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Abstract—Regarding texture features, Local-based methods
such as Local Binary Pattern (LBP) and its variants are
computationally efficient high-performing but sensitive to
noise, and suffering global structure information loss. By
contrast, filter-based counterparts, the Scattering Transform
for instance, are tolerant to noise and translation but often
lack of small local structure information. In this paper we
propose an integration of those to take full advantages of
both local and global features. In this way, LBP is used
for extracting local features while the Scattering Transform
feature plays the role of a global descriptor. In addition
to the combination of these two state-of-the-art features,
we further integrate a new preprocessing technique called
biologically-inspired filtering (BF) as well as an efficient
PCA classifier. Intensive experiments conducted on many
texture benchmarks such as CUReT, UIUC, KTH-TIPS2b,
and OUTEX show that our combined method not only
outweighs each one which stands alone but also competes
with state-of-the-art on the experimented datasets.

Index Terms - Image texture, Image classification, Image
texture analysis.

1. Introduction

In the recent decades, computer vision researchers
have been witnessing a lot of researches drawn on texture
because it is the fundamental appearance element of ma-
terials or objects. Main problems consist of segmentation,
shape from texture, synthesis, and classification. Also,
texture is a crucial clue for distinguishing things in the real
world. For example, animals are able to be discriminated
depending upon the texture of their skin, the category of
soil, sand, rock and so forth can be differentiated base
on the texture of their surfaces. Texture classification is a
research field that categorizes image data into more readily
interpretable information, which is able to be used in a
wide range of applications such as industrial inspection,
image retrieval [1], medical imaging, remote sensing [2],
object recognition, and facial recognition [3], [4], [5]. For
this reason, it is a very inspiring subject.

Texture images can be represented for classification
by using two main methods. Large scale filter-based
approaches through the statistical distributions of their

responses, take early works in [6], [7], [8], [9], [10] and
more recent ones in [11], [12], [13], [14] for examples.
On the other hand, texture classification relies on features
extracted from small scale neighborhoods using the pixel
intensities, some early research of this direction includes
works in [15], [16] while their more sophisticated up-
to-date variants can be seen in [17], [18], [19], [20].
If the former method attracts a more global structure
information of images, the latter demonstrates that a good
discrimination is able to be achieved through exploiting
the distributions of pixel neighborhoods.

Among the local neighborhood-based techniques, LBP
[15] has drawn considerable attention since its proposal.
The LBP family has already been used in many other
applications such as image retrieval, and facial image
analysis [5] because it is not only simple to implement,
real time running but is also a highly distinguishable
descriptor. However, the conventional version has some
limitations, such as small spatial support region, loss of
global textural information, also sensitivity to noise. Many
LBP variants were proposed to overcome those, Com-
pleted LBP (CLBP) [17] is one of them. These variants
still struggle to get high performance on image datasets
with variant in scale, translation, and deformation. On
the other hand, the Scattering Transform introduced in
Scattering NetWork (ScatNet) by Mallat et al. [12], which
applies Wavelet Transform in a deep convolution network,
copes well with those characteristics of data. However,
these Scattering Transform features do not capture well
the small local structure information.

In this paper, we propose to use the strength of both
LBP and Scattering transform in a “Hybrid” descriptor
for texture classification, CLBP [17] is used instead of
the original version because of its higher performance. A
preprocessing algorithm called BF as well as an efficient
PCA classifier are also used. The rest of paper is organized
as follows. After discussing about related work in Section
2, the proposed approach is introduced in Section 3.
Section 4 presents experimental results, and conclusions
are drawn in Section 5.

2. Related Work

In this section, LBP, CLBP, Scattering Transform, BF,
and PCA classifier are reviewed.



2.1. Brief Overview of the LBP and CLBP

The LBP method, proposed by Ojala et al. [15], en-
codes the pixel-wise information in images. LBP encoding
is:

P-1
1, z>0
LBPpp = Z s(gp — 90)2°, s(z) = { 0 z<0

p=0
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where g. represents the gray value of the center pixel
whereas g, (p = 0, ..., P — 1) denotes the gray value of
the neighbor pixel on a circle of radius R, and P is the
total number of the neighbors. A given texture image is
then represented by a histogram of LBP codes. Ojala et
al. also introduced a rotation invariant complement called
uniform patterns LB P"*“? which have less than two “one-
to-zero or vice versa” transitions.

Guo et al. [17] recently proposed CLBP descriptors,
by which image local differences are decomposed into
two complementary components, the signs (s,) and the
magnitudes (myp): s, = s(gp — 9c), Mp = |gp — Gl
where g, g. and s(z) are defined as in (1). Two opera-
tors called CLBP-Sign (CLBP_S) and CLBP-Magnitude
(CLBP_M), respectively, are proposed to encode them,
where the CLBP_S is equivalent to the conventional
LBP, and the CLBP_M measures the local variance of
magnitude. The CLBP_M is defined as follows:

P—1
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where threshold c is the mean value of m,, of the whole
image. CLBP-Center (CLBP_C) operator extracts the
local central information as CLBP_Cppr = t(g,cr)
where threshold c; is set as the average gray level of the
whole image. Over all descriptor is obtained by combining
the three operators CLBP_S, CLBP_M and CLBP_C.

