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Abstract In this paper, we propose a micro-macro feature combination ap-9

proach for texture classification. The two disparate yet complementary cate-10

gories of features are combined. By this way, Local Binary Pattern (LBP) plays11

the role of micro-structure feature extractor while the scattering transform12

captures macro-structure information. In fact, for extracting the macro type of13

features, coefficients are aggregated from three different layers of the scattering14

network. It is a handcrafted convolution network which is implemented by com-15

puting consecutively wavelet transforms and modulus non-linear operators.16

By contrast, in order to extract micro-structure features which are rotation-17

invariant, relatively robust to noise and illumination change, the completed18

LBP is utilized alongside the biologically-inspired filtering (BF) preprocessing19

technique. Overall, since the proposed framework can exploit the advantages20

of both feature types, its texture representation is not only invariant to ro-21

tation, scaling, illumination change but also highly discriminative. Intensive22

experiments conducted on many texture benchmarks such as CUReT, UIUC,23

KTH-TIPS2b, and OUTEX show that our framework has a competitive clas-24

sification accuracy.25

26

Keywords Image texture · Image classification · Image texture analysis ·27

Wavelet Transforms · Scattering Transforms28

V.L. Nguyen E-mail: lam.nguyen@ensea.fr
· N.S. Vu E-mail: son.vu@ensea.fr
· H.H. Phan E-mail: thi-hai-hong.phan@ensea.fr
· P.H. Gosselin E-mail: philippe-henri.gosselin@ensea.fr
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1 Introduction1

Texture provides important clues for identifying materials and objects, es-2

pecially when shape is not available. A wide range of applications such as3

industrial inspection, image retrieval, medical imaging, remote sensing, object4

and facial recognition can be developed depend upon analyzing the textures5

of their surfaces. Hence, texture analysis includes segmentation, shape extrac-6

tion, synthesis, and classification is an active field.7

There are variety texture analysis approaches have been proposed. They8

can be ranged from a simple to sophisticated computation strategy methods.9

Simple yet efficient feature extraction approaches can be a long list. They can10

be 1) Local Binary Pattern (LBP) method [1] and its variants, 2) the rep-11

resentation based on co-occurrence matrix [2],(3) the filter-based approaches12

such as works in [3,4], 4) the wavelet transform method as works in [5–7],13

5) the texton dictionary-based [8–10], 6) the use of bidirectional features [11,14

12], and so on. In addition, many sophisticated computation strategy meth-15

ods have been introduced to improve the feature robustness and performance.16

Scattering Network (ScatNet) [13], and Convolutional neural network (CNNs)17

with Fisher vector CNN (FV+CNN) delegation [14] belong to this category.18

Among those approaches, the LBP-family can be considered as a popu-19

lar feature method which extracts well local micro-structure information from20

images. Ojala et al. [15] first introduced the LBP method in 1996, then a21

multi-resolution version [1] in 2002. After that, several extensions on LBP22

have been conducted. In 2007 Tan et al. extended LBP to 3-valued codes to be-23

come the local ternary pattern (LTP) [16]. Liao et al. proposed dominant LBP24

(DLBP) [17] which combines the most frequently occurred patterns with the25

Gabor filter responses for features. Later Guo et al. introduced completed LBP26

(CLBP) [18], which merges three components the sign (CLBP S), magnitude27

(CLBP M), and center pixel intensity (CLBP C) together to form features.28

This enhances discriminative power compared to the original version. Vari-29

ance in LBP (LBPV) [19] is used to encode local contrast information without30

requiring a quantization process, rotation invariance is implemented by esti-31

mating principal orientations and aligning LBP histograms. By constructing a32

cascading spatial pyramid of LBP, Qian et al. [20] introduced pyramid trans-33

formed LBP (PLBP), the robustness of PLBP was compared with those of34

other LBP variants in this works. Further, Liu et al. suggested extended LBP35

[21] by a combination of pixel intensities and local differences. In this way, the36

pixel intensity part is divided into a central pixel’s component and neighbor’s37

component. Likewise, the local difference consists of two components: radial38

differences and an angular difference. At the end, those four were combined39

to form features. In addition, Zhao et al. in [22] presented Local Binary Pat-40

tern Histogram Fourier features (LBP-HF) which implements rotation invari-41

ance by computing discrete Fourier transforms of local binary pattern (LBP)42

histograms. In [23], moreover, Guo et al. presented a three-layered learning43

framework in which LTP and CLBP were used as raw features to train and44

select the discriminative features.45
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Contrary to the micro-structure descriptors of LBP family, several broader1

range feature methods have been developed. Bovik et al. applied the Gabor2

filters to compute the average filter responses for features [3]. Mallat proposed3

