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Introduction

We present PCS, a privacy-preserving certification scheme that provides the possibility of conducting anonymous authentication. This allows organizations to issue certificates to end-users in a way that they can demonstrate their possession in a series of transactions without being linked. PCS builds over an existing attribute-based signature scheme previously presented by Kaaniche and Laurent in ESORICS 2016 [START_REF] Kaaniche | Attribute-based signatures for supporting anonymous certification[END_REF], called HABS (for Homomorphic Attribute Based Signatures). The objective of HABS is to enable users to anonymously authenticate with verifiers. At the same time, users minimize the amount of information submitted to the service provider, with respect to a given presentation policy. In [START_REF] Vergnaud | Comment on "attribute-based signatures for supporting anonymous certification[END_REF][START_REF] Vergnaud | Comment on attribute-based signatures for supporting anonymous certification by n. kaaniche and m. laurent (esorics[END_REF], Vergnaud reported some limitations of HABS and proved that some of its security assumptions may fail in the random oracle model. PCS takes over HABS and addresses the limitations reported by Vergnaud. An ongoing implementation of the PCS proposal for e-learning scenarios, under the scope of a EU-funded project (cf. http://tesla-project.eu/ for further information), is available online1 to facilitate its understanding and validation.

Paper Organization -Sections 2 and 3 provide additional background on the use of Anonymous Credentials (AC) and Attribute-based Signatures (ABS). Sections 4 and 5 provide a generic presentation of the PCS construction, as well as the main differences with respect to the previous HABS scheme. Section 6 presents the security analysis of PCS. Section 7 briefly discusses a use case of PCS for e-assessment environments. Section 8 concludes the paper.

Background on Anonymous Credentials (AC)

In [START_REF] Chaum | Security without identification: Transaction systems to make big brother obsolete[END_REF], Chaum introduced the notion of Anonymous Credentials (AC). Camenisch and Lysyanskaya fully formalized the concept in [START_REF] Camenisch | An efficient system for non-transferable anonymous credentials with optional anonymity revocation[END_REF][START_REF] Camenisch | A formal model of identity mixer[END_REF]. AC, also referred to as privacy-preserving attribute credentials, involve several entities and procedures. It fulfills some well-identified security and functional requirements. In the sequel, we present some further details about the type of entities, procedures and requirements associated to traditional AC schemes.

Entities

An anonymous credential system involves several entities. This includes mandatory entities (e.g., users, verifiers and issuing organizations) and optional entities (e.g., revocation authorities and inspectors) [START_REF] Camenisch | Scientific comparison of abc protocols: Part i -formal treatment of privacy-enhancing credential systems[END_REF]. The central entity in AC is the user entity. Its interest is to obtain a privacy-preserving access to a series of services. The providers of such services are denoted as verifiers. Each verifier enforces an access control policy with regard to its resources and services. This access control is based on the credentials owned by the users. The related information is included in what is called the presentation tokens.

With the purpose of accessing the resources, a user has to obtain its credentials from a series of issuing organizations. Then, the user selects the appropriate information with regard to the issued credentials and shows the selected information to the requesting verifier, under a presentation token. The access control policy associated to the verifier is referred to as the presentation policy. Both the user and the verifier have to obtain the most recent revocation information from the revocation authority to either generate or verify the presentation tokens. The revocation authority may eventually revoke some issued credentials and maintain the list of valid credentials in the system. When a credential is revoked, the associated user will no longer be able to derive the corresponding presentation tokens. An additional trusted entity, denoted as the inspector, holds the technical capabilities to remove the anonymity of a user, if needed.

Procedures

An anonymous credential system mainly relies on the execution of the following series of procedures and algorithms:

-Setup -It takes as input a security parameter ξ that represents the security level; and returns some public parameters, as well as the public (pk) and secret (sk) key pair of the issuing organization, denoted as (pk o , sk o ).

-UserKeyGen -Returns the key pairs of users. For instance, let j ∈ N represent the request of user j, it returns a key pair denoted as (pk uj , sk uj ).

-Obtain ↔ Issue -It presents the issuance procedure. The Issue procedure is executed by the issuing organization. It takes as input some public parameters, the secret key of the issuing organization sk o , the public key of the user pk u and the set of attributes {a i } N i=1 . N is the number of attributes. The Obtain procedure is executed by the user and takes as input the secret key of the user sk u and the public key of the issuing organization pk o . At the end of this phase, the user receives a credential C.

-Show ↔ Verify -It represents the procedures between the user and the verifier. With respect to the presentation policy, the Show procedure takes as input the secret key of the user sk u , the public key of the issuing organization pk o , the credential C and the set of required attributes {a i } N i=1 . N is the number of required attributes. The resulting output of this algorithm is the presentation token. The Verify procedure is publicly executed by the verifier. It takes as input the public key of the issuing organization pk o , as well as the set of attributes {a i } N i=1 and the presentation token. The Verify procedure provides as output a bit value b ∈ {0, 1}, denoting either the success or the failure associated to the verification process.

Requirements of AC systems

An AC system has to fulfill the following requirements:

-Correctness -Honest users shall always succeed in anonymously proving validity proofs to the verifiers.

-Anonymity -Honest users shall remain anonymous with regard to other system users while conducting the presentation procedure in front of a series of verifiers.

-Unforgeability -Users that fail at holding an appropriate set of legitimate credentials shall not be able to generate presentation tokens for the system.

-Unlinkability -Honest users shall not be related to two or more observed items of the system. This requirement is often divided in two subproperties:

• Issue-show unlinkability. It ensures that data gathered during the procedure of issuing credentials cannot be used by system entities to link a presentation token to the original credential. • Multi-show unlinkability. Presentation tokens derived from the same credentials and transmitted over different system sessions cannot be linked together by the verifiers.

