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Independent Resampling Sequential Monte

Carlo Algorithms

Roland Lamberti, Yohan Petetin, Francois Desbouvried, iancois Septier

Abstract

Sequential Monte Carlo algorithms, or Particle Filterss &ayesian filtering algorithms which propagate in
time a discrete and random approximation of the a postedigtiibution of interest. Such algorithms are based on
Importance Sampling with a bootstrap resampling step waicts at struggling against weights degeneracy. However,
in some situations (informative measurements, high dimeat model), the resampling step can prove inefficient.
In this paper, we revisit the fundamental resampling meisharwhich leads us back to Rubin’s static resampling
mechanism. We propose an alternative rejuvenation schemaich the resampled particles share the same marginal
distribution as in the classical setup, but are now independThis set of independent particles provides a new
alternative to compute a moment of the target distributiod the resulting estimate is analyzed through a CLT. We
next adapt our results to the dynamic case and propose algediitering algorithm based on independent resampling.
This algorithm can be seen as a particular auxiliary partitter algorithm with a relevant choice of the first-stage
weights and instrumental distributions. Finally we val@aur results via simulations which carefully take into@aaut
the computational budget.

Index Terms

Sequential Monte Carlo algorithms; Particle Filters; Imipnce Sampling; Auxiliary Particle Filter; Resampling.

I. INTRODUCTION

Let { X} € R™}i>0 (resp.{Ys € R"},>0) be a hidden (resp. observed) process. Xg};, say, denotd X;,0 <
1 <k}, o = {x4,0 < i < k}, and letp(x) (resp.p(z|y)), say, denote the probability density function (pdf) of
random variable (r.v.)X (resp. of X givenY = y); capital letters are used for r.v. and lower case ones fair th

realizations. We assume thgtX, Yy )} x>0 is @ Hidden Markov chain, i.e. that
k k

p@ok, yor) = p(xo) [ [ filwilwi1) [ [ 9iwils)- @

i=1 =0
Roughly speaking, pdfy (zx|z,—1) describes the dynamical evolution of the Markovian hiddescess{ X }x>0

between timé:—1 and timek while the likelihoodgy (v |« ) describes the relation at tinkebetween an observation
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yr and the associated hidden state We address the problem of computing a moment of some fun¢iig w.r.t.

the filtering pdfp(x|yo.x), i.e. the pdf of the hidden state given the past observations

Ok :/f(xk)p($k|y0:k)dilfk- (2

As is well known, ®; can be exactly computed only in very specific models, and omeds to resort to
approximations in the general case. In this paper, we foous popular class of approximations called sequential
Monte Carlo (SMC) algorithms or Particle Filters (PF), seg €1]-[3] PF propagate over time a set 8f Monte
Carlo (MC) weighted samplegwi,, 2%}V | which defines a discrete approximatidn; wj0yi Of p(ax|yox) and

enables to compute an estim@@ of ©:
Or = > wif(x}). (3)
=1

More precisely, the computation of the st?, zi}Y | is based on the sequential application of the Importance
Sampling (IS) mechanismi[4]. This mechanism consists inpdiag particles according to an importance distribution
and next weighting these samples in order to correct therepisncy between the target and the importance
distribution. However the direct sequential applicatidnttee IS mechanism in modell(1) fails in practice since
after a few time steps most weights get close to to zero, wiilg a few particles have non neglictible weights.
Consequently IS alone becomes more and more inefficierg sirat of computational effort is devoted to sampling
particles which will hardly contribute to the estima#g, in Q.

As is well known, a traditional rescue against weights degaey consists imesamplinghe particles (- either at
each time step or depending on some criterion such as thearushlefficient particles [5][6][7](18]), i.e. of re-
drawing each particle with a probability equal to its weidfttis yields the class of Sampling Importance Resampling
(SIR) algorithms|[[9][[1] [10] [11]. This resampling (i.e.pbtstrap) mechanism has proved to be beneficial in the
long run, but its instantaneous effects are mitigated; ghathe resampling step indeed discards particles with low
weights (such particles are likely never to be resampleahtigdes with significant weights are resampled several
times, which results in dependency among the resampledspaia support shrinkage. Consequently, particle filters
based on the resampling mechanism can give poor resultsia btarkovian model${1), such as informative models
where the likelihoodyy (yx |z ) is sharp. Our aim in this paper is thus to revisit this key vepation scheme in
order to design new PF algorithms which would keep the benefithe resampling mechanism, while avoiding
the local impoverishment of the resulting MC approximatadrihe filtering distribution.

To that end we begin with revisiting the SIR mechanism at ongle time stept — k -+ 1. This leads us back to
an analysis of Rubin’s static SIR mechanism|[32] [13] [9] [14} §9.2], in which, roughly speaking, one obtains
samplesz’ approximately drawn from a target distributipnby drawing intermediate samplgs‘}Y , from an
instrumental distributiory, and next selecting’ among{z‘}_; with a probability proportional to;% We first
observe that the samplé¢s’ } produced by this SIR mechanism are dependent and margdisifjbuted from some
compound pdfjy = ¢(p, ¢, N) which takes into account the effects of both pgfandq. Here the dependency is
detrimental, because samples that would be i.i.d figmwould produce, whichever the number of sampled and

resampled particles, a moment estimate with reduced \@jahis result is further illustrated by a central limit
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theorem (CLT) which is compared to the existing CLTs for thatis IS estimate (based on the pre-resampling
samples{7'}¥ ), on the one hand, and for the SIR estimate (based on the@smmpling one$xﬂ'}jj‘£‘{), on the
other hand.

We next propose a procedure to obtain i.i.d. samples fi@mwhich leads to the computation of two point
estimates o = [ f(z)p(x)dz. The first one is based on unweighted i.i.d. samples and ismproved version of
the classical (i.e., dependent) SIR estimate; the secomdibased on post-resampling-weighted i.i.d. samples
and can be seen as new IS estimate, based on the compoungy pdfinally we adapt these results to the
sequential computation @, in model [1). We thus propose two new PF algorithms. One ahthas an interesting
interpretation in terms of Auxiliary Particle Filter (APFhore precisely, that algorithm naturally produces a i@iév
importance mixture distribution from which it is easy to gae We finally illustrate our results via simulations, and
carefully compare our algorithms with existing ones in teiwhRoot Mean Square Error (RMSE) and computational
cost. The rest of this paper is organized as follows. Sefflandevoted to the static case. In section 11l we address
the sequential case, and derive new PF based on the resskstaf]l. In sectiol IV we perform simulations and

discuss implementation issues, and we end the paper witmausion.

II. IS WITH RESAMPLING VIEWED AS A COMPOUNDIS SCHEME

As recalled in the introduction, resampling from time to ¢ins a standard rescue when applying IS in the

sequential case. In this section we thus focus on one such $tepk — k + 1. This amounts to revisiting

Rubin’s static SIR mechanism (see section {II-A)), whiclnsists in resampling point@zi}ﬁq from the weighted

distributionzij\;1 w;0z, wherez; i q and the pre-resampling weights o ’;Eii with Zf;l w; = 1. As is well

known, whenN — oo the resampled point&i}j‘if{ become asymptotically i.i.d. from the target distributjar-or

finite N however, these samples are dependent and drawn from songe; pafiich differs fromp and can indeed

be seen as a compound IS dengity= ¢(p, ¢, N) produced by the succession of the sampli§g (eighting ()

and resamplingR) steps. We discuss on the benefits of drawing independemnilsarfromgy (see sectiof 1I-B),
and next on reweighting these independent samples withrpsampling weightsv, o« q’j’\f@)) (see sectioh 1I-C).

In all this section we assume the scalar case for simpli¢iy.end the section with a summary (see sedtionl I1-D).