the multi-resolution wavelet decomposition method [24], which generates coef-4

ficients from the high-low (HL), low-high (LH), and low-low (LL) channels for5

subsequent classification tasks. Porter et al. [25] removed the high-high (HH)6

wavelet channels and combined the LH and HL wavelet channels to obtain7

rotation invariance wavelet features. Haley et al. [26] calculated isotropic ro-8

tation invariance features from Gabor filter responses. More recent, scattering9

transform is considered as a high performance approach based on cascading10

wavelet transform layers [13] compared to previous wavelet-based methods.11

With the aim of leveraging both fine details and broader-range multi-path12

of signals, we propose a novel framework which combines LBP features and13

those of scattering transform for texture classification. A preprocessing algo-14

rithm, the biologically-inspired filtering(BF) [27], as well as an efficient PCA15

classifier are also used. Our hand-crafted descriptor has the accuracy which is16

close to those of the CNN state-of-the-art (FV-CNN [14]) on the three out of17

four well-known texture datasets (UIUC[28], CUReT[29], OUTEX[30], KTH-18

TIPS2b[31]). FV-CNN is the Fisher Vector pooling of a Convolutional Neural19

Network (CNN) filter bank.20

This paper is the extended version of two previous publications [32,33].21

Compared to these two papers, this new version adds a number of new ex-22

periments and a substantial amount of new discussion. The rest of paper is23

organized as follows. After discussing about related work in Section 2, the24

proposed approach is introduced in Section 3. Section 4 presents experimental25

results, and conclusions are drawn in Section 5.26

2 Related Work27

In this section, Biologically Inspired Filtering (BF) preprocessing technique,28

which is used to enhance LBP-feature discriminative power, is presented along-29

side Local Binary Pattern (LBP), Completed LBP (CLBP) review. Besides,30

scattering transform, the global features used to compensate for those of local31

LBP, is briefly reviewed. At the end of this section, PCA classifier used in the32

proposed framework is presented.33

2.1 Biologically Inspired Filtering34

Biologically Inspired Filtering (BF) [27] imitates the human retina mechanism35

to extract more detail information of a given image when being used as a36

preprocessing step. It enhances performance of different features in terms of37

discriminative power for texture classification, including CLBP.38

In general, BF consists of two steps:39
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Step 1: given an image Iin, it is first filtered by a band-pass Difference of1

Gaussians (DoG). Ibf = DoG ? Iin, with DoG = 1
2πσ2

1
e
− x2+y2

2σ21 − 1
2πσ2

2
e
− x2+y2

2σ22 .2

? is the convolution operator, σ1, and σ2 are the standard deviations of the3

low pass filters.4

Step 2: the filter responses are then decomposed into two ”maps” corre-
sponding to the image details alongside two sides of the image edge:

I+bf =

{
Ibf (p) if Ibf (p) ≥ ε
0 otherwise

, I−bf =

{
|Ibf (p)| if Ibf (p) ≤ −ε
0 otherwise

. (1)

The term bf refers to ”Biologically-inspired Filtering”, p is the considered5

pixel, ε is a threshold. In features extraction step, instead of using the input6

image Iin, features are first extracted from two images, I−bf and I+bf , and are7

then concatenated.8

2.2 Brief Overview of the LBP and CLBP9

The LBP method, proposed by Ojala et al. [1], encodes the pixel-wise infor-10

mation in images. LBP encoding is:11

LBPP,R =

P−1∑
p=0

s(gp − gc)2p, s(x) =

{
1, x ≥ 0
0, x < 0

(2)12

where gc represents the gray value of the center pixel whereas gp (p = 0, ..., P−13

1) denotes the gray value of the neighbor pixel on a circle of radius R, and P is14

the total number of the neighbors. A given texture image is then represented15

by a histogram of LBP codes. Ojala et al. also introduced a rotation invariant16

complement called uniform patterns LBP riu2 which have less than two ”one-17

to-zero or vice versa” transitions.18

Guo et al. [18] recently proposed CLBP descriptors, by which image local19

differences are decomposed into two complementary components, the signs20

(sp) and the magnitudes (mp): sp = s(gp − gc), mp = |gp − gc| where gp, gc21

and s(x) are defined as in (1). Two operators called CLBP-Sign (CLBP S)22

and CLBP-Magnitude (CLBP M), respectively, are proposed to encode them,23

where the CLBP S is equivalent to the conventional LBP, and the CLBP M24

measures the local variance of magnitude. The CLBP M is defined as follows:25

CLBP MP,R =

P−1∑
p=1

t(mp, c)2
p, t(x, c) =

{
1, x ≥ c
0, x < c

(3)26

where threshold c is the mean value of mp of the whole image. CLBP-Center27

(CLBP C) operator extracts the local central information as CLBP CP,R =28

t(gc, cI) where threshold cI is set as the average gray level of the whole image.29

The overall descriptor is obtained by combining the three operators CLBP S,30

CLBP M and CLBP C.31
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2.3 Review of Scattering Transform1

The Scattering transform [34] is calculated by using Scattering Network (Scat-2

Net). It is actually a handcrafted deep convolution network, in which cascade3

of wavelet transform and modulus non-linearities operators are consecutively4

computed to form the network layers. As illustrated in (Fig. 1), each |Wm| out-5

puts invariant scattering coefficients Smx and a next layer of covariant wavelet6

modulus coefficients Um+1x, which is further transformed by the subsequent7

wavelet-modulus operators.

