchange-Traded
Fund SPDR S&P 500 ETF. We follow largely the meth-
ods developed in [7], and we focus on shorter time inter-
vals where the authors find that the HP excel at fitting
(one hour or less), i.e., time-intervals where we may as-
sume that the baseline intensity is constant.

The data set encompasses price data over one day,
15-12-2015 from 9:30 to 16:00, and consists of approx-
imately 950000 data points. We tried the same fitting
procedure for 23 other days and the results are consistent.
We focus on bid prices and only consider changes in the
bid price, which effectively reduces the dataset to only
33000 data points. The coarse nature of the time has
the interesting consequence that several bid price changes
may occur during the same millisecond (the temporal res-
olution of the data). In order to address this issue, we
assume that the order in which the price changes is cor-
rect and draw at random the times of the event within
the same millisecond with a uniform distribution. One
thus expects to lose some causality because of the coarse
temporal resolution.

The fits are done with constant baseline intensity Ag
and a kernel defined as a sum of exponentials, i.e.,
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Figure 8: Relative difference of the log-likelihood between
forward and backward time arrows (top) and difference of
the log-likelihood between forward and backward time arrows
with regards to T (bottom) for a multidimensional HP with a
symmetric excitation kernel. All possible permutations of

Ao = {0.0010, 0.0025, 0.005,0.0075,0.0100}, co = {0.049},
with oy, chosen according to the desired maximum
eigenvalue p(T'), and 8 = 0.1 are considered. The data points
are grouped according to mazrimum eigenvalue and averaged
over 100 runs for each parameter permutation. The expected
total number of events is set to 10°.

P
K(t) =Y ajePit, where P = 1,2,3. This kind of ker-
j=1

nel offers a lot of flexibility in terms of fitting. P = 2 has
been found to be a suitable choice for shorter time scales.
We compare the results for both the non-stationary and
stationary assumption (see Appendix[B|for details), with,
of course, a particular emphasis on what happens when
the process is reversed. Unlike the case with the synthetic
data, the time horizon is not known in the empirical data.
It is thus assumed that the last event in the calibrated
data set is the time horizon.

The goodness of fits is not only assessed with KS test,
but also with the Ljung-Box test (LB test), which checks
if the compensators of HPs introduced in Eq. are
not auto-correlated. We use the slight modification of
the test introduced in [7] in order to take into account
the data cleaning procedure. The Aikaike Information
Criterion (AIC) is also used to compare the merit of dif-
ferent kernels. The results for P = 1,2,3 are presented
in Table [Tl

It is clear that assuming that the process is station-
ary, and using the slightly modified methods, does not
significantly improve the fits, and does not merit much
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Figure 9: Relative difference in the estimation of the
various parameters in the MLE of the multidimensional HP
with a symmetric excitation matrix for the forward (blue)
and the backward process (red). All possible permutations of
Ao = {0.0010, 0.0025, 0.005,0.0075,0.0100}, co = {0.049},
with o, chosen according to the desired mazximum
eigenvalue p(T'), and 8 = 0.1 are considered. The data points
are grouped according to maximum eigenvalue and averaged
over 100 runs for each parameter permutation. The expected
total number of events is set to 10°.
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Figure 10: (Continued) Relative difference in the
estimation of the various parameters in the MLE of the
multidimensional HP with a symmetric excitation matriz for
the forward (blue) and the backward process (red). All
possible permutations of

Ao = {0.0010, 0.0025, 0.005,0.0075,0.0100}, co = {0.049},
with oy, chosen according to the desired maximum
eigenvalue p(T'), and 8 = 0.1 are considered. The data points
are grouped according to mazrimum eigenvalue and averaged
over 100 runs for each parameter permutation. The expected
total number of events is set to 10°.

attention. However, if we compare the forward and back-
ward cases, we see that unlike when the synthetic data
was considered, it is is not as clear cut and it is not suffi-
cient to consider just the p-value obtained in the KS test
to determine the arrow of time. The forward case does in-
deed consistently perform better than the backward case
but the values obtained for the backward case are still ac-
ceptable, and when the degrees of freedom in the model
are increased, we generally get a better p-value.