A. The dependent SIR mechanism

Let us begin with a brief review of Rubin’s classical SIR sdimgp mechanism and of the properties of the
sampled and resampled particles.
1) Properties of the sampled particlés’}Y : In the context of this paper we first recall the principle of IS

Let p(x) be a probability density function and assume that we wanbtopute

o= / F(@)p(x)ds = By(f(X)). @)

In the Bayesian framework(z) is generally only known up to a constant, ijgx) « p,(z) (subscriptu is

for unnormalized) and it is not possible to obtain sampleeadiy drawn fromp(x). A solution is to introduce
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an importance distributiog(x) which satisfiesg(x) > 0 whenp(x) > 0 and to rewrite®© as the ratio of two

expectations w.r.tg,

J f ”ug;?q p)de B, (f(X)E)
=

0= 2 - (%)
B Rl
Next, each expectation is approximated by a Monte Carlo atetiased onV i.i.d. samples(z!,--- ,Z") drawn
from ¢(.); the IS estimate 0B is given by
ON =D w'f(#) = Ep(f(X)) (6)
where
N .
= w'ds(z) (7)
i=1
and wherew® (the i-th normalized importance weight) reads
colli
i q(z* q(z*
W =N pu@) N p@) " (8)
2771 pq(mj) 2321 f;(j])
As is well known [4], under mild assumptions
on e, 9)
and a CLT is available todl¥— denotes the convergence in distribution):
~ 2(X
VN@OB —0) B N <o, E, <§25X§ (f(X)— @)2>> . (10)

2) Properties of the resampled particl(ﬁsi}ij‘g: From [9) and[(T0)p can be seen as a discrete approximation
of the target density, and one expects that for lar@é, (re)sampling fronp would produce samples approximately
drawn fromp. This is the rationale of Rubin’s SIR mechanisml[$2], [13], [9], [14, §9.2]. More precisely, let us
as above drawV i.i.d. samplest’ from ¢, and nextMy i.i.d samplesz? from p in (@). It is indeed well-known
(see [9] [12]) that whenV — oo, each r.v.z’ produced by this mechanism converges in distributiop(to, so
Rubin’s technique can be seen as a two-step sampling mechamlich transforms samples drawn franinto
samples (approximately) drawn from

This convergence result can be completed by a CLT which wasthe estimate o based on the unweighted

set{(he. )}

O = —— Z f(x (11)

Let N — oo, let My be a non decreasing sequence with; — oo, and IetliliN = a > 0 (possiblyco); then

under mild conditions (see e.@. [149])

VAT B3 - 0) B A0 v, (1) + 0B (53 (70) — 0 )1 12)

If &« — oo then the asymptotic variance tends+ia, (f(X)), which shows that the SIR estimate asymptotically
has the same behavior as a crude Monte Carlo estimate didsrtliced from\/y samples according to the target

distributionp(.), provided the numbeN of intermediate samples is large compared\fg.
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However, for computational reasons, the number of sampleasnd M should not be too large in practice.
Consequently we now focus on the samples produced by the ®ifegure from a non asymptotical point of view
and we have the following result (the proof is given in the Apgix).

Proposition 1:Let us consider the sample{&z} 1 produced by the SIR mechanism described above. Then

these samples are identically distributed according tofagpd with

in(z) = Nhy(x)q(), (13)

//g q(?v)lp 11 (14)

2= q(zl) =1

So for fixed sample sizeV, the SIR mechanism produces dependent sam@ié}*f‘f{ distributed fromgy
(these samples are independent given the intermedia{eSeY. ,, but become dependent when this conditioning is
removed). In practice, this dependency results in suppoitlsage since, by construction, an intermediate sample
i’ can be resampled several times, gnd}Y is a subset of 7}V ;. For instance lef/y = N. If we assume
thatw’ = 1 for some;j andw® = 0 for i # j, thena? = 3/ for all i. By contrast, ifw’ = 1/N for all 4, then the
average number of different samplgs'} Y | is approximatelyV/3 [15]. Nevertheless the resampling step remains
useful in a dynamic setup (see sectian 111): even thoughllpdleads to an impoverishment of the diversity, this

step is critical for recreating diversity at the next timepst

B. The independent SIR mechanism

Observe that the two factors in_(13) reflect the effects ofsém@pling and resampling step: pgfs used in theS
step, whileh v (x), which can be interpreted as the conditional expectaticmmdrmalized importance weight when
its associated particle is, results from the /,R) steps. So particles drawn frogx are likely to be in regions
where 1)q is large (since these particles have first been sampled)2pandhich have also been resampled because
their associated weight was large enough. Now our objedite propose an alternative mechanism which, in the
sequential case, will produce the same positive effect asldssical SIR mechanism (i.e. fighting against weight
degeneracy by eliminating the samples with weak importameights), while ensuring the diversity of the final
support. Such a support diversity is ensured if we draw sesiptiependentlfrom the continuous pdjy (.). We
first study the potential benefits of this sampling mecharn(m®e sectioh 1I-B1) and next discuss its implementation
(see sectioh 1I-B2).

1) Statistical properties:Let us now assume that we have at our disposal a sét/ gfi.i.d. samples{fi}f‘if{
drawn fromgy (.) defined in[(IB)[(14). Before addressing the practical coatfnr of such a set (see sectlon 11B2),

let us study its properties by considering the crude esdéméb based on thesé/y i.i.d samples:

MnN

@I SIR Z f _1 (15)

(I in notation I-SIR stands for independent). Our aim is tonpare@};}fm to @ﬁf\;, and more generallp’s,

O3} and O}, 5. We first have the following result (the proof is given in thependix).
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Proposition 2:Let us consider the three estima@ﬁ, @%}% and@};;:‘m defined in[(6),[(I) and(15) respectively.
Then

EOF) = EO3R)=E@®}™), (16)
~ My —1 ~
Var(@SIR) — Var(@IAZEIR)_FNiNvar(@I]\S]). (17)

Equation [IV) ensures that an estimate based on indepesataptes obtained frody outperforms the classical
SIR estimate; the gain d};5"™ w.r.t. ©3]F depends on the variance ofr(6). On the other hand it is well
known (see e.g/ 14, p. 213]) thaar(631F ) = var(0%) + E(var(05IR[{#'},)); so both®};5™™ and % are
preferable to(:)SIR

On the other hand, comparing the varlanc@tf,ff to that of@I SIR is more difficult, because we have to compare
wvarg, (F(X) to var(N wi (X1, XN)£(X3)) whereXZ S
(the proof is given in the Appendix).

q(.). However, we have the following CLT

Theorem 1:Let us consider the independent SIR estimate define in (Ef)assume thalv — oo, My is a

N .
non decreasing sequence witlly — oo and lim —— =a > 0. Then®}, 5" satisfies
— 00 N

VMy (O™ —0) B N (0, var, (f(X))) . (18)

Let us comment this result. First Theorin 1 enables agairotopare®’; 5™ to O3, Comparing [I2) and
(TI8) confirms|[(1l7), since the asymptotic variancd:)@\yﬁIR is always lower than that d@%}%. Also note that in
the independent case the asymptotic varianc@ﬁljfIR no longer depends on > 0.

Next TheorenfL also gives some elements for compagifig’™ to ©'5. Let for simplicity My = N. Then the

comparison of both estimates relies on that of the asymiptatiiances in[(10) and_(1L8):

2,18 _ P’ (X) 02
20 = B, (LR -0, (19)
o3I = vany(f(X)). (20)

For a given target pdf(.) and functionf(.), #%°(¢) depends on the importance pg{f.) and is well known[[1B,
§2.9] [4, Theorem 3] to be minimum far* (z) o p(x)|f(z) —O)|; for thatg*, 0215(¢*) = ([ | f(z) — Olp(z)dz)? <
var,(f(X)), so ©%(¢*) outperforms®!, 5™ for large values ofN. On the other hand for other importance
distributionsa2:5(¢) may become larger tham®:!~S®. Also note that the variances ih_{19) ahd](20) depend on
function f(.); on the other hand, for larg¥’, @ESIR has the same behavior as a crude estimate built from samples
drawn fromp(.) and so is adapted for a large class of functigis.

2) Sampling procedurelt remains to describe a procedure to obtain i.i.d. sampta §,,. Algorithm[1 ensures
that the final sample§z®, --- , 2™~} are drawn independently frogy.

Compared to the classical SIR procedure, the independ&igorithm described in Algorithial 1 relies on a
sampling step ofV x My intermediate samples and M independent resampling steps. Consequently, for a given
budget of sampling and resampling steps, the independenégure should be compared with a classical SIR one
in which we sampléV x My points and resampl&/y of them. In this last case, we obtaldy dependent samples

NxMy — o, we see that both estimatés,; 5™ and
N N

drawn from gy« ary - First, using [(AR) witha = limpy
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Input: an importance distribution, N and My
Result: {azi}My "K gy
for 1 <7< My do
for 1<j <N do

S . ~q();

W. wid o py (#9) /q(a7), S0 wiid =1,
end
R. z* NZ w0

end
Algorithm 1. The independent SIR algorithm

@ﬁﬁ with N x My intermediate samples have the same asymptotic behaviore¥dér the independent procedure
can be easily parallelized because the resampling steplsyamature independent contrary to the SIR procedure

where theN x My intermediate samples are directly resampled.