Fig. 1 Scattering network formed by wavelet-modulus cascading

8

The average Smx carries the low frequencies of Umx while it loses all the9

high frequencies. High frequencies are captured by roto-translation convolu-10

tions with wavelets. |Wm| transforms Umx into the average Smx and a new11

layer Um+1x of wavelet amplitude coefficients: |Wm|(Umx) = (Smx, Um+1x).12

Repetitively computing this wavelet modulus transform would generate mul-13

tiple layers of scattering invariant coefficients. For m = 0 U0x = x, in case14

the network has three layers, the scattering feature vector (Sx) would be a15

concatenation of three Six coefficients such that Sx = (S0x, S1x, S2x). A filter16

bank of low-pass and high-pass filters for implementing Morlet wavelet (Wm17

operator) is illustrated in Fig. 2.

Fig. 2 Complex Morlet wavelets with Gaussian kernel (top left corner), different scales
(along rows) and orientations (along columns). The real and imaginary parts are shown on
the left and on the right, respectively..

18
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2.4 PCA Classifier1

A generative classifier called Principal Component Analysis (PCA) [13] was2

proved to have decent performance for ScatNet in case of small training dataset.3

PCA Classifier is described as follows.4

Given a test image X, S̃X denotes the scattering transform of X and its5

dilated version DjX.6

S̃X =

 ∑
0≤j<H

1

−1 ∑
0≤j<H

S̃DjX. (4)7

8

The representation of S̃X used at test time is therefore a Scattering Transform.9

Let PUc S̃X denotes the orthogonal projection of S̃X in the scattering space10

Uc of a given class c. The principal components space Uc is approximately com-11

puted from the singular value decomposition (SVD) of the matrix of centered12

training sample S̃DjXc,i − µc with all possible samples i dilated by 2j for a13

given class c. The PCA classification computes the class ĉ(X) base on the min-14

imum distance
∥∥∥(Id− PVc)(S̃X − µc)

∥∥∥ from S̃X to the space µc + Uc, (Fig.15

3)

Fig. 3 PCA-classifier classifies a test image X based on the minimum distance from Scat-
tering Transform S̃X to subspace µc + Uc.

16

3 Proposed Method17

A motivation for our proposal is that LBP features and those of scattering18

transform provide complementary information. The CLBP is used to capture19

small and fine details information from texture by encoding the pixel-wise20

structure in a certain radius. It is usually of from 1 to 7 pixel-distances from21

a center. However, it does not take into account the wider range pixel rela-22

tionship that takes place beyond the coverage of its radii. In this section, we23

propose a framework which complements the CLBP features with the broader24
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range, multi-scale, multi-path counterparts, the scattering transform of tex-1

ture image. This section is organized as follows. First, we present how BF2

preprocessing technique used to enhance the robustness of CLBP features. Sec-3

ond, ScatNet implementation is presented in details. Third, we describe our4

proposed framework for extracting texture features. Finally, the framework5

general settings with a PCA classifier for texture classification are detailed.6

3.1 Utilizing BF+CLBP7

BF preprocessing technique[27] with following properties would improve per-8

formance of LBP features while preserve the computation efficiency:9

– Robust to illumination: the band-pass DoG filter removes the low frequency10

illumination.11

– Rotation insensitivity: the used filter is isotropic and discards all orienta-12

tion information, and so is independent to rotation.13

– Low computational time.14

We therefore, use BF to improve performance of the micro features by calcu-15

lating the CLBP code on the BF-maps (I+bf , I−bf , Fig. 4) instead of the input16

image.

Fig. 4 BF processing chain: Iin, Ibf , I+bf , I−bf (left to right).