If we turn our attention to the LB test the situation
is similar, but here the difference between the two cases
is even smaller. In fact, we sometimes see that the back-
ward process occasionally, when P = 3, performs better
than the the forward process. On the other hand the
log-likelihood is consistently larger for the forward case,
but not significantly. Finally, the AIC favours a kernel
with a larger number of degrees of freedom.

The whole picture makes sense in the light of the re-
sults on synthetic data: the estimated endogeneity n de-
pends on the kernel and time window chosen and varies
between approximately 0.30 and 0.70, hence far from crit-
icality, a region in which the difference between forward
and backward results is small, hence causality is weak.

IV. DISCUSSION

The above findings for both the univariate and sym-
metric multivariate cases have several consequences.
First, their causality is much weaker than previously im-
plicitly assumed, even with synthetic data whose ker-
nel family is known. This in turn makes it sometimes
difficult to distinguish between the forward and back-
ward event time vectors and thus strongly emphasises

Table II: Comparison of the ability of the exponential HP
with P =1,2,3 to fit the empirical data (forward and
backward) with different time windows. n is the estimated
endogeneity, pK.S and pLB are the Kolmogorov-Smirnov
and Ljung-Box test p-values, log(L) is the log-likelihood,
AIC is the Akaike Information Criterion and N is the
average number of events in a time window. Results obtained
where the process is assumed to be stationary from the start
are put in parenthesis. Values are averaged over all
non-overlapping windows with more than 150 events.

P =1 (forward)

n pK ST pLBY) log £ AICT N
1h [0.33 (0.33)]6.2e-6 (6.2e-6)8.3e-7 (8.3e-7)[2282.04 (2282.08)[-4558.08 (-4558.15)[4675
30m |0.32 (0.32)[1.3e-3 (1.3e-3)| 0.03 (0.03) [1237.49 (1237.52)|-2468.99 (-2469.03)[2518
15m|0.32 (0.32)| 0.02 (0.02) 0.06 (0.06) 628.29 (628.31) [-1250.59 (-1250.61)[1259
10m|[0.32 (0.32)] 0.07 (0.07) | 0.15 (0.15) | 420.01 (420.02) | -834.02 (-834.04) | 839
5m |0.32 (0.32)| 0.24 (0.24) | 0.30 (0.30) | 212.95 (212.95) | -419.90 (-419.91) | 420

P =1 (backward)

n® pKS® pLB® log £L® AICD N
1h [0.32 (0.32)]2.6e-7 (2.6e-7)][2.6e-6 (2.6e-6)[2262.78 (2262.78)[-4519.55 (-4519.57) [4675
30m |0.32 (0.32)]3.9e-4 (3.9e-4)| 0.03 (0.03) [1227.17 (1227.17)|-2448.35 (-2448.35)[2518
15m|0.31 (0.31)] 0.01 (0.01)
)
)

(
0.05 (0.05) | 623.29 (623.28) |-1240.57 (-1240.57) | 1259
T0m[0.31 (0.31)] 0.04 (0.04) | 0.16 (0.16) | 416.61 (416.60) | -827.22 (-827.21) | 839
5m [0.31 (0.31)] 0.19 (0.19) | 0.30 (0.30) | 211.29 (211.29) | -416.59 (-416.58) | 420

P =2 (forward)

pLBT

) pK ST log £ AICT N
Th [0.59 (0.59)]0.02 (0.02)]0.17 (0.17)]2438.63 (2438.69) [-4867.26 (-4867.38) |4675
30m[0.57 (0.57)]0.17 (0.17)]0.34 (0.34)|1317.87 (1317.92)|-2625.75 (-2625.85) 2518
15m|0.53 (0.53)]0.40 (0.40)]0.35 (0.35)] 665.25 (665.28) |-1320.51 (-1320.56) |1259
10m|0.54 (0.54)]0.47 (0.47)]0.38 (0.37)| 444.61 (444.58) | -879.22 (-879.16) | 840
5m |0.51 (0.51)]0.64 (0.63)]0.43 (0.44)| 225.42 (224.72) | -440.83(-439.43) | 420