C. Reweighting the independent samples?

We finally discuss the final weights which are attributed te thsampled particles. In the SIR procedure, each
final sample is weighted by/My. From an IS point of view, this weighting traduces the faeit e final samples
become drawn from the target distributipf.) and independent wheN — oo [12]. Moreover the convergence
results of@lﬂgﬁm to © (see e.g.[[17][[14]) confirm that these weights are valid framasymptotical point of
view. In the independent SIR procedure, the only differeindhat the final samples are independent, even from a
non-asymptotical point of view.

Now, if N is finite, one can wonder if weights/My are optimal. In Algorithm{1L, sample§X‘} Y are
independent and sampled frojw. Consequently, for a giveiV, ¢y can be seen as a post-resampling compound
importance distributiorjy = ¢(p, ¢, N), and a final sample® should be weighted by a post-resampling weight

proportional top, (z%)/qx (z*). This yields a new estimat®’ SR~ of (@) (superscriptw stands for weighted)

My zju(( ')
AI-SIR—w __ an (T
O =Y e (@), (21)

i=1 £uj=1 gn(x7)

which coincides with the IS estimatgl (6) with importancetritisition G (.). It is difficult to compare@I SIR and
@}}ﬁm‘w because the expression of the weights in this last case depenV. However, it is interesting to note
that contrary ta9};5'%, My impacts the bias of the estima#g; 5™ . For example, if we seV = 1 (sogy = q)
and M, is arbitrary then(:)I*SIR*W coincides with the IS estimate with/; i.i.d. samples drawn from while the
unweighted estlmat®I SIR is a crude estimate of f(z)q(x)dz and is not adapted for the estimation@®f More

generally, using the delta method to approximE(@ﬁu]fIR) and E(@I SIR=w) [18] we observe that

~ —~ 2

B@1S)=E@R) ~0- 5 (L5 (0)-0)), @2)
~ 2

BEL S )0k (L0 -0)). @3
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So for a fixed number of sampled poimt§ we see that in the unweighted case the bia@)ﬁ\j,fﬁIR is independent
of My. By contrast, whichevelN the bias ofE((:)IA}EIR_W) tends to0 as My — oc.

Finally, it remains to computg, (z*)/Gn(z?) in practice. In generaljy in (I3) is not available in close form
because it relies on the integral (x) in (I4). However, theV x My intermediate samples which have been used
in Algorithm [I can be recycled to approximate the conditlomeectations y(z). For a givenz and using the

intermediate sampleg’’ of Algorithm[1, a crude Monte Carlo estimate bf;(z) reads

A %\f pu((z))
hy(z) = N1 (24)
=1 pqu( ) + Z puzv J )

. w(z) . Pu . )
Importance welghLﬁL in 21) can be approximated bW Note that the computation of these ap
proximated weights do not require extra computational sostep, (7%)/q(z"’) has already been computed in

Algorithm[ to obtain i.i.d. samples.

D. Summary

In summary, we now have at our disposal four estimates to ater in (4) from an importance distribution
q(.). (:)55' and@%}% are deduced from the IS and Rubin’s SIR mechanisms, respl&c@%}% relies on unweighted
dependent samples frog. Using unweighted independent samples frgm produces the estimat@lj\gﬁIR
which outperforms@ﬁ}i‘ and possibly@I]\S,; it also becomes asymptotically independent of the choidéeinitial
importance distributio(.) according to theorefm 1. This estimate does not suffer frarstipport impoverishment
caused by the resampling step. On the other hand it requil@®er computational cost which, however, can be
exploited in order to associate to the i.i.d. samples pestmnpling importance weights based on §hdx). We

—SIR=w \vhich can be seen as the estimate deduced from the IS mechanis

thus obtain a weighted estimaé Nn
based on the compound IS distributigg (z). We will compare these estimates via simulations and wié tento

account their computational cost in Section TV-A.

IIl. | NDEPENDENT RESAMPLING BASEDPF

We now adapt the results of Sectibh Il to the Bayesian filgepnoblem. In sectiof IlI-A we briefly recall the
principle of classical SIR algorithms which are based oredéejent resampling. Our SIR algorithm with independent
resampling and unweighted samples is proposed in sdciidi However, computing the post-resampling weights
is more challenging here than in the static case becausedthgypof the static case becomes a sumNofterms
which should be computed for each final sample. So in setfie@] ve revisit the algorithm of sectiop II[AB in
terms of APF. We first observe that the independent SIR algarcan be seen as the first step of an APF algorithm
since it implicitly draws samples from a mixture pdf. Makifudl use of the APF methodology enables us to weight

our final samples.

A. Classical SIR algorithms (based on dependent resanjpling

We now assume that we are given some hidden Markov mbtel (L wanbriefly recall how®,, in (2) can be

computed recursively via PF. PF relies on the sequentidicaion of the normalized IS mechanism described in
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Sectior1I=A for the target distributiop(zo.x |yo.x) Which is known up to a constant according[td (1). kéto..) be
an importance distributiony(z¢.;) can depend omg.;. but this dependency is not written here to avoid notational
burden). Starting fromV weighted trajectories} , , sampled fromg(zo.x—1), we first extend each trajectory
zi.,_, by a particlezi sampled fromy(xx|z}., ;) and next update the old weights,_, via

N

i i Sr(@ 7 1) g yk|xk Z (25)

w) o w
r bt (xk|x0k 1) —

Unfortunately, it is well-known that this direct sequehtigpplication of IS leads to weight degeneracy: after a
few iterations only few weights! have a non null value [19]. A traditional rescue consistseisampling, either
systematically or according to some criterion such as tlieckfe Sample Size [5] [6] which is approximated by
1/ Zf;l(wz)? The corresponding algorithm is given in Algoritith 2 and vikalsassume that the siz& of the
MC approximation remains constant thoughout the iteratiéinally Algorithm2 enables to compute two estimates

of O:

N
OF% = D wiS(Xh), (26)
N 1 & ,
Ok = (X0 (27)
=1

As is well known, the pre-resampling estima@ﬁ}i is preferable to the post-resampling oéé,mk and should
be used in practice; b@%}f‘k is recalled here because it will be compared below to thepeddent resampling

estimator [(3R).

Input: q(zg|zok—1), Yrr {wj_1, 1 iy
Result: {w};,xéik}ij\il
for 1 <i< N do

S. @' ~ q(@k] T e_y);

Te(@lwr 1) g Ykl F) ZN wz -1
1 y 1 - t

W. wi o wt L
k k-1 a(@ |, 1)

end
if Resamplinghen
for 1 <i< N do
R.I" ~ Pr(L = I[{ag. 1, T} ny) = wj,

i (0 =10 i 1
Setzp,, = (To.5-1:T% ), Wy, = §

end

else
| set{zi}), ={zi X,
end
Algorithm 2: The classical SIR algorithm (based on dependent resampling

In practice, it remains to choose the conditional imporéagistributiong(z |zo.x—1). A popular solution consists

in choosingq(zx|To.x—1) = fx(zx|Tr—_1), Since this pdf is part of modell(1) and is generally easy topda from;
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10

another one is the so-called optimal conditional imporgadistributiong(zy|zo.x—1) = p(zk|zK—1, yx) Which takes
into account the new observatigp and for which weightsvi, no longer depend on the sampled partidlés} Y

The optimal conditional importance distribution is gerigraot available in closed form but some approximation
techniques have been proposed, see e.g. [19] [20] [21]. hloéce of the importance distribution will be not
discussed in this paper and does not impact the proposedduitiyy. Finally, let us mention that convergence
results are also available for the PF presented in AlgorZhsee e.g![22] [23][17][14]. Some of them are based

on the recursive application of the CLTs recalled in Sedilbn

B. An alternative SIR algorithm (based on independent rediag)

Let us first adapt Propositidnl 1 to the sequential contextw@oaddress the conditional distribution given
{xf,_1 Y, of the resampled particleX; and we have the following result (the proof is omitted).