17

3.2 ScatNet Configuration18

ScatNet performs scattering transform which captures a wide range of signals19

for features. The configuration proposed in [13] is used for our framework. That20

is a 3-layer handcrafted convolution network with the first layer implemented21

two operators consecutively, 1) a 2D-Morlet-wavelet transform followed by 2)22

a non-linear modulus operator. The latter generates signal magnitudes for the23

next layers. While the second and third layers are computed by a 3-D wavelet24

transform of signal magnitudes which have been calculated from the previous25

layer (Fig. 5). The 3-D wavelet transform is implemented by a spatial 2D-26

wavelet transform and a 1D-wavelet transform along the rotation angles. The27

wavelet transform utilized here is Morlet wavelet.28
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Fig. 5 A spatial 2D-wavelet on input image x outputs a coefficient S0x, and U1x is then
grouped into orbits (signals with the same scale and different orientations, left).
3D-wavelet on each orbit (right) is computed by a spatial 2D-wavelet followed by an 1D-
wavelet transform along the orientation variables θ.

3.3 Proposal Framework1

The overall idea is illustrated in Fig. 6. We do not utilize the BF preprocessing2

technique for ScatNet because this network itself contains band pass filters3

whose functionality is similar to those of BF.

Fig. 6 Integrated Descriptor consists of two components separated by the dashed line:
1) BF takes one image as input, and generates two outputs I+bf and I−bf which are further

used as CLBP’s inputs, namely BF+CLBP component.
2) ScatNet Component: scattering representation is computed by a cascade of wavelet-
modulus operators |Wm|. Every |Wm| has one input and two outputs which are the scattering
coefficients Smx and the next layer wavelet modulus coefficients Um+1x. The latter is used
for further transformation.
Final features are the concatenation of those generated by the components.

4

For a given input image x, we first apply BF+CLBP and the Scattering5

Transform on the image independently, then aggregate their outputs (features)6

to form final features. These features capture well both local and global struc-7

ture information of texture images. Specifically, BF splits the input image x8
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into I+bf and I−bf (Fig. 4), BF+CLBP representation of image x is the combina-1

tion of CLBP features of I+bf and I−bf , namely BF+CLBP features. Similarly,2

the ScatNet features are gained by an average value of the its coefficients (3

S0x, S1x, S2x). These mean values reflect the signal strength of an image. An4

important drawback comes up. The mean values of ScatNet coefficients are in-5

compatible with CLBP histograms, one of them conflicts the other due to their6

future extraction schemes. A measure for the aforementioned conflict is that7

both types of features are then normalized before being combined. Finally, an8

aggregation of those forms our integrated features.9

We also discovered that the PCA classifier, which is used for ScatNet in10

[13], has a higher performance than the nearest neighbor classifier for our11

descriptor in term of classification accuracy.12

It should be noted that we focus mainly upon building a descriptor based13

on the Scattering Transform rather than techniques of Scatnet [13] such as14

multi-scale average, and multi-scale training to augment classification results.15

3.4 Framework Settings16

The framework is centered around two types of descriptors. The first type17

are LBP descriptors extracted by using three-scale CLBP. Different schemes18

of radius-neighborhood pairs (R1, P1) + (R2, P2) + (R3, P3) are chosen. For19

example, (1, 8) + (2, 16) + (3, 24) or (1, 16) + (2, 16) + (3, 16) or (1, 8) +20

(3, 16) + (5, 24) or (1, 16) + (3, 16) + (5, 16) or (3, 16) + (5, 16) + (7, 16),21

the ”+” denotes the concatenation histograms of the CLBP codes. CLBP22

features dimension change according to number of neighbors. P=8,16,24 the23

CLBP descriptors are sequentially the 200-dimensional,648-dimensional, and24

1352-dimensional features vectors. The experiments use three various scales so25

the feature vectors would be those multiplied by three. When BF preprocessing26

technique is applied, the dimensions of these vectors will be double because27

BF CLBP features of an image are the concatenation of features of two other28

images extracted by BF.29

The second type of texture descriptors are ScatNet [13]. The features ex-30

tracted from a hand-crafted 3-layer convolutional network. In the framework,31

3 various configurations are used depend upon the size of images in datasets,32

those are the 3-scale, 4-scale, and 5-scale of 8-orientation filter bank, i.e. the33

smaller scale configuration is used for dataset with smaller image size. The34

feature vector dimensions of those three network configurations are 108, 208,35

and 340 respectively.36

When both types are combined, the final descriptors capture both micro37

and macro structure information of data, the dimensionality of the final repre-38

sentation varies according to the schemes selected, ranging from 2,308 to 2,54039

for CLBP+ScatNet, and from 4,508 to 4,740 for BF+CLBP+ScatNet.40

The PCA classifier from ScatNet library [13] is utilized for classification.41

This is an affine space classifier which takes feature vectors as input to build the42

affine spaces. These spaces have dimensions (lower than those of input feature43
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vectors) as parameters which are chosen from 80 to 150 in the experiments.1