2.2. Review of Scattering Transform

The Scattering transform [11] is calculated by using
Scattering Network (ScatNet). ScatNet is actually a deep
convolution network, in which the Wavelet Transformation
followed by modulus non-linearities operators are consec-
utively computed. As illustrated in the second component
of (Figure 1), Spx and Uj;x are generated by the first
wavelet modulus operator W; based on input image .

Wi (z) = (So(x), Ur(z)) ,

Sow(u) = wxd; (u) = 35, 2(0); (u — v),

U1 (J)) = l‘*?ﬁjﬂ(ﬂ?%

¢;(u) =2727¢(277u) is a Gaussian low pass filter.
This leads to the averaged image Syz being almost in-
variant to rotations and translations up to 27 pixels. While
it loses the high frequencies of z, these will be gotten
back by the convolution with high pass wavelet filters.
Then the wavelet ¢ is rotated by 6 angles and dilated by
27 in order to achieve rotation covariant coefficients.

S(x) is called the scattering coefficient of the network,
U(x) is the wavelet modulus coefficient, and * is a con-
volution operator. Finally, the scattering features vector of

an image is obtained by concatenating all scattering coef-
ficients of the network, S(x) = (Sp(x), S1(x), S2(x)).

2.3. Biologically Inspired Filtering

Biologically Inspired Filtering (BF) [21] imitates the
human retina mechanism to extract more detail informa-
tion of a given image when being used as a preprocessing
step. It enhances performance of different features in
terms of discriminative power for texture classification,
including CLBP.

In general, BF consists of two steps, as follows (Figure
3):

Step 1: given an image I;,,, it is first filtered by a band-
pass Difference of Gaussians (DoG). Iy = DoG * Iy, ,
where * is the convolution operator, and

1 B JD2+;Jz 1 B uP/2+5J2
DoG = —e 1 — se 272
2moy 2moy

01,092 are the standard deviations of the low pass filters.

Step 2: the filter responses are then decomposed into
two “maps” corresponding to the image details alongside
two sides of the image edge:

1+ = Jr(p) if Ly(p) > €

bf 0 otherwise

— _ J ()| if  Top(p) < —e
bf 0 otherwise ’

The term bf refers to ”Biologically-inspired Filtering”,
p is the considered pixel, € is a threshold. In features
extraction step, instead of using the input image I;,,
features are first extracted from two images, I, l;c and I, ;},
and are then combined together.

2.4. PCA Classifier

A generative classifier called Principal Component
Analysis (PCA) [13] was proved to have decent perfor-
mance for ScatNet in case of small training dataset. PCA
Classifier is described as following.

Given a test image X, SX denotes the scattering
transfrom of X and its dilated version D;.X.

1
> 89X,

0<j<H

o

0<j<H

SX = 2)

The representation of SX used at test time is therefore a
Scattering Transform. B
Let Py, SX denotes the orthogonal projection of SX
in the scattering space U, of a given class c. The principal
components space U, is approximately computed from
the singular value decomposition (SVD) of the matrix of
centered training sample S©;X.; — . with all possible
samples ¢ dilated by 27 for a given class c. The PCA clas-
sification computes the class ¢(X) base on the minimum
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Figure 1. Integrated Descriptor consists of two components separated by the dashed line:

1) BF takes one image as input, and generates two outputs I, b+f and [, ,;, which are further used as CLBP’s inputs, namely BF+CLBP component.
2) ScatNet Component: scattering representation is computed by a cascade of wavelet-modulus operators |Wi, |. Every |W,, | has one input and two
outputs which are the scattering coefficients Sy, and the next layer wavelet modulus coefficients Uy, 1. The latter is used for further transformation.

Final features are the concatenation of those generated by the components.
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Figure 2. PCA-classifier classifies a test image X based on the minimum
distance from Scattering Transform SX to subspace p. + Ue.

distance H (Id — Py )(SX — 1)
pe + Ue, (Figure 2)

’ from SX to the space

3

(X) = argmin | (1d — Py, ) (5X — )|

where u. is the average of Scattering Transform :S’VXCJ
for all training samples X ; of class ¢, and

P!
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The value H quantifies the ranges of scale invariance, e.g
for a training set with dilated versions of each X, by
different scaling factors 27 for 0 < j < H. H is the
range of scale invariance, limited by the size of images.
Typically, H = 2 and sample j at half integer which
leads to 4 scaling factors {1, V2,2, 2\/5}, and the dilated
samples D (u) = X, i(27u).