Proposition 3:Let us consider the samplds; } , produced by the SIR mechanism of Algoritfiin 2. Let

pik(x) = wi_yfr(@lri_)gk(yelz), (28)
gix(r) = Q($|x6:k—1)- (29)

Then given the initial trajectorieézy , _,}¥,, the new sample$X;} | are identically distributed according to

a pdf ¢n x which reads

N

gni(z) = Z hi k(%) ik (), (30)

i=1
whereh; i (z) coincides with the conditional expectation (giveki; = z)) of the i-th importance weight at time

kv

pik(z)

q‘Lk(‘T)
QK (T . (31)
//P1k1)+zl¢1mk L)H

qik(x quk(xh) 1#

Note that in this proposition we focus on the distribution2of given {z{, ,}¥,. Given {z} , ,, &}~ ,, the
new sample§ X/}, are independent; when we remove the dependenéyin? ;, {X;}¥ , become identically
distributed according tqy , but are dependent (a same particle can be resampled seuers).t

Sincegy  is a pdf, a procedure which would produce samples conditionad. from G ; would enable us to
keep the advantage of the resampling step, i.e. to recréadesidy for the next time iteration while avoiding local
impoverishment of the support. Except in a particular cabehvwill be described later, sampling directly from
gn x(z) is difficult for an arbitrary conditional importance digtution ¢(xy|xo.x—1). We thus propose a procedure
similar to Algorithm[1 but adapted to the dynamical cont&te SIR algorithm with independent resampling is
given by Algorithm(3. Note that a difference with AlgoritHmithat the distribution of the discrete indéx now
depends on.

We now propose a new esUmaﬁV SIR of © which is based on the s¢tX/}V | produced by Algorithnf]3:

oy = —f(Xk> (32)

November 6, 2018 DRAFT



11

Input: q(zk|zork—1), yr, {wi_q, 2, 1Y,
Result: {wi,z} 1V,
for 1 <i< N do
for 1<j < N do
S. @3, ~ Q($k|x6 K—1);
W. w;j ~ P @7 g Dgn (yrl2y?) 27 Lwid =1,

q(mk |I0:k—1)

end
R.linr(L:le%n T ’7} )_wk

i (0 i1 i 1
Setzq,y, = (To.p_1: Ty ) Wy =¥

end
Algorithm 3: A SIR algorithm based on independent resampling

Comparing[(3R) with[(27), remember that the samgl&s }¥ | share the same pdfy x, but that in [32) they are
now independent givefizy,,_,}¥,. Starting from a dataseftzy,,_,}¥,, it is ensured tha®’y $'® outperforms
OS5 since

(@I SIRH Lo:k— 1}1 1) = ((:)EIR|{ZC6:1@—1}ZJ'V:1), (33)

o) i oy o i N-1 a i
Var(ejs\/I,RkHIO:kfl}fV:l) = var(@}l SIRH%:kq}f\Lﬂ + Var(@?vl,sﬂ{%:kfl}fvzl)- (34)

Of course, computm@I SIR

via the samples produced by Algorithirh 3 requires an extrapedational cost. This
point will be discussed in detail in our Simulations sectibnt for the moment let us make two comments: first,
this algorithm can be seen as an alternative resamplingreeldnich ensures the diversity of the resampled support
without changing the conditional distribution of the finahgples; if resampling needs to be performed rarely, then
the independent resampling procedure may be used only whesssary. On the other hand, we will see that
@ﬁv‘jm can also provide an interesting alternative@?g}?k but requires an extra computational cost; so if we want
to perform the independent resampling procedure at each $iep we will decrease the numhb®r of particles
associated witt® ¥'™ in order to reach the same computational cost associatédat;,.

Remark 1:Note that the idea of using extra MC samples has already begroged in the context of Island PFs
[24]. The idea behind this class of techniques is to explaitafiel architectures, and the rationale is as follows.
Instead of considering a unique set/éfparticles, the method consists in dividing the populatibivosamples into
N7 sets of Ny samples such a&; N, = N. It is well known that such a configuration does not improwettassical
PF with N samples, but it has the advantage to split the associatedutational cost when parallel architectures

are available. In other words, the objective of the PFs istoattruggle against the support impoverishment.

C. Interpretation of the independent sampling scheme ims$eof APF

At this point, we have seen that it was possible to obtain @gimaeg of ©; based on i.i.d. samples from the
conditional pdfy . As in the static case, we now wonder whether the final weiié used to computéﬁvfim

(see eq.[(32)) are optimal wheW is finite. To this end we would like to make use of the expressibgy  to
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propose an alternative weighting mechanism. At first glatice computation of a weight which would rely on
(30)-(31) seems compromised becagse; involves a sum ofN terms which should be computed for eadh
final samplezi. As we will see, the interpretation of the independent Sigodthm as a particular first step of an
APF algorithm will help circumvent this limitation. Let ug$t begin with a brief presentation of APF filters.

1) A brief presentation of APFIn model [1), the filtering density at time can be written in terms of that at
time k — 1,

p(@k|yo:r) O<9k(yk|f€k)/fk($k|f€k—1)p(wk—1|yo:k—1)dwk—1- (35)

Plugging an MC approximatiofrw? ,,zi |}, of p(zx_1|yo.x—1) into (38) yields
N . .
Plaklyor) o gr(yrlzr) Y wi g frlznlzy_y),

i=1
N

X Z wlic—lp(yk@i—l)p(ka};—layk), (36)
i=1

wherep(yi|zr—1) = ffk(xk|xk,1)gk(yk|xk)d:ck,1 andp(xg|zr—1,yr) < fr(xk|Tr—1)gk (yr|zr). Sampling from
p(zk|yox) In (B6) leads to a particular SMC algorithm refered to as theAlPF [25]. However sampling directly
from p(zk|yo.r) is not necessarily possible becaus@y |zt ;) or p(xx|zr—1,yx) are often unavailable. To that

end it has been proposed [25] to obtain samples from an mstmtal mixture pdf
N . .
q('rk) = Zﬂ(xf):kfl)T(kaB:kq) (37)
=1

and to use IS in augmented dimension; finally APF aims at tengy¢he mixture pdfp(xg|yo.x) in (@8) which,

itself, targets the filtering distributiop(zx|yo.1). The resulting algorithm is displayed below.

Input: pu(zo.k—1), T(xk|Tok—1), Yy {wh 1, 2041 Hies
Result: {wt,z} 1YV,
for 1 <i< N do
R. ' ~Pr(L =1[{az, 1 }¥) = p(zh,_y)
S. zj, ~ T(ffhgzkfl)l;i
e ik =

Set'ré:k = (IlOl:k—l’I}lc)

W. w};oc

end
Algorithm 4: The APF algorithm

Let us comment the choice of the instrumental distribugén,) in (37). Compared to the SIS algorithm of
paragrapi_II-A we see that there is an additional degreere#dom,u(x¢.;—1), which is called the first stage
weight; 7(z |z}, ) refers to a given conditional importance distribution. &eatly, the objective of the first stage
weights is to avoid the computational waste induced by tsamgpling step of the SIR algorithm by pre-selecting
trajectories at timeé: — 1 which are in accordance with the new observatjpnDesigning this pdfj(zy) is critical

and classical approximations of the predictive likelih@oeth as the likelihood taken at the mode of the transition
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pdf (i.e. pu(xf.,_1) x wi_ gk (yeld(x)_,)) whereg(z_,) is the mode off,_1 (zx|z}_,)) can actually damage
the performance of the estimate. This is why it is often sgtggein practice to build a first-stage weight as close
as possible tavi_1p(yx|zr—1), although this problem is generally difficult [26] [27] due the computation of
the predictive likelihood(yx|z,—1). It remains to choose the importance distributidy, |xo.x—1); as in the SIR
algorithm, one generally tries to approximate the optimabartance distributiom(zy|xx—1, yx). Finally note that
similarly to classical 1S, the FA-APF setting is not necegaptimal from an asymptotic point of view even if it
performs very well in practice [28].