The dimensionality of input features is reduced using principal component2

analysis to build the spaces as mentioned. Next section will discuss about3

experimental validation and its analysis.4

4 Experimental Validation5

This section evaluates the proposed method for classifying texture data. First,6

parameter settings and datasets are presented. Second, we evaluate the results7

and compare with those of well-known state-of-the-art. Finally, we analysis the8

proposed framework and its complexity. In the experiments, we used source9

code of CLBP, BF, ScatNet, VLFeat library and MatConvNet shared by Guo10

et al., [18], Vu et al. [27], Mallat’s group [13], and Vedaldi et al. [35,36] re-11

spectively to generate texture classification results on 4 benchmarks: UIUC,12

CUReT, KTH TIPS2b, and Outex.13

4.1 Experimental Parameters and Dataset Settings14

We analyze the effectiveness of our method by doing experiments on four15

popular texture databases, and their testing protocols are strictly followed.16

The PCA classifier [13] is used to produce texture classification results.17

Parameters for the BF preprocessing technique are: σ1 = 1.25, σ2 = 6, ε =18

0.15 as recommended in [27].19

Arguments of ScatNet for the Scattering Transform are selected such that20

scaling number is J=3 for datasets with resolution of images at 150 × 150 or21

below, J=4 for image size 300× 300 or smaller, and J=5 otherwise. Here, the22

principle is that the smaller image size the smaller scaling number chosen as23

recommended in [13]. Orientations of filter bank is set to 8 (L=8), number of24

ScatNet Layers equal 3 (M=3). Since if the layer number exceeds this thresh-25

old, both feature dimension and feature extraction time increase with little26

improvement in classified accuracy.27

Experiments were conducted on datasets, with samples of those represented28

in Fig. 7, and the summary is in table 1.

Table 1 Summary of Datasets for the experiments

Dataset Images Image size Classes Splits

CURet 5612 200× 200 61 100
UIUC 1000 640× 480 25 100
Outex TC10 4320 128× 128 24 pre-defined
Outex TC12 9120 128× 128 24 pre-defined
KTH-TIPS2b 4752 200× 200 11 pre-defined

29
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Fig. 7 Images in the same class from a) UIUC, b) CUReT, c) KTH TIPS2b, d) Outex
datasets.

UIUC [28] has 25 classes of texture, each class contains 40 different images1

which has resolution of 640× 480 include changes of viewing angle, scale, and2

illumination conditions. The mean classification accuracy, 100 random splits3

between training and testing with a half of samples (20 images) per class4

chosen for training the rest for testing, is reported.5

CUReT [29] database contains 61 texture classes, 205 images per class,6

acquired at different viewpoints, illumination, and orientations. There are 1187

images shot from a viewing angle of less than 60 degrees. Large images are8

cropped to (200 × 200) across all texture classes. Cropped regions are then9

converted to grey scale. We follow the common training and testing scheme,10

i.e. a subset 46 images from 118 each class are chosen for training, the remains11

of unseen data are used for testing . Splits are implemented 100 times inde-12

pendently, the average accuracy over 100 randomly partitions are reported.13

The material databases KTHTIPS2b [31], with 3 viewing angles, 4 illu-14

minants, and 9 different scales, produce 432 images per class, with the image15
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size of 200×200 and 11 classes in total. Regarding the KTHTIPS2b databases,1

we follow the common testing and training protocols. Only unseen data is used2

for testing, with three out of four samples used for training and the remaining3

for testing.4

OUTEX [30] database contains textural images which are captured from a5

wide variety of real material surfaces. We consider the two commonly used test6

suites, Outex TC 00010 (TC10) and Outex TC 00012 (TC12), containing 247

classes with up to 200 texture images per class. This database is built by taking8

images under three different illuminations (”horizon”, ”inca”, and ”t184”) with9

resolution of images at 128×128. Standard protocols with predefined training10

and testing sets are exploited for this dataset.11

4.2 Classification Results12

Intensive experiments were conducted on four texture datasets, the results are13

compared with well-known and state-of-the-art of those, we chose the highest14

results reported by relevant articles for the comparison. We divide our exper-15

iments into two main parts. In experiment #1), a combination of CLBP and16

ScatNet is used while experiment #2) BF is added to enhance the robustness17

of CLBP. Our method reaches state-of-the-art on CUReT [29], is close to the18

recent frontier (FV-SIFT+ FC+FV-VD) reported in [14] on UIUC [28], KTH-19

TIPS2b [31], and is comparable to state-of-the-art on three testing suites of20

Outex [30]. Details are shown in Table 2,3,5,4. It is worth noticing that our21

novel framework has a better classification accuracy than the ones it inherits22

from on the experimented datasets while we do not use the multi-scale training23

technique of ScatNet [13].24

Our method produces handcrafted features without expensive learning25

stage as the convolutional neural network based methods, FV-SIFT+ FC+FV-26

VD [14] does. Even though, ours gets a better classification results than those27