Privacy-preserving attribute credential systems have to ensure some additional functional requirements, such as revocation, inspection and selective disclosure. Selective disclosure refers to the ability of the system users to present only partial information to the verifiers. Such information may be derived from the user credentials, in order to prove, e.g., that the user is at least eighteen years old to be eligible for accessing a service, without revealing the exact age.

3 Attribute-Based Signatures for AC Support Attribute-based Signatures (ABS for short) is a cryptographic primitive that enables users to sign data with fine-grained control over the required identifying information [START_REF] Maji | Attribute-based signatures[END_REF]. To use ABS, a user shall possess a set of attributes and a secret signing key per attribute. The signing key must be provided by a trusted authority. The user can sign, e.g., a document, with respect to a predicate satisfied by the set of attributes. Common settings for ABS must include a Signature Trustee (ST ), an Attribute Authority (AA), and several signers and verifiers. The ST acts as a global entity that generates valid global system parameters. The AA issues the signing keys for the set of attributes of the users (e.g., the signers). The role of the ST and the AA can be provided by the same entity. The AA can hold knowledge about the signing keys and the attributes of the users. However, the AA should not be capable to identifying which attributes have been used in a given valid signature. This way, the AA will not be able to link the signature to the source user. The AA should not be able to link back the signatures to the signers. This is a fundamental requirement from ABS, in order to fulfill common privacy requirements.

Related Work

Several ABS schemes exist in the related literature, considering different design directions. This includes ABS solutions in which (i) the attribute value can be a binary-bit string [START_REF] Herranz | Short attribute-based signatures for threshold predicates[END_REF][START_REF] Li | Attribute-based signature and its applications[END_REF][START_REF] Maji | Attribute-based signatures[END_REF][START_REF] Okamoto | Efficient attribute-based signatures for nonmonotone predicates in the standard model[END_REF][START_REF] Shahandashti | Threshold attribute-based signatures and their application to anonymous credential systems[END_REF] or general-purpose data structures [START_REF] Zhang | Efficient attribute proofs in anonymous credential using attribute-based cryptography[END_REF]; (ii) ABS solutions satisfying access structures under threshold policies [START_REF] Herranz | Short attribute-based signatures for threshold predicates[END_REF][START_REF] Li | Attribute-based signature and its applications[END_REF][START_REF] Shahandashti | Threshold attribute-based signatures and their application to anonymous credential systems[END_REF], monotonic policies [START_REF] Maji | Attribute-based signatures[END_REF][START_REF] Zhang | Efficient attribute proofs in anonymous credential using attribute-based cryptography[END_REF] and non-monotonic policies [START_REF] Okamoto | Efficient attribute-based signatures for nonmonotone predicates in the standard model[END_REF]; and (iii) ABS solutions in which the secret keys associated to the attributes are either issued by a single authority [START_REF] Maji | Attribute-based signatures[END_REF][START_REF] Shahandashti | Threshold attribute-based signatures and their application to anonymous credential systems[END_REF][START_REF] Zhang | Efficient attribute proofs in anonymous credential using attribute-based cryptography[END_REF] or by a group of authorities [START_REF] Maji | Attribute-based signatures[END_REF][START_REF] Okamoto | Efficient attribute-based signatures for nonmonotone predicates in the standard model[END_REF]. General-purpose threshold cryptosystems can also be adapted in order to achieve traceability protection [START_REF] Garcia-Alfaro | A Proactive Threshold Secret Sharing Scheme Handling Gen2 Privacy Threats[END_REF][START_REF] Garcia-Alfaro | Proactive threshold cryptosystem for epc tags[END_REF].

A simple ABS system can rely on using only one single AA entity. The AA entity derives the secret keys {sk 1 , • • • , sk N }, with respect to the attribute set that identifies a given signer, denoted by S = {a 1 , • • • , a N }. N is the number of attributes. The procedure to generate the secret keys is performed using the master key of the AA entity, as well as some additional public parameters. These elements shall be generated during the setup procedure. A message m is sent by the verifier to the user, along with a signing predicate Υ . In order to sign m, the signing user shall hold a secret key and a set of attributes satisfying the predicate Υ . The verifier shall be able to verify whether the signing user holds the set of attributes satisfying the predicate associated to the signed message.

In [START_REF] Kaaniche | Attribute-based signatures for supporting anonymous certification[END_REF], Kaaniche and Laurent presented an anonymous certification primitive, called HABS, and constructed over the use of ABS. In addition to common requirements such as privacy and unforgeability, HABS was designed with these additional properties in mind:

-Signature traceability -HABS includes a procedure denoted as Inspec, in order to grant some entities the ability of identifying the user originating an ABS signature. To prevent common issuing organizations from tracing the system users, the Inspec procedure is provided only to a tracing authority. This authority, typically an inspector, shall hold a secret key. The Signature traceability is important to guarantee accountability and prevent fraud. -Issuer unlinkability -When a user requests multiple authorities to issue credentials with respect to a set of attributes, common ABS authorities can link the set of credentials to one user through the corresponding public key.

HABS includes an issuance procedure to avoid this situation. -Replaying sessions -To mitigate the possibility of replay attacks (common to ABS setups), HABS forces its verifiers to generate for each authentication session, a new message. Such a message shall depend on the session data, e.g., the identity of the verifier and a timestamp.