2) Independent resampling as the first step of a canonical AlgBrithm: Let us now turn to the interpretation
of our independent resampling procedure in terms of APF.ulsebbserve thafy . in (30) can be rewritten as

h; g (2)q;
qnk( Z/ ik (2) ik (z dIthlk(x);:())d (38)

and so can be seen as one particular mixture ggaf,) in (37), in which the weight."d(z{ , ,) are given

by [ hix(2)qx(x)dz and the components™ (zy|zi . ;) by % We now verify that the couple
of samples(l’, z%) produced by the independent resampling algorithm (Alpari3) can indeed be seen as an
augmented sample accordingdg »(z) in (38):
e given {z), }N, and {@;/}}\,, Pr(L' = 1) = w}'. Sincei}’ ~ g(z), the distribution ofl’ given
{5112, becomesPr(Li = 1) = B(wi[{zd, _,})) = [ hux(x)qn(x)da;
. given{z), T {:ckj}N L andl’, zi = i}cl Removing the dependency i}’ } j=1, the distribution of
zj, given {5,113, andi’ becomesy hlz::@)qq;: :((I))dz

In summary, our independent resampling procedure is ngthirt the first step of one particular APF algorithm,

because the pdfx ,(z) from which we draw i.i.d. samples (givefw!_,,z{ . ,},) coincides with the mixture
pdf (38), which itself constitutes a class of instrumentatrébutionsg(xy) in (34) parametrized by(zx|zo.x)-

In order to appreciate the relevance of that particulartemuet us comment on the choice of the first-stage

weightsp™d(2¢ , ;) and distributionsr™d (z |z, _,):

. at timek — 1, trajectories{z} , ,}~, are first resampled according to a first stage weight whichaidés
with the expectation of the importance weights of the SIR algorithm defined if_(25). In other words, these
trajectories are preselected in such a way that the new tapoe weights? which would be affected in the
weighting step of the SIR algorithm will tend to be large;

« once a trajectory:{ , _, has been selected, it is not ensured that its associatedtweigwill indeed be large.
By sampling according to a pdf proportional g (z)g; 1 (), the objective is to produce a sample in the
region whereh, () (the conditional expectation of the importance weigfyt given that(X; = x)) and the
distributiong; . (x) are large.

Consequently, the mixture pdfyv (z) appears as a natural instrumental candidate for the APF titeeabjective
is to pre-select the trajectories and to extend them in @ecme with the given conditional importance distributions
¢ik(z) = q(z|zi,_,) used in the SIR algorithm. If the SIR algorithm IS densitigg (z) coincide with the

optimal importance distributiop(z|z},_;, yx), then one can see easily that our canonical APF instrumpdf4B8)

November 6, 2018 DRAFT



14

reduces to the target mixtufe{36) (since; in (31) is reduced to a term proportional4d,_,p(yx|zi_,)) and the
independent SIR procedure to the FA-APF algorithm. In tlzsiecone can sample frogn; ,, very efficiently (since
(38) is a known mixture) and the resulting estimate outperfothe SIR estimaté?vlf’;C with optimal conditional
importance distribution [14] [15]. In the case where the &ARF algorithm is not available, it remains possible
to sample from the mixture pdfy x(z) in (38) as soon as we can sample from the root pgf(z), even when
pind(zé ) cannot be computed, or one cannot sample frdtf(xx |2, ).

3) Reweighting the independent sample¥® can finally use this APF interpretation in order to reweighr
conditional independent samplé¢s: } ¥ ;. Sincegy i can be seen as a mixtufe(37) with parametéré(z , ;)
and 7 (zy|zd ), (@, q) x 72|l ) reduces tdy; k(z)g; k(). Finally when we target mixtur€(86),

the second-stage weights associated with the independemiesz; produced by Algorithni3 read

_ o L
P/ AT CA L N VA (VA |
w o >

: : wh = 1. (39)
i k(2 ) @i i (27,) = g
We thus obtain a new estimate 6f,,
O = wif () (40)
=1

wherew! are defined in[{39). The practical computation of these fingights relies on that of; ;(z) in (3J),

which can be approximated by recycling the extra sampidésgenerated in Algorithril3,

N pi,k ()

2 (z)
hi(z) = .k . (41)
PLk () Pjk(EH9)
=1 qi,:(w) + Ejﬂ qj,:(i”)

D. Summary

Let us summarize the discussions of secfioh Ill. When thedilye is to comput®,, in (@) we have several

options:

1) using the classical SIR algorithm (see Algorithim 2) in ethive comput@?vl,sk defined in[(26). The resampling
step which follows the computation of this estimate produaeconditionally dependent unweighted set of
particles sampled fromjy ;

2) an alternative to avoid the local impoverishment indubgdthe traditional resampling step is to perform
Algorithm[3 and to compute estima@l\zim. This estimate is still based on an unweighted set of pegicl
marginally sampled frongx ;. but these samples have become conditionally independent;

3) finally, the samples produced by Algoritfiin 3 can also be seethe result of a sampling procedure according
to a partial APF instrumental mixture pdf_(38). Using funtilee APF methodology with mixturg@y j it is
possible to target mixtur€(B6) which itself is an approxXimof p(x|yo.x ). This leads to estima@ﬁvﬁmf‘”
in (@0), in which the weightd(39) are estimated by recycling extra samples produced by Algorithin 3.

These three estimates are now going to be compared (in térpesformances and computational cost) in the next

section.
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IV. SIMULATIONS

We now validate our discussions through computer-gengtperiments. In sectidn TV3A we first illustrate the
results of Sectiof ]l and we compare the classical resagptiechanism to the independent one with both un-
weighted and weighted samples. We also discuss the congnahtost associated with our independent resampling
mechanism.

In section IV-B we next perform simulations in the ARCH madeh the one hand, the FA-APF algorithm can
be computed in this model [25]. On the other hand, rememlmrdhr weighted estimaté_(40) can be interpreted
as the estimate deduced from a particular APF which usesiieimental mixture pdfy 5 in (38), from which it
is always possible to sample from (with an extra computafionst). Thus the estimate deduced from the FA-APF
algorithm is used as a benchmark and enables us to analyzel¢ivance of the instrumental pdf; . in the APF
algorithm.

Next in sectio IV-C we compute our independent estimatesaftarget tracking problem with range-bearing
measurements. Our estimates are compared to those obfi@nethe classical SIR algorithm, for a given computa-
tional budget measured via the number of sampling opesitibis means that we compa#s ;5™ and )%~
(M is the number of particles after the independent resamgiap) to(:)]S\}i in which N = MzT*M Thus all
estimates are based ari? + M sampling operations (we do not distinguish if we sample aling to a continuous
or a discrete distribution). The relative performanceshef éstimates are analyzed in function of the parameters of
the state-space model.

Finally in sectiof TV-D we compute our estimates in modelsrehthe dimensiom: of the hidden state is large
and we analyze their performances w.r.t. classical PF agtinin function of the dimensiom and with a fixed
number of sampling operations. Finally throughout thistisecour simulations are averaged over= 1000 MC
runs, we setf(z) = « in (@) and we use an averaged Root Mean Square Error (RMSt€Jion, defined as

1/2
RMSE(®) = (% S 1B — xk,pn?) (42)
k=1 p=1
wherezxy, ,, is the true state at timg for the p-th realization,@k_,p is an estimate ok, andT is the time length

of the scenario.

A. Comparison of static sampling procedures

Let us first consider the (static) Bayesian estimation gobin which we look for computing

0 = B(Xy) = / ep(aly)dz (43)

via the techniques described in Sectidn II. We assumepthdy) is known up to a constanp(z|y) « p(z)p(y|z)
wherep(z) = N(z;0;02) and p(y|z) = N(y;x,0;) with 02 = 10 and o, = 3. We chose the IS distribution
q(z) = p(z). For a given number of final samplég, we compute six estimates: the estimé):%S deduced from
the IS mechanism with importance distributigfl); the estimate@?{,IR deduced from the SIR mechanism with

N intermediate samples andy = N final samples; our estimal@ﬁv‘SIR based onNV unweighted independent
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samples drawn frongx (see [(Ib)); our estimat@ﬁv‘sm‘w based onNV weighted independent samples frajx
(see[(21l)). Remember that the computation of the indepémdsampling mechanism is based on the sampling of
N? intermediate particles am resampling steps and thus requires an extra computatiosaicr.t. the dependent
one. Consequently, we also comp@é,m*2 based on the classical SIR procedure wKR intermediate samples
and N (dependent) resampling steps; in other words this estimadies on N dependent samples obtained from
Gnz. Finally, we would like to observe the effects of weightimg tfinal samples in the dependent resampling case;
SO we computé%m*W which relies on extra samples to approximate the weightgtamal top(x,y)/qgn ().

In Fig.[1 we display the distance of each estimate w.r.t.rile éxpectatioft( X |Y = y) in function of the number
of samplesV. As expected, the estima@]\,_SIR based onV independent samples drawn frajx outperforms the
estim:’;tte(:)]s\}R which is computed fromiV dependent samples drawn fraig. However, an interesting result is that
0!, 5™ also outperform®3IS. It means that the distributiofiy produced by the SIR mechanism is more adapted
than the prior(x) = p(x), which is not surprising sincgéy uses implicitly the observatiopthrough the resampling
mechanism of intermediate samples. Of course, the conipatat @ESIR requires an extra computational cost
but it is interesting to note that the size of the final supjthe same in the three cases. We finally compare the
estimates based on the same computational cost. \Whémcreases, these estimates have the same asymptotical
behavior. It can be seen that the estim&t§* 2 based onN samples drawn frongy: outperforms© S'E.
However, when our i.i.d. samples are weighted by a term ptap@l to p(z,y)/¢n(z) in an IS perspective,
our estimate©’; """ has the best performance whatevér We finally note that contrary to the independent
procedure, weighting the samples when they are dependest mat improve the performance when compared
to the estimate based on dependent and unweighted sam]ﬂegdi,(:)?\}R_W is not any better tha@?vm. The

performances of these algorithms are also presented irsteflRMSE (w.r.t. to the true value of) in Table[].