of the nineteen-layer network [14] on Outex [30].28

Details about classified accuracy on experimented databases as follow:29

Results on UIUC Database: This section discusses more detail the30

classification results obtained on the UIUC dataset. There are two experiments31

actually drawn on this dataset.32

i) CLBP+ScatNet: We get around 2% classification enhancement on this33

dataset (from 95.90% to 97.50%) comparing to the its original version.34

ii) BF+CLBP+ScatNet has got similar improvement in classification ac-35

curacy, increasing from 95.20% to 98.69%. When BF preprocessing techniques36

added to CLBP, the accurate rate rises roundly 1% while the feature vectors37

of the CLBP codes also rise double.38

From above analyses, one can conclude that local CLBP/BF+CLBP fea-39

tures combined with broader range features (ScatNet) will improve the overall40

performance on UIUC dataset. This is because these two kinds of features41

are complementary in such a way that they can be robust to the changes of42

viewing angle, scale, and illumination conditions.43
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Results from Table 2 shows that our accurate rate on this dataset is similar1

to that of works in [37], roundly 1% lower than the recent frontier FV-SIFT+2

FC+FV-VD [14] of this dataset while beating all others.

Table 2 Integrated Descriptor with BF+CLBP+ScatNet single scale: classification accu-
racy(%) and comparing with those of well-known methods on UIUC dataset

Method Accuracy(%)
CLBP S/M 95.90
CLBP S/M/C 96.02
BF+CLBP S/M 96.48
BF+CLBP S/M/C 96.28
ScatNet 95.20
CLBP S/M+ScatNet 97.20
CLBP S/M/C+ScatNet 97.50
BF+CLBP S/M+ScatNet 98.63
BF+CLBP S/M/C+ScatNet 98.69
FV-SIFT+ FC+FV-VD[14] 99.90
Zhang et al.[37] 98.70
WMFS[37] 98.60
VZ-joint[10] 97.83
OTF[38] 97.40
MFS[39] 92.74
Hayman et al.[40] 92.00

3

Results on CUReT database: The experiments on CURet dataset get4

similarly interesting observations as those of UIUC. The combined versions5

have about 1% improvement in comparison with their original versions. As il-6

lustrated in table 3, the correct classification rate of our method closely reaches7

State-of-the-art on this dataset. Once again, the small fined structure features8

(CLBP) can compensate for scattering transform features for being robust to9

the combinations of viewing and illumination directions of texture in CUReT.10

11

Results on OUTEX dataset: In case of Outex database, experiment12

conducted on 2 test suites, Outex TC10 and Outex TC12. It is consistent in13

the analyses of results obtained on the other databases, we figure out two14

interesting observations:15

i)The texture classification accurate rate are at 99.87%, 98.43%, and 99.63%16

for Outex TC10, Outex TC12 00, and Outex TC12 01 respectively, they are17

consistently higher than those of the original features.18

ii) Our results are much better than those of FV-SIFT+ FC+FV-VD[14],19

which can be seen as the frontier on many datasets other than OUTEX, the20

data suite is mainly used to test the rotation invariance of features. One can21

observe that the two rotation invariance features, ScatNet and CLBP, are22

combined together in our novel framework, results in the features which are23

also rotation invariant yet more robust. Details can be seen in (Table 4).24

Results on KTHTIPS2b: As can be seen from Table 5, our proposal25

descriptors get a significant improvement over their original versions, the en-26
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Table 3 Comparing proposal classification accuracy(%) with those of well-known methods
on CUReT

Method Accuracy(%)
CLBP S/M 98.60
CLBP S/M/C 98.56
BF+CLBP S/M 98.65
BF+CLBP S/M/C 98.57
ScatNet 99.10
CLBP S/M+ScatNet 99.53
CLBP S/M/C+ScatNet 99.50
BF+CLBP S/M+ScatNet 99.74
BF+CLBP S/M/C+ScatNet 99.51
FV-SIFT+ FC+FV-VD[14] 99.70
Broadhurst[41] 99.22
VZ-MR8[9] 98.61
Multi-scale BIF[42] 98.60
Hayman et al.[40] 98.46
VZ-joint[10] 97.66
Zhang et al.[37] 95.30
DLBP[17] 92.77

Table 4 Comparing proposal classification accuracy(%) with those of well-known methods
on OUTEX dataset