In [START_REF] Vergnaud | Comment on "attribute-based signatures for supporting anonymous certification[END_REF][START_REF] Vergnaud | Comment on attribute-based signatures for supporting anonymous certification by n. kaaniche and m. laurent (esorics[END_REF], some of the requirements imposed by HABS were questioned by Vergnaud. The concrete realization of the HABS primitive was proved unsatisfactory with regard to the expected unforgeability and privacy properties under the random oracle model. The privacy-preserving certification scheme presented in this paper addresses such limitations. We present next the revisited primitives and procedures, and answer some of the claims reported by Vergnaud in [START_REF] Vergnaud | Comment on "attribute-based signatures for supporting anonymous certification[END_REF][START_REF] Vergnaud | Comment on attribute-based signatures for supporting anonymous certification by n. kaaniche and m. laurent (esorics[END_REF]. [START_REF] Camenisch | A formal model of identity mixer[END_REF] The PCS Construction

System Model

The PCS construction relies on a series of modified algorithms with regard to the original HABS construction reported in [START_REF] Kaaniche | Attribute-based signatures for supporting anonymous certification[END_REF], involving several users (i.e., signers). To ease the comparison to the initial approach, we denote by PCS the modifications, and by HABS the main algorithms originally defined in [START_REF] Kaaniche | Attribute-based signatures for supporting anonymous certification[END_REF].

-PCS.Setup -It runs the original HABS.Setup algorithm. It takes as input the security parameter ξ and returns a set of global public parameters. All the algorithms include as default input such global public parameters.

-PCS.KeyGen -This algorithm returns the key pairs of either users or issuing organization. The key pairs are denoted (pk u , sk u ) for the users, e.g., (pk uj , sk uj ) for a user j; and (pk o , sk o ) for the issuing organization.

-PCS.Obtain ↔ PCS.Issue -The PCS.Issue algorithm executed by the issuing organization takes as input the secret key of the issuing organization sk o , the public key of the user pk u , and a set of attributes S ⊂ S. S = {a i } N i=1 , where N is the number of attributes. S is the attribute universe. The algorithm returns a signed commitment C over the set of attributes S.

The PCS.Obtain algorithm is executed by the user and corresponds to the collection of the certified credentials from the issuer. The user can verify the correctness of the received signed commitment over the provided attributes. In case the user wants to conduct the verification process, the PCS.Obtain algorithm takes as input the signed commitment C, the secret key of the user sk u and the public key of the issuing organization pk o . It returns a bit b ∈ {0, 1} with the result of the verification (either success or failure).

-PCS.Show ↔ PCS.Verify -It enables the verifier to check whether a user has previously obtained credentials on some attributes from a certified issuing organization, to get granted access to a service with respect to a given access policy. The verifier has to send a blinded group element M based on a random message m sent to the user. Following the HABS construction, and in order to avoid replay attacks, each authentication session is personalized with a nonce -for instance, the identity of the verifier concatenated with a timestamp. By using the credentials, the user signs the nonce. To do so, the user selects some attributes satisfying the signing predicate Υ (Υ (S ) = 1) and signs the value of M. The resulting signature Σ is sent to the verifier.

The PCS.Show algorithm takes as input the randomized message M, a signing predicate Υ , the secret key of the user sk u , the credential C and a subset of the user attributes S , such as Υ (S ) = 1. The algorithm returns a signature Σ (or an error message ⊥).

The PCS.Verify algorithm takes as input the received signature Σ, the public key of the issuing organization(s) pk o , the signing predicate Υ and the message m. It returns a bit b ∈ {0, 1} with the result of the verification, where 1 denotes acceptance for a successful verification of the signature; and 0 denotes rejection.

Security Model

We present in this section the threat models assumed to validate the requirements of PCS. We first assume a traditional honest but curious model for the verifier and the issuing organization entities. Under such a model, the verifiers and the issuing organizations are honest in the sense that they provide proper inputs and outputs, at each step of their respective algorithms, as well as properly performing the computations that are supposed to be conducted; but they are curious in the sense that they may attempt to gain some extra information they are not supposed to obtain. We assume the honest but curious threat model against the validation of the privacy requirements of PCS, i.e., with respect to the anonymity and unlinkability properties. We consider as second threat model the case of malicious users trying to override their rights. That is, malicious users that misuse some of the steps of their associated algorithms, e.g., by providing invalid inputs or outputs. We assume this second threat model against the unforgeability requirement of PCS provided below.

Unforgeability

The unforgeability requirement expects that it is not possible to forge a valid credential -in case of the Issue algorithm (respectively, the presentation token of the user -in case of the Show algorithm). This requirement ensures that colluding users will not be able to frame a user who did not generate a valid presentation token. The unforgeability requirement is defined with respect to three security games, as presented in [START_REF] Kaaniche | Attribute-based signatures for supporting anonymous certification[END_REF]. Each security game is defined between an adversary A and a challenger C, that simulates the system procedures to interact with the adversary.

Definition 1. Unforgeability -PCS satisfies the unforgeability requirement if for every Probabilistic Polynomial Time (PPT) adversary A, there exists a negligible function such that:

P r[Exp A unf org (1 ξ ) = 1] ≤ (ξ)
where Exp A unf org is the security experiment against the unforgeability requirement, with respect to the MC-Game, MU-Game and Col-Game games, as presented in the original HABS construction [START_REF] Kaaniche | Attribute-based signatures for supporting anonymous certification[END_REF].