16 —
SIR estimate (OF/})
SIR-w estimate (O318*)
1.2 ~ »
Q‘ ——1I8 estimate, (%)
M - @ -Independent SIR estimate (O} ")
\ SIR estimate with N? intermediate samples (O
08 - % - -SIR-w estimate (O 1%*)

14

SIR—2
N )

RMSE w.r.t. E(X|y) (log)

0.2

, , ,
10 20 30 40 50 60 70 80 90 100
N (number of particles of independent resampling SIR)

Fig. 1. Static linear and Gaussian modeb2 = 10, of/ = 3 - Bayesian estimates dE(X|y) based on the independent resampling
mechanism outperform the estimates based on the traditiSnand SIR mechanisms altough they require an extra coripuié cost. When
the computational cost is fixed, the estimate based on wesgtitd. samples frorg outperforms the estimates based on identically distribute

samples fromj 2.
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N éISVIR é%R7W éISVIS é?\;SIR éISVIR72 ég\?SIwa
20 1.6844 | 1.6819 1.6542 | 1.5951 1.5618 1.5610
40 1.5925 | 1.5981 1.5763 | 1.5606 1.5446 1.5410
60 1.5752 | 1.5777 1.5637 | 1.5442 1.5395 1.5335
80 1.5623 | 1.5639 1.5530 | 1.5345 1.5309 1.5293

100 | 1.5519 | 1.5504 1.5410 | 1.5320 1.5290 1.5290
TABLE 1

STATIC LINEAR AND GAUSSIAN MODEL - RMSEVALUES OF EACH ESTIMATE.

B. Comparison with APF algorithms

We now focus on the interpretation of our independent reiammlgorithm in terms of APF. We study the
ARCH model which is a particular hidden Markov modél (1) inieth fy, (zj|zx—1) = N (zx; 0; Bo + f127_,) and
9k(y|TK) = N (yk; zr; R). We setR = 1, By = 3 and 8; = 0.75. In this model one can compujgyy|zi_1) =

Bot+Bizh_ R(Bo+B173_1)N. L .
N (ye; 05 Ret-Bo+Pra_y ) andp(ar|oe—1, yn) = N (2k; 73 go7 5,07 s Rigﬁél;ﬁj), consequently, it is possible
to obtain i.i.d. samples from the target mixtuke](36) andsttmicompute the estima&)JF\,‘f]C based on the FA-APF

algorithm. Remember that the FA-APF can also be seen asiayaricase of our independent resampling Algorithm
in which the importance distributiaf{z |xo.x—1) coincides withp(z|zr—1, yx) (See sectionIll-=-C2). However this
setting can be implemented in specific models only, whileofithm[3 can be used with any importance distribution
q(zx|xo.x—1), while keeping the same interpretation as the FA-APF (seediseussion in section 11-G2). So we
also compute our estimatés); $'™ and 6} 7" which can be seen as an estimate deduced from the APF in
which the importance mixturé¢ (B7) coincides witk . We finally compute the estima@%{’kF which is deduced
from the APF withu(xo.—1) o< wg—1p(yr|rr—1) and 7(zg|zo.x—1) = fr(xk|zr—1); with this configuration, the
particles are pre-selected with the so-called optimal §itate weight and sampled from the transition pdf.

The RMSE of each estimate is displayed in fig. P(a) as a fonaif the number of sample¥. Interestingly
enough, our weighted independent resampling algorithm:hvp'roducesif)ﬁvjim*“’ has the same performances as
the FA-APF algorithm whe@Vv > 15, without using the predictive likelihoop(y;|z—1) nor the optimal importance
distributionp(zk|zx—1, yx). It means that the mixture pdfy which has been interpreted in sectfon TIIC2 is indeed
as relevant as the target mixtufeJ(36); so in general modakravthe FA-APF is no longer computable, one
can expect that our estima@ﬁvﬁm*‘” would give a performance close to that deduced from FA-ARBeéd,
one advantage of the mixture pdf deduced from the resampling mechanism is that its inteapogt does not
depend on the importance distributigsy, which has been chosen and that it is possible to sample frongiéneral
hidden Markov model$ {1). We also observe that re-weightiedinal samples is beneficial w.r.t. attributing uniform
weights. In order to analyze the behavior of the weights ciated to our estimatéﬁvjim*w, we compute the

normalized effective sample size definedéS,;m.crf = SR In Fig.[2(B), we display the time-averaged
W

1
NN (
normalized effective sample size. It can be observed Mgt s tends tol as N increases, meaning that these

weights tend to become uniform, so estimatgs '™ and©'y '™~ become close whe is large.
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2.2 T T T T T T T
—e— Bootstrap estimate
2 APF estimate with optimal first stage weights ((:)kl’f) i
stims OAPF
18k FA-APF estimate (O45F) ]
\ - - - I-SIR estimate with uniform weights (O} $'%)
L6 ——L-SIR-w estimate with reweighting (Ol 5%) 8

RMSE (log)

0.8 I I I I I I I I I I
10 20 30 40 50 60 70 80 90 100

N (number of particles for all algorithms)

(a) RMSE

Averaged effective sample size
o
2
e
!

Averaged effective sample size associated to O} § "

0.9 I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100

N (number of particles)

(b) Averaged normalized effective sample size

Fig. 2. ARCH model -R = 1, 89 = 3 and 81 = 0.75 - (a) The estimate based on the independent resampling misohavith a final
reweighting has the same performances as the estimateatktfom the FA-APF. The final reweighting mechanism is beraficthen compared
to the use of uniform weighs - (b) WheN is large, final weights associated to the estirr@f,@*im*w tend to be uniform.

C. Tracking from range-bearing measurements

We now study the performance of our algorithms in a trackiognario with range-bearing measurements. We
look for estimating the state vectofy = [p. k., Pu ks Py.k» Dy.k) . (POSition and velocity in Cartesian coordinates) of

a target from noisy range-bearing measuremgnt3 he pdfs in model{1) associated with this tracking probém
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pik—szk 0'5 0
fe(zrler—1) = N(zr; Fog—1; Q) andg (yk|zr) = N(yes | V7 %1 R) wherer =1,R = ,
arctanzy’“ 0 o3
3 2
1700 Z 20 0
010 0 |5 7 0 0
F = ’QZUQ 3 72
000 1 0 0 Z 7

The conditional importance distribution used to sampleigas is the transition pdf(zx|zo.k—1) = fr(xk|Tr—-1);
so the importance weights;, at time k are proportional tav}_, g(yx|a}). We computed, (see [IZB)),(:)IJ\}%R
(see KEIZ)),(:)IM%R*W (see [@D)) withN = MM 1o set the number of sampling operations. We also compare
these estimates wit@ﬁi deduced from the Island PF withislands andV/5 particles per island.

The results are displayed for two set of parameters[Figlc@esponds to the case wherg = /10, o, = 0.25

andoy = =5 while Fig[3(b) corresponds to a very informative case whese= /10, o, = 0.05 andoy =

T
720 3600 "

For the first configuration, we observe i@}, ;™ ™ outperforms the other estimates and impro@§g}™ which

does not rely on weighted samples. Compared to the claﬁl&bstimate@;;im gives better performance as
long as the number of sampldd is weak (\/ < 30, SO N < 465) but is next outperformed when the number
of samples is large. As shown in Fig. 3(b), when the obsematibecome im‘ormativdﬁlj\}iIR gives the best
performances. Contrary téjs\,lsk and @ﬁi our estimate does not suffer from the degeneration of theiitapce
weights. Indeed when the measurements are informative garttle likelihood is sharp), few importance weights
have a non null value. However, the independent resampliagepure ensures the diversity of the final samples
when we use uniform weights. Concerni@gj;im‘w, remember that it relies on the MC approximatibnl (41). A
close analysis of{(41) when the likelihood is sharp shows tihea final weights tend to be null except that of the
particle with the larger likelihood; consequently, in thiase the estimatélj\}im*w is affected by the lack of

diversity.