Method TC10
TC12

t184 horizon
CLBP S/M 99.30 96.40 97.05
CLBP S/M/C 99.20 96.20 97.25
BF+CLBP S/M 99.60 97.29 97.99
BF+CLBP S/M/C 99.50 97.13 98.40
ScatNet 98.39 96.23 98.38
CLBP S/M+ScatNet 99.40 98.45 98.80
CLBP S/M/C+ScatNet 99.51 98.66 98.94
BF+CLBP S/M+ScatNet 99.82 98.22 99.40
BF+CLBP S/M/C+ScatNet 99.87 98.43 99.63
NTLBP[43] 99.24 96.18 94.28
DLBP[17] 99.10 93.20 90.04
COV-LBPD[44] 98.78 95.72 97.62
LTP[16] 98.54 92.59 89.17
LBP [1] 97.70 87.30 86.40
MSJLBP[45] 96.67 95.21 95.74
PRICoLBP[46] 94.48 92.57 92.50
VZ-MR8[9] 93.59 92.55 92.82
NRLBP[47] 93.44 86.13 87.38
VZ-Path [10] 92.00 91.41 92.06
MBP[48] 89.92 95.18 95.55
FV-SIFT+ FC+FV-VD[14] 80.00 82.16 82.44

hancement in classification accuracy is approximately 6% for CLBP+ScatNet,1

10% for BF+CLBP+ScatNet, and up to 15% when comparing to CLBP or2

ScatNet features alone. Also, our classification result on this database is ranked3

closely to FV-SIFT+ FC+FV-VD [14].4
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Table 5 Integrated Descriptor with BF+CLBP+ScatNet multi-scale: proposal classifica-
tion accuracy(%) on KTHTIPS2b dataset and comparing with those of well-known methods

Method Accuracy(%)
CLBP S/M 63.30
CLBP S/M/C 63.20
BF+CLBP S/M 67.68
BF+CLBP S/M/C 68.31
ScatNet 67.26
CLBP S/M+ScatNet 69.15
CLBP S/M/C+ScatNet 68.80
BF+CLBP S/M+ScatNet 78.09
BF+CLBP S/M/C+ScatNet 77.71
FV-SIFT+ FC+FV-VD[14] 81.50
MSJLBP[45] 65.51
ELBP[21] 64.84
MWLD[49] 64.70
COV-LBPD[44] 63.47
LTP[16] 62.12
PRICoLBP[46] 61.17
LBP [1] 60.35
MBP[48] 60.29
VZ-Path [10] 60.70
NTLBP[43] 58.78
NRLBP[47] 57.00
VZ-MR8[9] 55.7

108 0 0 0 0 0 0 0 0 0 0
0 61 0 0 0 7 0 0 40 0 0
0 1 95 0 7 0 0 2 0 1 2
0 1 1 103 1 2 0 0 0 0 0
0 0 0 0 39 2 0 54 5 6 2
0 8 24 7 0 56 2 0 11 0 0
3 0 3 0 0 1 96 0 0 5 0
0 0 0 0 5 0 0 96 0 0 7
0 8 1 0 0 6 0 0 92 1 0
0 0 1 0 0 0 0 0 0 107 0
0 0 11 0 4 0 14 7 0 0 72

Table 6 Confusion Matrix BF+CLBP on KTH-TIPS-2b

4.3 Framework experimental analysis and complexity1

This section we first show the supplement of CLBP to ScatNet in the pro-2

posed framework, features generated from the framework are more tolerant3

to the variations in scale, pose and illumination with KTH-TIPS2b dataset4

when CLBP and ScatNet combined. Then, we represent the complexity of5

our method (Table 9). Finally, feature dimension reduction and its relevant6

accuracy are illustrated (Fig. 9)7

Table 6, 7 , and 8 are confusion matrices of classification of one split on8

KTH-TIPS2b dataset with BF+CLBP, ScatNet, and the combined features9

respectively. The tables show that our framework leverages CLBP and ScatNet10



16 Vu-Lam Nguyen et al.

108 0 0 0 0 0 0 0 0 0 0
15 44 1 2 0 8 14 0 21 2 1
1 0 101 0 1 0 0 3 0 2 0
5 12 1 77 0 0 2 0 11 0 0
0 0 2 0 64 0 4 30 0 7 1
3 11 7 12 0 38 19 0 9 4 5
19 0 0 0 0 0 89 0 0 0 0
0 1 0 0 6 1 0 99 0 0 1
3 13 2 10 0 2 12 0 62 4 0
11 0 0 0 0 0 1 0 0 96 0
11 3 25 0 0 0 10 0 0 3 56

Table 7 Confusion Matrix Scatnet on KTH-TIPS-2b

108 0 0 0 0 0 0 0 0 0 0
0 97 0 0 0 8 0 0 3 0 0
0 0 98 0 8 0 0 1 0 1 0
0 0 0 108 0 0 0 0 0 0 0
0 0 1 0 65 0 0 30 0 7 1
0 17 12 8 0 64 1 0 3 0 3
0 0 0 0 0 0 108 0 0 0 0
0 0 0 0 2 0 0 103 0 0 3
0 0 1 0 0 0 0 0 107 0 0
0 0 1 0 0 0 0 0 0 107 0
0 0 0 0 0 0 19 5 0 0 84