The aforementioned security games are defined as follows:

-MC-Game -A is allowed to conduct an unbounded number of queries to the PCS.Issue algorithm for different sets of attributes with respect to a fixed user public key and issuing organization secret key (i.e., the secret key of the issuing organization is not known by A). To successfully win the MC-Game, the adversary shall obtain a valid credential C * for a challenge set of attributes S * , and this shall be accepted by the PCS.Obtain algorithm. -MU-Game -given a user public key pk u , a set of attributes S and a credential C over S for pk u , the adversary A can conduct an unbounded number of presentation queries -as a verifier -for any signing predicate Υ such that Υ (S) equals one. To successfully win the MU-Game, A shall obtain a valid presentation token for a credential C accepted by an honest verifier. -Col-Game -given two pairs of public and secret keys (pk u1 , sk u1 ) and (pk u2 , sk u2 ), two disjoint and non-empty sets of attributes S 1 and S 2 , and two credentials C 1 associated to S 1 for pk u1 and C 2 associated to S 2 for pk u2 , the adversary A shall be able to generate a valid presentation token for a key pair (pk uj , sk uj ) for j ∈ {1, 2} with respect to a signing predicate Υ such that Υ (S j ) = 1.

Privacy

The privacy requirement covers the anonymity, the issue-show and the multi-show requirements, as defined in Section 2. We introduce three security games based on an adversary A and a challenger C, similarly to the HABS construction [START_REF] Kaaniche | Attribute-based signatures for supporting anonymous certification[END_REF]. We assume that A does not directly run or control the PCS.Obtain ↔ Issue or PCS.Show ↔ Verify algorithms, but may request the results of these algorithms to the challenger C in charge of such algorithms.

Definition 2. Privacy -PCS satisfies the privacy requirement, if for every PPT adversary A, there exists a negligible function such that:

P r[Exp A priv (1 ξ ) = 1] = 1 2 ± (ξ)
where Exp A priv is the security experiment against the privacy requirement, with respect to the PP-Game, MS-Game and IS-Game games, as presented in the original HABS construction [START_REF] Kaaniche | Attribute-based signatures for supporting anonymous certification[END_REF].

In the aforementioned indistinguishability security games, A is given two pairs of public and secret keys ((pk u1 , sk u1 ) and (pk u2 , sk u2 )) and a set of attributes S. The adversary can conduct an unbounded number of presentation queries -as a verifier -for any signing predicate Υ satisfied by S; or a subset of S for two fixed credentials C 1 associated to S for pk u1 and C 2 associated to S for pk u2 . To successfully win one of the following security games, A should be able to guess, with a probability greater than a half:

-PP-Game -which key pair (pk uj , sk uj ) for j ∈ {1, 2}, was used in the presentation procedure, with respect to a fixed signing predicate Υ and a chosen set of attributes S. -MS-Game -whether the same key pair (pk uj , sk uj ) for j ∈ {1, 2} was used in two different presentation procedures with respect to a chosen signing predicate Υ and a set of attributes S. -IS-Game -which key pair (pk uj , sk uj ) and related credential C j for j ∈ {1, 2}, was used in the presentation procedure, with respect to a fixed signing predicate Υ and a set of attributes S.

Notice that the PP-Game and IS-Game formalize the notions of anonymity. The MS-Game formalizes the unlinkability requirement.

Concrete Construction

In this section, we complement the elements provided in previous sections to conclude the concrete construction of PCS.

Access Structures

Definition 3. (Monotone Access Structure [START_REF] Beimel | Secret sharing and key distribution[END_REF]) Let P = {P 1 , P 2 , • • • , P n } be a set of parties. Let A be an access structure, i.e., a collection of non-empty

subsets of {P 1 , P 2 , • • • , P n }. Then, a collection A ⊆ 2 {P1,P2,••• ,Pn} is called mono- tone if for all B, C ⊆ 2 {P1,P2,••• ,Pn} , it holds that B ∈ A, B ⊆ C and C ∈ A.
The sets in A are known as the authorized sets. The remainder sets, not in A, are known as the unauthorized sets. Definition 4. (Linear Secret Sharing Schemes (LSSS) [START_REF] Beimel | Secret sharing and key distribution[END_REF]) A secret sharing scheme Π over a set P = {P 1 , P 2 , • • • , P n } is called linear (over Z p ) if:

1. The share assigned to each party forms a vector over Z p ; 2. There exists a matrix M with l rows, called the sharing generating matrix for Π, such that for each i ∈ [1, l], we can define a function ρ, where ρ(i) corresponds to the party associated to the i th row of M . If we consider the column vector

v = (v 1 , • • • , v k ) T
, where v 1 = s ∈ Z p is the secret to be shared, such that v t ∈ Z p and t ∈ [2, k] are chosen at random, then M • v is the vector of l shares of s according to Π. The share λ i = (M • v) i shall belong to the party designed by ρ(i).

Assume Π is an LSSS for the access structure A. Let S be an authorized set, such that S ∈ A and I ⊆ {1, 2, •, l} is defined as I = {i : ρ(i) ∈ S}. If {λ i } i∈I are valid shares of a secret s according to Π, then there shall exist some constant {w i ∈ Z p } i∈I that can be computed in polynomial time, such that

i∈I λ i w i = s [1].
It is known that any monotonic boolean formula can be converted into a valid LSSS representation. Generally, boolean formulae are used to describe the access policy, and their equivalent LSSS matrices are used to sign and verify the signatures. The labeled matrix in Definition 4 is also known in the related literature as monotone span program [START_REF] Karchmer | On span programs[END_REF][START_REF] Maji | Attribute-based signatures[END_REF]. Definition 5. (Monotone Span Programs (MSP) [START_REF] Karchmer | On span programs[END_REF][START_REF] Maji | Attribute-based signatures[END_REF]) A Monotone Span Program (MSP) is a tuple (K, M, ρ, t), such that K is a field, M is a l × c matrix (where l is the number of rows and c the numbers of columns), ρ : [l] → [n] is the labeling function and t is the target vector. The size of the MSP is the number l of rows. Since ρ is the function labeling each row i of M to a party P ρ(i) , each party can be considered as associated to one or more rows. For any set of parties S ⊆ P, the sub-matrix consisting of rows associated to the parties in S is denoted as M S . The span of a matrix M , denoted as span(M ), corresponds to the subspace generated by the rows of M , i.e., all vectors of the form v • M . An MSP is said to compute an access structure A if for each S ∈ A then the target vector t is in span(M S ). This can be formally described as follows:

A(S) = 1 ⇐⇒ ∃v ∈ K 1×l : vM = t

Bilinear Maps

Consider three cyclic groups G 1 , G 2 , and G T of prime order p, such that g 1 and g 2 are the generators of, respectively, G 1 and G 2 . A bilinear map ê is a function ê : G 1 × G 2 → G T such that the following properties are satisfied:

-(i) for all g 1 ∈ G 1 , g 2 ∈ G 2 (i.e., bilinearity property); -(ii) ê(g 1 , g 2 ) = 1 (i.e., non-degeneracy property); -(iii) there exists an efficient algorithm that can compute ê(g 1 , g 2 ) for any g 1 ∈ G 1 and g 2 ∈ G 2 (i.e., computability property).

Complexity Assumptions

For our construction, we shall consider the following complexity assumptions:

-q-Diffie Hellman Exponent Problem (q-DHE) -Let G be a multiplicative cyclic group of a prime order p. Let g be a generator of G. Then, the q-DHE problem can be stated as follows: given a tuple of elements (g,

g 1 , • • • , g q , g q+2 , • • • , g 2q ), such that g i = g α i , where i ∈ {1, • • • , q, q + 2, • • • , 2q} and α R ← -Z p ,
there is no efficient probabilistic algorithm A qDHE that can compute the missing group element g q+1 = g α q+1 .

-Discrete Logarithm Problem (DLP) -Let G be a multiplicative cyclic group of a prime order p. Let g be a generator of G. Then, DLP problem can be stated as follows [START_REF] Shor | Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[END_REF]. Given the public element y = g x ∈ G, there is no efficient probabilistic algorithm A DLP that can compute the integer x.

-Computational Diffie Hellman Assumption (CDH) -Let G be a group of a prime order p. Let g be a generator of G. The CDH problem, whose complexity is assumed stronger than DLP, is stated as follows: given the tuple of elements (g, g a , g b ), where {a, b} R ← -Z p , there is no efficient probabilistic algorithm A CDH that computes g ab .

Resulting Construction

Find below the revisited set of algorithms that conclude the PCS construction:

-Setup -It takes as input the security parameter ξ and returns the public parameters params. The public parameters are considered an auxiliary input to all the algorithms of PCS.

Global Public Parameters params -the Setup algorithm first generates an asymmetric bilinear group environment (p, G 1 , G 2 , G T , ê) where ê is an asymmetric pairing function such as ê :

G 1 × G 2 → G T . The random generators g 1 , h 1 = g 1 α , {γ i } i∈[1,N ] ∈ G 1 and g 2 , h 2 = g 2 α ∈
G 2 are also generated, as well as α ∈ Z p where N denotes the maximum number of attributes supported by the span program. We note that each value γ i is used to create the secret key corresponding to an attribute a i . Let H be a cryptographic hash function. The global parameters of the system are denoted as follows:

params = {G 1 , G 2 , G T , ê, p, g 1 , {γ i } i∈[1,N ] , g 2 , h 1 , h 2 , H}
-KeyGen -It returns a pair of secret and public keys for each participating entity (i.e., issuing organization and user). In other words, the user gets a key pair (pk u , sk u ) where sk u is chosen at random from Z p ; and pk u = h 1 sku is the corresponding public key. The issuing organization also gets a key pair (pk o , sk o ). The issuing organization secret key sk o relies on the couple defined as sk o = (s o , x o ), where s o is chosen at random from Z p and x o = g 1 so . The public key of the issuing organization pk o corresponds to the couple (X o , Y o ) = (ê(g 1 , g 2 ) so , h 2 so ).

-Issue -It is executed by the issuing organization. The goal is to issue the credential to the user with respect to a pre-shared set of attributes S ⊂ S, such that S represents the attribute universe, defined as:

S = {a 1 , a 2 , • • • , a N },
where N is the number of attributes such that N < N .

The Issue algorithm takes as input the public key of the user pk u , the set of attributes S and the secret key of the issuing organization sk o . It also selects an integer r at random and returns the credential C defined as:

C = (C 1 , C 2 , {C 3,i } i∈[1,N ] ) = (x o • [pk u soH(S) -1 ] • h 1 r , g 2 r , {γ i r } i∈[1,N ] )
where

H(S) = H(a 1 )H(a 2 ) • • • H(a N
) and γ i r represent the secret key associated to the attribute a i , where i ∈

[1, N ].
-Obtain -It is executed by the user. It takes as input the credential C, the secret key of the user sk u , the public key of the issuing organization pk o and the set of attributes S. It returns 1 if Equation 1is true (0 otherwise).

ê(C 1 , g 2 ) ? = X o • ê(g skuH(S) -1 1 , Y o ) • ê(h 1 , C 2 ) (1)
-Show -It is also executed by the user. The goal is to authenticate itself. The rationale is as follows. The user sends a request to the verifier to get granted access to a service. The verifier sends a presentation policy to the user. The presentation policy is given by a randomized message M, a predicate Υ and the set of attributes that have to be revealed by the user. The user signs the message M = g 1 m with respect to the predicate Υ , satisfying a subset of attributes in S. As introduced in Section 4, m is different for each authentication session.