D. High dimensional problems

We finally study the impact of the dimension of the hiddenesfd},. We consider a state vector of dimension

m=4xl, z = [pylg,kvpglc,k’p;,kvpgl;,k’ e vpé,kapi,kvpé,kapé,k]:r- Each component), = [Pé,kapi,kvpé,ka?é,k]ip
evolves independently from all the other components, atiogrto fk‘k_l(:z:k|xk,1) = N(zy;Fxrp_1; Q) where

T =1,

3 2
1 70 0 =T 0 0
0100 |5 7 0 0
F: ’Q:UQ PO
00 1 7 0o o0 = =
000 1 0o 0 = 7

2
Each component is observed independentlygi@yx|zx) = N (yx; Hzi; R) where

1000 o2 0
H: ,R:

0010 0 o2
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M (number of particles of i.i.d. PF)

(b) 0@ = V10, 0p = 0.05 andop = 5555

Fig. 3. Target tracking model from range-bearing measunésne(a) the independent resampling procedure with finagkteig outperforms
the other estimates and is particularly interesting whenrthmber of final samples is weak - (b) in the informative cafleestimates suffer
from the degeneration of the importance weights exceptlibaed on the unweighted independent resampling algoriflonachieve the same

performances a®}; 5’ ™ with M = 20, the classical PF use¥ = (50% + 50)/2 = 1275 samples

Again, we compute the estimate based on classica@}%}?k (see [(2B)). It is well known that the PF tends to
degenerate when the dimension of the hidden state increakealso comput@ﬂ;)skIR (see IZ:ZIZ))GI SIR-w (see
(40)) with N = W for M = 100 and M = 1000 as a function of the dimensiom to see how the dimension
impacts our estimate and the classical PF estimate.

The results are displayed in Fig. 4. It can be seen that tieassO';5'* and 0.5 outperform®!, 51
more and more significantly as the dimension increases, duet Iocal |mpover|shment phenomenon. First,
O SIR=w outperformsO!, 5™ as long as the dimension of the hidden state is low= 4 andm = 8); whenm

increases, the estimate based on weighted samplesdgxofimits the degeneration phenomenon w.r.t. that based
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on weighted samples from but using unweighted samples when the dimension is largerenshe diversity and
gives better performances. Note that the dependent anggéndent SIR algorithms give approximately the same
performance whem: is low but the gap between the dependent and the indepentiRrésEmates increases with

the dimension.

250 | —e— SIS estimate, before resampling (6515

S )
100° - 100 k T

—%—I-SIR estimate with reweighting (@){aﬁf"w)
—>—I-SIR estimate with uniform weights ((-)EGJIAR)
a0 ll - @ - SIS estimate, before resampling ((:)5;‘1,;?,2;“,“”.1‘_) |
- » - I-SIR estimate with reweighting ((:)ga(?&l’w) o o P
= p=I-SIR estimate with uniform weights ((—)IIGJJI; o r X
o ,x -x
150 |- o X Pyt
= ‘ X
%) e
- ’
- o yes IX -% B’
= Ry
4
100 | o % P 4
’ s P~ ,’
’ X,
0-0 7P
LTXP
5 Pt
50 oD X » o
L
&
% ¥
0 Il Il Il Il Il Il Il Il Il L
0 10 20 30 40 50 60 70 80 90 100
Dimension

Fig. 4. Multi-dimensional linear Gaussian mode% =25,02 =4and 0'5 = 4. The estimates of interest are compared as a function of the

dimensionm of the hidden state:;, for a fixed number of sampling operations. The independesamgling mechanism limits the impact of

élstR —SIR

the large dimensiomn and estimat 1000 % whenm = 46 has the same performance @oOOSOO,k whenm = 32.

V. CONCLUSION

SMC algorithms in Hidden Markov models are based on the sggapplication of the IS principle. However the
direct sequential application of the IS principle leadshie tlegeneration of the weights, against which multinomial
resampling has been proposed. This rejunevation scheniehwehnow routinely used in SIR algorithms, enables
to discard particles (or trajectories) with low weightst Iparticles with large weights will be resampled several
times, which leads to dependency and support degenerathisipaper we thus revisited the resampling step used
in the classical SIR algorithms. We first addressed thecstase, showed that the particles sampled by Rubin’s SIR
mechanism are dependent samples drawn from somgpaind proposed an alternative sampling mechanism which
produces independent particles drawn from that same nargdf . This set of independent samples enables
us to build a moment estimator which outperforms the clas$tR-based one, both from a non-asymptotical and
an asymptotical points of view. Finally the succession @& #fampling, weighting and resampling steps indeed
transforms an elementary instrumental pdfnto a compound importance distributiany = ¢(p, ¢, V), which
leads us to reweight the (originally unweighted) resampladiclesz’ by post-resampling weights proportional to
p(z")

CAR Such post-resampling weights cannot be computed exacilycan easily be estimated by recycling the extra

MC samples which were needed for producing the independesgbmpled particles.
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We next adapted this methodology to the dynamic case, inr ¢odestimate a moment of interest in an hidden
Markov model. The computation of the post-resampling wiigh more challenging than in the static case, but
reinterpreting our independent resampling scheme as #iesfep of a particular APF algorithm enables us to make
full use of the APF methodology and so to reweight the final@asvia the second-stage APF weights. Finally
we validated our discussions by computer-generated erpats and carefully took into account the computational
budget. Simulations in model where the FA-APF algorithm asnputable show that the independent resampling
gives a performance close to the FA-APF algorithm. Conseifyydat confirms the relevance of the instrumental
mixture pdf used implicitly by the independent resamplirfg Which can be used in any hidden Markov model
since it not require to compute the predictive likelihood tiee optimal importance distribution. Finally indepentien
PF gives very satisfying results when applied in highly infative models which are challenging for classical PF

and limits the degeneration phenomenon in high dimensiomalels.

APPENDIX
PrROOF oFPrRoOPOSITION]]

Let A be any Borel set. Let 4(z) = 1 if x € A and0 otherwise. Then for any, 1 <1 < My,

2

1:N
/}RNZw H :dex

IJ dxtv

|
i+
5\
4
S
9 .’:]2 ﬁ

N N
:Z/A[/ Jeiil(i,l’” H l:i_l’i+1:N]q(ji)dji
i=1

i

=
o
S

N
:Z/AhN(i: Yq(2")dz

- / Ny (7)g(&)dz
A

so X! has pdfgy w.r.t. Lebesque measure.

PrROOF OFPROPOSITIONZ|

Let X (for anyi, 1 < i < My be produced by the classical SIR mechanism. Then
E(f(X))x") = 6f. (44)

SoE(O5IR)[x1N) = O, andE(65}) = E(O%). On the other hani(O},5™) = E(65"), whence[(T6). Next

My My
var(@ﬁ}ij) = ]V[2 Zvar +M— ZCOV FXF), F(XY). (45)
N k=1
kel
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in which X% ~ gy for all i. The first term is equal t@ar(@}}ﬁm). Let us compute the second term. For/alll,
1< k1, < My with k # 1, B(f(X?) f(XD)FEY) = (BF)2, so B(f(X*) f(X!)) = BE(f(X*) f(X)XEN)) =
E((6%)2). Using [@3) again, we conclude thabv(f(X*), f(X')) = var(O%), whence [(II7).

PrROOF OFTHEOREM[I

We first introduce the following notations:

o) = [ r@pla)da, (46)
R N p(X") } .
OR() =Y = F(XT), X R (1), (47)
i=1 Zuj=1 q(X7)
~ 1 My T
Ohre () = = 2 SE X (), (48)

and we will assume that (0% (f2)) is finite.
Using E(O}; % (f)) = E(©F(f)), we have

VM (85 (f) - ©(f)) = Aw + By, (49)
Ay = /My ('R (f) — EO©"5R(f))), (50)
By — %E(W(@Iﬁ(ﬂ —e(f))). (51)

Our objective is to show thatly converges to a centered Gaussian distribution with vagianac,(f(X)) and

that B converges td.

Convergence oBy

We have recalled (se&l(9)) that under mild assumptions [4]

V@) - 0(f) BN (o, E, <§%<ﬂx> - @>2>) .