Table 8 Confusion Matrix of the proposal method on KTH-TIPS-2b

to reduce the misclassification cases, confusion matrix of the framework (table1

8) shows a smaller miss-class numbers than those of the other two (table 6,2

7). For example, the case of class 4 (Cork) and 7 (Lettuce Leaf), illustrated3

in Fig. 8, are classified incorrectly by both CLBP and ScatNet. However, the4

proposed framework does 100% correctly in these classes. This shows that5

CLBP and ScatNet can complement each other.6

(Fig. 8) illustrates misclassification cases of the original features while the7

proposed method classify these images without error. However, BF+CLBP8

mis-classifies 2 left images: cork (class 4) is classified incorrectly into cracker9

(class 6 ), brown bread (class 2), corduroy ( class 3), and cotton (class 5).10

While lettuce leaf (class 7) is classified incorrectly into aluminium foil (class11

1). ScatNet mis-classifies 2 right images: cork (class 4 ) is misclassified into12

aluminium foil (class 1 ), brown bread (class 2), corduroy (class 3), lettuce leaf13

(class 7), and white bread (class 9). lettuce leaf (class 7) is misclassified into14

aluminium foil (class 1).15

Among those texture feature methods mentioned in this paper, network-16

based approaches have high classification accuracy and obviously high com-17

plexity in comparison with others. We will present the complexity of our18

works, and compare it with a well-known state-of-the-art CNN, the FV-SIFT+19

FC+FV-VD[14], (table 9). Feature extraction time (Fea. Ex. Time) of meth-20

ods in second, is calculated on the same laptop with Intel(R) Core(TM) i7-21

4710MQ CPU @ 2.50GHz, 2501 Mhz, 4 Core(s), 8 Logical Processor(s) and22
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Fig. 8 BF+CLBP mis-classifies (2 left images), ScatNet mis-classifies (2 right images), the
proposed method classifies these images without error.

8Gb of RAM. We measure the feature extraction time by the average compu-1

tation time of 500 images from KTH-TIPS2b dataset. Our framework feature2

extraction time depend of ScatNet parameters (scales), the smaller scale the3

faster feature extraction. In general, our approach takes a little longer time4

to extract features in comparison with FV-SIFT+ FC+FV-VD[14]. However,5

our method has the feature dimension which is much lower, this leads to a6

shorter classification time.

Table 9 Framework complexity and comparison, feature extraction time in seconds (Fea.
Ex. Time(seconds)), feature dimension (Fea. Dimension)

Method Fea. Ex. Time(second) Fea. Dimension
Ours 0.7073 4,608
FV-SIFT+ FC+FV-VD[14] 0.5431 65,536

Fig. 9 Classification accuracy on KTH-TIPS-2b dataset in which dimension reduction of
BF+CLBP-feature-vectors are done before concatenating with those of ScatNet.
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Fig. 9 illustrates Classification accuracy on KTHTIPS2b dataset with di-1

mension reduction of BF+CLBP feature vectors. There is a slight decrease in2

classification accuracy (from 68.38% to 67.28% ) when dimension of BF+CLBP3

feature vectors are reduced from 3888 to 416 using PCA. However, the accurate4

rates of the combined method are stable around 77.63% with feature vector5

dimension ranging from 416 to 2288 ( the feature vector dimension without6

dimension reduction is 4096 ), the accuracy peaks at 77.87% (the accurate rate7

without dimension reduction is 78.09%) with the feature vector dimension of8

1248. Therefore, applying feature vector dimension reduction of BF+CLBP9

features before concatenating with those of ScatNet can be considered as a10

trade-off between classification accuracy and feature dimension.11

5 Conclusion12

In this paper, we have proposed a novel framework which generates hand-13

crafted features for texture classification. It takes full advantages of the BF14

preprocessing technique [27], the local LBP features, and the global ones ex-15

tracted from ScatNet. Experiments show our proposal enhances distinctive-16

ness of texture while preserving the robustness to variations in illumination,17

rotation, and scale. Overall, ScatNet and LBP are not concurrent, but comple-18

mentary while the preprocessing technique makes the LBP descriptors more19

robust. Our modest improvements in terms of classification accuracy have not20

reached the recent frontiers but are in the high ranking on the experimen-21

tal databases, to the best of our knowledge. Future study can be drawn on22

the same domain with scale variation tolerance by using multi-scale training23

techniques.24
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robust local image descriptor,” IEEE Transactions on Pattern Analysis and Machine56

Intelligence, vol. 32, no. 9, pp. 1705–1720, 2010.57