In the following, we denote by S R , the set of attributes revealed to the verifier, and S H the set of non-revealed attributes, such as S = S R ∪ S H . The signing predicate Υ is represented by an LSSS access structure (M, ρ), i.e., M is a l × k matrix, and ρ is an injective function that maps each row of the matrix M to an attribute. The Show algorithm takes as input the user secret key sk u , the credential C, the attribute set S, the message m and the predicate Υ such that Υ (S) = 1. The process works as follows:

1. The credentials of the user are randomized by choosing an integer r ∈ Z p at random, and conducting the following operations:

               C 1 = C 1 • h 1 r = x o • [pk u soH(S) -1 ] • h 1 r+r C 2 = C 2 • g 2 r = g 2 r+r C 3,i = C 3,i • γ i r = γ i r+r
The resulting credential C is set as follows:

C = (C 1 , C 2 , {C 3,i } i∈[1,N ] ) = (x o •[pk u soH(S) -1 ]•h 1 r+r , g 2 r+r , {γ i r+r } i∈[1,N ] ) 2.
As the attributes of the user in S satisfy Υ , the user can compute a

vector v = (v 1 , • • • , v l ) that also satisfies vM = (1, 0, • • • , 0) according to Definition 5.
3. For each attribute a i , where i ∈ [1, l], the user computes

ω i = C 2 vi
and calculates a quantity B that depends on

{C 3,i } i∈[1,N ] such that B = l i=1 (γ ρ(i) ) vi .
4. Afterwards, the user selects a random r m and computes the couple

(σ 1 , σ 2 ) = (C 1 • B • M rm , g 1 rm )
. Notice that the user may not have knowledge about the secret value of each attribute in Υ . If this happens, v i is set to 0, so to exclude the necessity of this value.

5. Using now the secret key of the user, it is possible to compute an accumulator on non-revealed attributes as follows:

A = Y o sku H(S H ) -1 rm
The user returns the presentation token Σ = (Ω, σ 1 , σ 2 , C 2 , A, S R ), that includes the signature of the message M with respect to the predicate Υ , and where Ω = {ω 1 , • • • , ω l } is the set of committed element values of the vector v, based on the credential's item C 2 .

-Verify -Given the presentation token Σ, the public key of the issuing organization pk o , the set of revealed attributes S R , the message m and the signing predicate Υ corresponding to (M l×k , ρ), the verifier checks the received set of revealed attributes S R , and computes an accumulator

A R such that A R = σ 2 H(S R ) -1 . Then, the verifier picks uniformly at random k -1 integers µ 2 , • • • , µ k and calculates l integers τ i ∈ Z p for i ∈ {1, • • • , l}, such that τ i = k j=1 µ j M i,j
, and where M i,j is an element of the matrix M . The verifier accepts the presentation token as valid (i.e., it returns 1) if Equation 2holds true:

ê(σ 1 , g 2 ) ? = X o ê(A R , A)ê(, h 1 , C 2 ) l i=1 ê(γ ρ(i) h 1 τi , ω i )ê(σ 2 , g 2 m ) (2) 
6 Security Analysis Proof. The correctness of Theorem 1 relies on Equations 1 and 2 (cf. Section 5.4). The correctness of Equation 1 is straightforward by following the bilinearity requirement of pairing functions (cf. Section 5.2), summarized as follows:

ê(C 1 , g 2 ) = ê(x o • [pk u soH(S) -1 ] • h 1 r , g 2 ) = ê(g 1 so , g 2 ) • ê(h 1 skusoH(S) -1 , g 2 ) • ê(h 1 r , g 2 ) = ê(g 1 , g 2 ) so • ê(g 1 skuH(S) -1 , h 2 so ) • ê(h 1 , g 2 r ) = X o • ê(g 1 skuH(S) -1 , Y o ) • ê(h 1 , C 2 )
Recall that the correctness of the presentation token is validated by the verifier. It verifies if the received token Σ = (Ω, σ 1 , σ 2 , C 2 , A, S R ) holds a valid signature of message M, based on the predicate Υ . For this purpose, the verifier checks the set of revealed attributes S R and computes an accumulator A R of the revealed attributes' values, using σ 2 , such as

A R = σ 2 H(S R ) -1
, where H(S R ) = ai∈S R H(a i ) -1 . The value of σ 1 can be expressed as follows:

σ 1 = C 1 • B • M rm = C 1 • l i=1 (γ ρ(i) ) vi • g 1 rmm = x o • pk u soH(S) -1 • h 1 r+r • l i=1 (γ ρ(i) ) (r+r )vi • g 1 rmm
To prove the correctness of the presentation token verification, let us denote (r + r ) by R, and the first side of Equation 2 by , such that: randomization is required for deriving the remaining credential elements, A is led to violate the CDH assumption. In [START_REF] Vergnaud | Comment on "attribute-based signatures for supporting anonymous certification[END_REF][START_REF] Vergnaud | Comment on attribute-based signatures for supporting anonymous certification by n. kaaniche and m. laurent (esorics[END_REF], Vergnaud details a forgery attack against the HABS construction. The assumption is to imagine a situation in which A overrides the granted rights by multiplying the first credential element

C 1 such that C 1 = C 1 • X u -H(S) -1 • X u H(S ) -1
, where X u is the public key of the user, S = {a 1 , • • • , a N }, S = {a 1 , • • • , a M } and N < M . This attack does not affect the PCS construction, since the secret key of the issuing organization is used during the generation of the credential element C 1 . This protects the PCS construction from the attack reported by Vergnaud against HABS in [START_REF] Vergnaud | Comment on "attribute-based signatures for supporting anonymous certification[END_REF][START_REF] Vergnaud | Comment on attribute-based signatures for supporting anonymous certification by n. kaaniche and m. laurent (esorics[END_REF].