P =2 (backward)

n® pKS® pLB® log £L® AIC™ N
Th [0.59 (0.59)]3.8e-4 (3.9¢-4)|0.18 (0.18)]2386.57 (2386.59) |-4763.14 (-4763.18) [4675
30m[0.55 (0.55)] 0.03 (0.03) |0.32 (0.32)]1290.59 (1290.60)[-2571.18 (-2571.21) | 2518
15m[0.49 (0.49)| 0.16 (0.17) [0.31 (0.30)| 651.78 (652.14) |-1293.56 (-1294.27)|1259
10m[0.50 (0.50)] 0.26 (0.26) |0.36 (0.36)] 435.90 (436.16) | -861.80 (-862.32) | 840
5m |0.47 (0.47)] 0.48 (0.48) |0.40 (0.41)] 220.40 (220.37) | -430.79 (-430.73) | 420

P =3 (forward)

pLBY) log £ AICY N
Th |0.69 (0.69)]0.01 (0.03)[0.22 (0.21)]2468.46 (2480.59) |-4922.92 (-4947.19) [4675
30m[0.67 (0.66)0.15 (0.15)]0.38 (0.38)]1333.28 (1339.70) |-2652.57 (-2665.41) 2518
15m|0.60 (0.59)]0.40 (0.39)[0.40 (0.40)| 674.12 (674.11) |-1334.25 (-1334.22)[1259
10m|0.60 (0.61)]0.50 (0.49)[0.44 (0.44)| 449.38 (448.05) | -884.77 (-882.09) | 839
5m | 0.55 (0.55)|0.72 (0.71)[0.46 (0.46)| 227.80 (227.80) | -441.59 (-441.60) | 419

@ PKSD

P =3 (backward)

log £®) AIC® N

n® sz(b) pLB(b)
1h [0.67 (0.67)|4.4e-03 (0.01)[0.29 (0.28)[2412.88 (2412.51)[-4811.76 (-4811.03) |4675
30m |0.64 (0.63)] 0.07 (0.05) ]0.40 (0.41)[1303.68 (1302.34)[-2593.35 (-2590.68) | 2518
15m[0.57 (0.57)| 0.20 (0.20) [0.39 (0.38)| 658.42 (658.41) |-1302.85 (-1302.82) 1259
)
)

T0m |0.55 (0.55)| 0.30 (0.31) |0.40 (0.42)| 438.79 (439.00) | -863.58 (-863.99) | 839
5m [0.52 (0.52)| 0.54 (0.53) |0.44 (0.44)] 222.10 (222.15) | -430.20 (-430.30) | 419

the importance of using goodness of fit tests, even for
synthetic data. Since the kernel is the only causal term
in HPs, weak causality contributes to the difficulties in
fitting HPs, especially when the baseline intensity varies
with time. This is one of the reasons why we have ac-
counted for the potential lack of initial non-stationary
part when calibrating HPs in some cases with a modi-
fied log-likelihood function such as the one we propose,



a point which has received little attention to our knowl-
edge.

A practical consequence of this work is that fitting
weakly causal HPs to real data rests on even shallower
ground because of data imperfection, for two main rea-
sons. First, data cannot be assumed to be perfect; for
example the time resolution of the data may be coarse
enough to allow several events to take place during the
same data time and the event times may be affected by
non-negligible noise, as it happens sometimes in financial
tick-by-tick data. These two time-related problems fur-
ther weaken the causality of HPs. Second, the shape of
the kernel is a priori unknown.

This raises an important issue: simple kernels with
very few degrees of freedom are seldom satisfactory, thus
more complex models with more degrees of freedom are
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introduced until satisfactory results are achieved. The
same is true for the backward arrow of time, and reas-
suringly, the results are often worse, but not systemat-
ically and certainly not in a manner as convincing as
when one knows the kernel shape. In other words, the
larger the number of degrees of freedom of a kernel, the
more successful the fits, but at the cost of weakening the
difference between forward and backward arrows of time
because more degrees of freedom also allow a more pre-
cise fit of the backward event times vector. At all rates,
our results suggest an additional test for HPs: one should
reject the hypothesis that HPs describe the data if the
forward event time vector leads to worse goodness of fit
tests than the backward event time vector. Indeed, in
such cases, it makes little sense to trust the causality
that HPs introduce.
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Appendix A: Univariate Hawkes processes with
power-law kernels

A power-law kernel for the univariate HP may be de-
fined as

K(t) = u(t +v)". (A1)
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Figure 11: Relative difference of the log-likelihood with
regards to T (the time horizon of the simulations) between
forward and backward time arrows for a HP with a
power-law kernel. The selection of parameters is limited to
Ao = 0.05, u = 0.06,w = —2.5 and with a varying v chosen
according to the desired endogeneity n. The data points are
grouped according to their endogeneity and averaged over
100 runs. The expected number of events is set to 10°.