According to Theorem 9.1.10 in [:14E(|\/N(@I]§(f) — 0(f))]?) is bounded and so its upper bound is finite.
According to the corollary of Theorem 25.12 [n [29], it is ensd that\/NE((@Iﬁ(f) —©(f))) — 0; consequently

VIN b N@IS(5) — ©(f))) - 0. (52)

Convergence ofl y
Apn reads
Vil (i S - E(f(YS)) . (53)
My 5
To prove the convergence whév — oo, we need a CLT for triangular arrays and we use the versiogepted in

Theorem 9.5.13 of [14]. The required assumptions are:
1) {X'}M¥ are independent;

2) 3o SMVE((X) — (E(F(X))? = var,(f(X));
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3) for any positiveC, 57 >0} E(f2(X )1 ;5 50) = O/ L p20).

==

Assumption 1) is satisfied sindé_(i}f‘ifi’ are i.i.d. fromgy. Next, E(f(X ")) = Eg, (f(X)) which coincides with
E(OS(f)). Using again Theorem 9.1.10 6f [14] and Theorem 25.12 of,[EZ9DS(f)) — O(f) when N — oc.

With the same argumenE(fQ(Yi)) — O(f?). Consequently, assumption 2) is satisfied since

Mn . .
MLN ZE(fQ(YZ)) — (B(f(X)))? = Equ (F2(X) = (Bay (f(X)))* = O(%) = (O(f))* = var,(f(X)).

Finally, E(fQ(Yi)]llf(yi)pc) = E((:)E\?(fQ]lmzc)) which converges t®(f*1,;>¢) and assumption 3) is satis-

fied. Consequently,

MnN

VAT (5= 3 (8 = E(F(E)) B N (0, vy (£(X)). (54)

Combining [52), [(BK) and_(49) we obtain {18).

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

El

[20]

[11]

[12]

[13]

[14]
[15]

[16]
[17]

REFERENCES

N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel aggrh to nonlinear/ non-Gaussian Bayesian state estinjattef Proceedings-
F, vol. 140, no. 2, pp. 107-113, April 1993.

A. Doucet, N. de Freitas, and N. Gordon, Ed3equential Monte Carlo Methods in Practjceer. Statistics for Engineering and Information
Science. New York: Springer Verlag, 2001.

M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “Adtial on particle filters for online nonlinear / non-GawssBayesian tracking,”
IEEE Transactions on Signal Processingl. 50, no. 2, pp. 174-188, February 2002.

J. Gewecke, “Bayesian inference in econometric modslaguMonte Carlo integration,Econometrica vol. 57, no. 6, pp. 1317-1339,
November 1989.

A. Kong, J. S. Liu, and W. H. Wong, “Sequential imputaoand bayesian missing data problenigtirnal of the American Statistical
Association vol. 89, no. 425, pp. 278-88, March 1994.

J. S. Liu and R. Chen, “Blind deconvolution via sequeniiaputation,” Journal of the American Statistical Associatioml. 90, no. 430,
pp. 567-76, June 1995.

J. S. Liu, “Metropolized independent sampling with camipons to rejection sampling and importance sampliSggtistics and Computing
vol. 6, pp. 113-119, 1996.

J. CornebiseE. Moulines, and J. Olsson, “Adaptive methods for sequkeittiportance sampling with application to state-space riggtle
Statistics and Computingol. 18, no. 4, pp. 461-480, 2008.

A. F. M. Smith and A. E. Gelfand, “Bayesian statistics vatit tears : a sampling-resampling perspectiviehe American Statistician
vol. 46, no. 2, pp. 84-87, 1992.

R. Douc, O. Cappé, ané. Moulines, “Comparison of resampling schemes for partfdtering,” in Proceedings of the 4th International
Symposium on Image and Signal Processing and Analysis X|SR8reb, Croatia, September 2005.

T. Li, M. Boli¢, and P. M. Djuric, “Resampling Method®If Particle Filtering: Classification, implementation dastrategies,IEEE Signal
Processing Magazinevol. 32, no. 3, pp. 70-86, May 2015.

D. B. Rubin, “Using the SIR algorithm to simulate pogterdistributions,” in Bayesian Statistics IlIM. H. Bernardo, K. M. Degroot,
D. V. Lindley, and A. F. M. Smith, Eds. Oxford: Oxford Univéss Press, 1988.

A. E. Gelfand and A. F. M. Smith, “Sampling based apphescto calculating marginal densitiesldurnal of the American Statistical
Association vol. 85, no. 410, pp. 398-409, 1990.

0. CappéE. Moulines, and T. Rydérinference in Hidden Markov Models Springer-Verlag, 2005.

Y. Petetin and F. Desbouvries, “Optimal SIR algoriths fully adapted auxiliary particle filter: a non asymptati@nalysis,”Statistics
and computingvol. 23, no. 6, pp. 759-775, 2013.

T. Hesterberg, “Advances in importance sampling,”RHdissertation, Stanford University, 1988.

P. del Moral,Feynman-Kac formulae. Genealogical and interacting metisystems with applicationser. Probability and its applications.
New-York: Springer, 2004.

November 6, 2018 DRAFT



25

[18] J. S. Liu,Monte Carlo strategies in scientific computingSpringer, 2001.

[19] A. Doucet, S. J. Godsill, and C. Andrieu, “On sequenfitidnte Carlo sampling methods for Bayesian filteringtatistics and Computing
vol. 10, pp. 197-208, 2000.

[20] R. van der Merwe, A. Doucet, N. de Freitas, and E. Wan,eTinscented Particle FilterAdvances in Neural Information Processing
Systems2000.

[21] S. Saha, P. K. Manda, Y. Boers, H. Driessen, and A. Badthaussian proposal density using moment matching in SMhaas.”
Statistics and Computingol. 19, no. 2, pp. 203—208, 2009.

[22] D. Crisan and A. Doucet, “A survey of convergence reswolh particle filtering methods for practitioner$EE Transactions on Signal
Processingvol. 50, no. 3, pp. 736—46, March 2002.

[23] N. Chopin, “Central limit theorem for sequential Mor@arlo methods and its application to Bayesian inferenthg Annals of Statistics
vol. 32, no. 6, pp. 23852411, 2004.

[24] C. Vergé, C. Dubarry, P. Del Moral, arfil Moulines, “On parallel implementation of sequential neonarlo methods: the island particle
model,” Statistics and Computingol. 25, no. 2, pp. 243-260, 2015. [Online]. Availakle:phifdx.doi.org/10.1007/s11222-013-9429-x

[25] M. K. Pitt and N. Shephard, “Filtering via simulation :uiliary particle filter,” Journal of the American Statistical Associatjorol. 94,
no. 446, pp. 590-99, June 1999.

[26] A. M. Johansen and A. Doucet, “A note on the auxiliarytjode filter,” Statistics and Probability Lettersol. 78, no. 12, pp. 1498-1504,
September 2008.

[27] N. Whiteley and A. M. Johansen, “Recent developmentauriliary particle filtering,” inInference and Learning in Dynamic Modgls
Barber, Cemgil, and Chiappa, Eds. Cambridge Universitg$r2010.

[28] R. Douc, E. Moulines, and J. Olsson, “Optimality of the auxiliary pee filter,” Probability and Mathematical Statisticsol. 29, no. 1,
pp. 1-28, 2009.

[29] P. Billingsley, Probability and Measure ser. Wiley Series in Probability and Statistics. Wiley, 989 [Online]. Available:
https://books.google.de/books?id=z39]QgAACAAJ

November 6, 2018 DRAFT


http://dx.doi.org/10.1007/s11222-013-9429-x
https://books.google.de/books?id=z39jQgAACAAJ

	I Introduction
	II IS with resampling viewed as a compound IS scheme
	II-A The dependent SIR mechanism
	II-A1 Properties of the sampled particles { i }i=1N
	II-A2 Properties of the resampled particles { xi }i=1MN

	II-B The independent SIR mechanism
	II-B1 Statistical properties
	II-B2 Sampling procedure

	II-C Reweighting the independent samples?
	II-D Summary

	III Independent resampling based PF
	III-A Classical SIR algorithms (based on dependent resampling)
	III-B An alternative SIR algorithm (based on independent resampling)
	III-C Interpretation of the independent sampling scheme in terms of APF
	III-C1 A brief presentation of APF
	III-C2 Independent resampling as the first step of a canonical APF algorithm
	III-C3 Reweighting the independent samples?

	III-D Summary

	IV Simulations
	IV-A Comparison of static sampling procedures
	IV-B Comparison with APF algorithms
	IV-C Tracking from range-bearing measurements
	IV-D High dimensional problems

	V Conclusion
	Appendix
	References