By building over the previous attack, Vergnaud also states in [START_REF] Vergnaud | Comment on "attribute-based signatures for supporting anonymous certification[END_REF][START_REF] Vergnaud | Comment on attribute-based signatures for supporting anonymous certification by n. kaaniche and m. laurent (esorics[END_REF] that an adversary A can override the granted rights by conducting a collusion attack (i.e., Col-Game) based on two different credentials C u1 for pk u1 and C u2 for pk u2 . The use of the secret key of the issuing organization for the derivation of the credential element C 1 also makes unfeasible this forgery attack against PCS.

Similarly, and under the MU-Game, Vergnaud states in [START_REF] Vergnaud | Comment on "attribute-based signatures for supporting anonymous certification[END_REF][START_REF] Vergnaud | Comment on attribute-based signatures for supporting anonymous certification by n. kaaniche and m. laurent (esorics[END_REF] that an adversary can try a forgery attack against the HABS construction, by eavesdropping the communication of a presentation protocol for a signing predicate Υ and a public key (pk u ); then, by impersonating the same user during the following sessions under the same predicate Υ . In fact, A can compute

σ 1 = σ 1 -σ 2 (m -m) = C 1 • B • g 1 mrm ,
for some known r m . This attack does not affect the PCS construction, since the signing message m is properly randomized, and only the corresponding group element M = g 1 m is provided to the signer.

Finally, PCS is also resistant to replay attacks. The randomness elements appended by the challenger, for each request addresses the issue. Therefore, the PCS scheme ensures the unforgeability requirement, under the q-DHE, CDH and DLP assumptions, with respect to MC-Game, MU-Game and Col-Game. Theorem 3. Privacy -PCS satisfies the privacy requirement, with respect to the anonymity and unlinkability properties. Sketch of proof. Theorem 3 relies on the security games introduced in Section 4.2, namely PP-Game, MS-Game and IS-Game. They assume an adversary A trying to distinguish between two honestly derived presentation tokens for different settings with respect to every security game. As in the original HABS proposal [START_REF] Kaaniche | Attribute-based signatures for supporting anonymous certification[END_REF], each specific setting of the PCS construction randomizes the secret keys of the users, as well as the presentation tokens.

During the PP-Game, since a new presentation token for the same message M and the same access predicate Υ is computed from random nonces, generated by C, both presentation tokens are identically distributed in both cases. Then, an adversary A, against the issue-show requirement -with respect to IS-Gamehas an access to the Issue oracle for generating users' credentials. However, an honest user produces a different presentation token for each presentation session PCS.Show, by using the randomness introduced by the user while generating the presentation token. As such, the probability of predicting j is bounded by 1 2 . In [START_REF] Vergnaud | Comment on "attribute-based signatures for supporting anonymous certification[END_REF][START_REF] Vergnaud | Comment on attribute-based signatures for supporting anonymous certification by n. kaaniche and m. laurent (esorics[END_REF], Vergnaud identifies an anonymity attack against HABS with respect to the PP-Game and the IS-Game. Vergnaud states in [START_REF] Vergnaud | Comment on "attribute-based signatures for supporting anonymous certification[END_REF][START_REF] Vergnaud | Comment on attribute-based signatures for supporting anonymous certification by n. kaaniche and m. laurent (esorics[END_REF] that an adversary A can compute A H(S H )rm = g 2 sku j H(S H ) -1 rm -1 = g 2 sku j for some known r m and j ∈ {1, 2}, in order to identify the signing user. This attack does not affect the PCS construction, since the secret key of the issuer is used during the generation of the credential element C 1 .

Similarly, the MS-Game relies on a left-or-right oracle, where an adversary A cannot distinguish the oracle's outputs better than just flipping a coin. In fact, both presentation tokens for the same message M and the same access predicate Υ sent to different users, such as Υ (S u1 ) = Υ (S u2 ) = 1, are statistically indistinguishable. Using the previous attack against the HABS construction, Vergnaud states in [START_REF] Vergnaud | Comment on "attribute-based signatures for supporting anonymous certification[END_REF][START_REF] Vergnaud | Comment on attribute-based signatures for supporting anonymous certification by n. kaaniche and m. laurent (esorics[END_REF] that the adversary can check whether two presentation tokens Σ (1) and Σ (2) were generated using the same pair of public and secret keys (sk uj , pk uj ), by computing two group elements

T 1 = C 1 (2) /C 1 (2) 
and 2) , hence evaluating the equality between two bilinear maps values ê(T 1 , g 2 ) and ê(g 1 -1 , T 2 ). This same attack does not affect the PCS construction, since C 1 and C 2 are no longer provided with the presentation token. Indeed, the adversary A cannot distinguish two different presentations tokens with probability Adv(A, t) = 1 2 + . As such, PCS is unlinkable, ensuring as well the privacy requirement.

T 2 = C 2 (2) /C 2 ( 

E-assessment Use Case for PCS

E-assessment is an innovative form for the evaluation of learners' knowledge and skills in online education, where part of the assessment activities is carried out online. As e-assessment involves online communication channel between learners and educators, as well as data transfer and storage, security measures are required to protect the environment against system and network attacks. Issues concerning the security and privacy of learners is a challenging topic. Such issues are discussed under the scope of the TeSLA project (cf. http://tesla-project.eu/ for further information), a EU-funded project that aims at providing learners with an innovative environment that allows them to take assessments remotely, thus avoiding mandatory attendance constraints.