The endogeneity thus equals

U w+1
= A2
n=— v (A2)

and the log-likelihood is given by

In L ({ti}izl,...,n) = —AT
_ - u ot w41l  w+l
;w—i—l((T ko)) )
n i—1
+Zln /\0+Zu(t17tk+v)w
i=1 k=1

If the initial non-stationary part of the process is re-
moved, the mathematical expression above must be mod-

ified;
InL ({ti}izl,...,n> =—AT

- )\0> ((rf: + 1)t — 1)

v /\0
w+1\1+ ﬁ_lvw*l

w—+1 w—+1
— w+1 T—ti+v) - )
Ao ti Y
+Zh’l )\0 + <1+Uw+1 —)\0> (U +1)
i=1
i—1
+ > ult — e + v)w]
k=1

(A4)
Figure displays the relative difference of the log-
likelihood as a function of the endogeneity.
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Appendix B: Log-likelihood of the univariate HP
with a sum of exponentials

If the HP kernel consists of a sum of P exponentials,
ie.,

P
)= aze ", (B1)
j=1

then the associated log-likelihood is given by

Y D s (1-e

hl[’ ({ti}izl,...,n
=1 j= 1

(T—t; ))
i—1 P
—I—Zhl Ao +ZZ& e Pilti—
k=1 j=1
(B2)
Consequently, the modified log-likelihood, where it is as-

sumed that there is no initial non-stationary part, is given
by

(1/\—0” B )\0) A ¢ —B;T
L ({1, ) = a2 (3% Ty
> g=1
j=1
n P=2
. &(1 e@-(T—tl))
i=1 j=1 "7

Appendix C: Asymmetric multivariate case

The mutual influence in the asymmetric case is defined

as
(7)) Oz}n

o= a? « ’
m Qo

where o}, # o2, (specifically al, < a2, by convention

here). The largest eigenvalue is now given by

plr) = L, (cn)

In the asymmetric case, we see that the parameter es-
timates of the backward arrow of time are very signifi-
cantly different from those of the forward arrow of time.
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Figure 12: Relative difference of the log-likelihood between
forward and backward time arrows (top) and difference of
the log-likelihood between forward and backward time arrows
with regards to T (bottom) for a multidimensional HP with
an asymmetric excitation kernel. All possible permutations
of Ao = {0.0010, 0.0025, 0.0050, 0.0075, 0.100},

al, = {0.049}, with o2, chosen according to the desired
mazimum eigenvalue p(T') and ap, < a2, and 8 = 0.1 are
considered. The data points are grouped according to
mazimum eigenvalue and averaged over 100 runs for each
parameter permutation. The expected total number of events
is set to 106.

Even more, in about 75% cases the backward-arrow fits
produce almost nonsensical results or simply do not con-
verge. When these runs are removed, there is a bias
towards keeping the runs which are significantly longer
than the desired number of events, which might help ex-
plain the misestimation of certain parameters.
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Figure 13: Relative difference in the estimation of the
various parameters in the MLE of the multidimensional HP
with an asymmetric excitation matrix for the forward (blue)
and the backward process (red). All possible permutations of
Ao = {0.0010,0.0025,0.0050, 0.0075,0.100}, al, = {0.049},
with a2, chosen according to the desired mazimum eigenvalue
p(T) and o, < a2, and B = 0.1 are considered. The data
points are grouped according to maximum eigenvalue and
averaged over 100 runs for each parameter permutation. The
expected total number of events is set to 10°.
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Figure 14: (Continued) Relative difference in the
estimation of the various parameters in the MLE of the
multidimensional HP with an asymmetric excitation matrix
for the forward (blue) and the backward process (red). All
possible permutations of

Mo = {0.0010,0.0025, 0.0050, 0.0075,0.100}, o, = {0.049},
with a2, chosen according to the desired mazimum eigenvalue
p(T) and ot < o2,, and B = 0.1 are considered. The data
points are grouped according to maximum eigenvalue and
averaged over 100 runs for each parameter permutation. The
expected total number of events is set to 10°.
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