In [START_REF] Kiennert | Security challenges in e-assessment and technical solutions[END_REF], the security of the TeSLA e-assessment system was analyzed and discussed w.r.t. the General Data Protection Regulation (GDPR) [START_REF] Europe | Proposal for a regulation of the european parliament and of the council on the protection of individuals with regard to the processing of personal data and on the free movement of such data[END_REF] recommendations. To meet such recommendations, it is necessary to ensure a reasonable level of privacy in the system. TeSLA implements several privacy technological filters. For instance, a randomized system identifier is associated to each learner. This identifier is used each time the learner accesses the TeSLA system, hence ensuring pseudo-anonymity to every learner -full anonymity not being an option in TeSLA for legal reasons. Yet, a randomized identifier alone cannot protect the learners against more complex threats such as unwanted traceability. The system can still be able to link two different sessions of the same learner. To handle such issues, the PCS construction is being integrated along with the security framework of the TeSLA architecture.

Available as a multi-platform C++ source code at http://j.mp/PKIPCSgit, and mainly based on existing cryptographic libraries such as PBC [START_REF]PBC -The Pairing-Based Cryptography Library[END_REF] and MCL [START_REF] Shigeo | MCL -Generic and fast pairing-based cryptography library[END_REF], the construction is available online to facilitate understanding, comparison and validation of the solution. For the time being, the integration of PCS in TeSLA is expected to allow learner-related tools to prove they are authorized to access a resource without revealing more than needed about the identity of the learners. For example, learners can be issued with certified attributes that may be required by the system verifier, such as enrolled on engineering courses or conducting graduate studies. When the learners want to prove that they own the right set of attributes, they perform a digital signature based on the required attributes, allowing the system verifier to check if a precise user is authorized, sometimes without even knowing precisely which attributes were used.

Such an approach can be easily integrated to access electronic resources on e-learning environments such as Moodle (cf. https://moodle.org/). It should be enough to prove that the learner comes from an allowed university or that the learner is registered for a given e-learning course. That way, it becomes impossible for the learning environment to follow some unnecessary information of each learner, while still letting them access specific resources of the system (e.g., anonymous quizzes and polls, to quickly validate the percentage of understanding of the learners, prior the final e-assessment). Similarly, when a learner takes the final e-assessment, the learner's work can be anonymously sent to anti-cheating tools (such as anti-plagiarism). With anonymous certification, each tool might receive a request for the same work without being able to know which learner wrote it, but also without being able to correlate the requests and decide whether they were issued by the same learner. Some further information about the integration of PCS into the TeSLA platform is under evaluation for testing purposes. It will be reported soon, in a forthcoming publication.

Conclusion

We have proposed an anonymous certification scheme called PCS, as a building block of new privacy-friendly electronic identity systems. By using PCS, a user can anonymously agree with a verifier about the possession of a set of attributes, such as age, citizenship and similar authorization attributes. While staying anonymous and having the control over all the released data, users can preserve their privacy during the verification procedure.

PCS builds over HABS (short for Homomorphic Attribute Based Signatures), presented by Kaaniche and Laurent in ESORICS 2016 [START_REF] Kaaniche | Attribute-based signatures for supporting anonymous certification[END_REF]. PCS revisits the previous construction and addresses some security and privacy concerns reported by Vergnaud in [START_REF] Vergnaud | Comment on "attribute-based signatures for supporting anonymous certification[END_REF][START_REF] Vergnaud | Comment on attribute-based signatures for supporting anonymous certification by n. kaaniche and m. laurent (esorics[END_REF]. Based on several security games, PCS handles the limitations in HABS with respect to forgery and anonymity . PCS supports a flexible selective disclosure mechanism with no-extra processing cost, which is directly inherited from the expressiveness of attribute-based signatures for defining access policies. A use case dealing with the integration of PCS to allow the learners of an e-assessment platform to reveal only required information to cer-tificate authority providers has also been briefly presented. Multi-platform C++ snippets of code, available at http://j.mp/PKIPCSgit, and based on two different cryptographic libraries [START_REF] Shigeo | MCL -Generic and fast pairing-based cryptography library[END_REF][START_REF]PBC -The Pairing-Based Cryptography Library[END_REF], are released to facilitate the understanding, comparison and validation of PCS, with regard to HABS.

Theorem 1 .

 1 Correctness -PCS is correct if for all (params) ← Setup(ξ), all pairs of public and secret keys {(pk o , sk o ), (pk u , sk u )} ← KeyGen(params), all attribute sets S, all credentials C ← Issue (S, sk o , pk u ), all claiming predicates Υ such as Υ (S) = 1 and all presentation tokens Σ ← Show (C, sk u , M, Υ ), we have Obtain (C, sk u , pk o , S) = 1 and Verify (Σ, m, Υ, pk o ) = 1.

Source code snippets available at http://j.mp/PKIPCSgit.
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Given that τ i = k i=1 µ j M i,j , then the last equality is simplified to:

Theorem 2. Unforgeability -The PCS scheme ensures the unforgeability requirement, under the CDH, q-DHE and DLP cryptographic assumptions.

Sketch of proof. To prove that PCS satisfies the unforgeability requirement, we show that an adversary A who does not own an appropriate legitimate credential, is not able to generate a valid presentation token. Thus, A cannot violate the statements of Theorem 2 by reaching the advantage P r

Theorem 2 is based on the security games presented in Section 4.2 for the unforgeability requirement, namely MC-Game, MU-Game and Col-Game. We recall that the PCS scheme mainly relies on the HABS mechanism [START_REF] Kaaniche | Attribute-based signatures for supporting anonymous certification[END_REF] for the PCS.Obtain ↔ PCS.Issue and PCS.Show ↔ PCS.Verify algorithms. It is, therefore, similarly resistant to forgery attacks under the CDH, q-DHE and DLP assumptions.

For the first game, namely MC-game, A may try a forgery attack against the CDH assumption, considering that the credential element C 1 is a product of an accumulator over the set of user attributes, the secret key of the issuing organization x o and a randomization of the public group element h 1 . Knowing that this