Figure 3. BF processing chain: I;y,, Ipf , II;;‘ , Il:f (left to right).

3. Proposed Method

LBP proposed by Ojala et al. [15] and its variants such
as CLBP [17] can capture well the small local structure
information of the image data. On the other hand, the
Scattering Transform method [11], [12], [13] extracts a
wider range of signals for its features. According to our
observation of those, we intuitively think that if there is
a descriptor which employs both small local and global
structure information it would make texture classification
have promising results.

It can be vividly seen that conventional LBP features
are vulnerable to noise because the most important part
of this method is based on the center pixel threshold. A
measure to this is that we make use of our previous works,
BF preprocessing technique [21], before extracting LBP
features. Scattering Transform method also has its weak
point, a lack of small local structure information due to
its feature dimension reduction strategy, downsampling.
This can be compensated for using LBP features. We do
not utilize the BF preprocessing technique for ScatNet
because this network contains band pass filters whose
functionality are similar to those of BF. The overall idea
is illustrated in Figure 1.

For a given input image z, we first apply BF+CLBP
and the Scattering Transform on the image simultaneously,
then aggregate their outputs (features) to form final fea-
tures. These features capture well both local and global
structure information of texture images. Specifically, BF
splits the input image z into Il; and I, (Figure 3),
BF+CLBP representation of image z is the combination of
CLBP features of [, ;} and I, ;, namely BF+CLBP features.
Similarly, the ScatNet features are gained by an average
value of the concatenation of scattering coefficients (
Sox, S1x, Sex). Finally, an aggregation of those forms
our integrated features. We also discover that the PCA
classifier, which is used for ScatNet in [11], [12], [13],
has a higher performance than nearest neighbor classifier
for our descriptor in term of classification accuracy.



Figure 4. Images from 4 different datasets: UIUC,CUReT, KTH-TIPS2b, and OUTEX

It should be noticed that we focus mainly upon build-
ing a descriptor based on the Scattering Transform rather
than techniques of Scatnet [12] such as multi-scale av-
erage, and multi-scale training to augment classification
results.

TABLE 1. INTEGRATED DESCRIPTOR WITH BF+CLBP+SCATNET
SINGLE SCALE: CLASSIFICATION ACCURACY (%) AND COMPARING
WITH THOSE OF WELL-KNOWN METHODS ON UIUC DATASET

Method Accuracy(%)
BF+CLBP_S/M 96.48
BF+CLBP_S/M/C 96.28
ScatNet 95.20
BF+CLBP_S/M+ScatNet 98.63
BF+CLBP_S/M/C+ScatNet 98.69
Zhang et al. [24] 98.70
scLBP [18] 98.45
SRP [19] 98.40
VZ-joint [22] 97.83
Hayman et al. [23] 92.00

TABLE 2. INTEGRATED DESCRIPTOR WITH BF+CLBP+SCATNET:
CLASSIFICATION ACCURACY (%) ON CURET DATASET

Method Single-scale(%)  Multi-scale(%)
BF+CLBP_S/M 95.66 98.60
BF+CLBP_S/M/C 95.84 98.56
ScatNet 99.10 99.10
BF+CLBP_S/M+ScatNet 99.28 99.53
BF+CLBP_S/M/C+ScatNet 99.29 99.51

TABLE 3. COMPARING PROPOSAL CLASSIFICATION ACCURACY (%)
WITH THOSE OF WELL-KNOWN METHODS ON CURET

Method Accuracy(%)
AnID (ours) 99.53
scLBP [18] 99.29
BRINT [27] 99.27
Broadhurst [26] 99.22
SRP [19] 99.05
MRELBP [20] 99.02
Hayman et al. [23] 98.46
VZ-MRS [25] 97.79
VZ-joint [22] 97.66
Zhang et al. [24] 95.30

TABLE 4. INTEGRATED DESCRIPTOR WITH BF+CLBP+SCATNET
MULTI-SCALE: PROPOSAL CLASSIFICATION ACCURACY (%) ON
KTHTIPS2B DATASET AND COMPARING WITH THOSE OF
WELL-KNOWN METHODS

Method Accuracy(%)
BF+CLBP_S/M 67.68
BF+CLBP_S/M/C 68.31
ScatNet 60.40
BF+CLBP_S/M+ScatNet 78.09
BF+CLBP_S/M/C+ScatNet 77.71
MRELBP [20] 77.91
ELBP [28] 64.84
LTP [3] 62.12
PRICoLBP [29] 61.17
LBP [15] 60.35
VZ-Path [22] 60.07
VZ-MRS [25] 55.7

4. Experimental Validation

4.1. Experimental Settings

We analyze the effectiveness of our method by doing
experiments on four popular texture databases and follow
their testing protocols. In order to have reliable results, we
run the PCA classifier [13] 100 times on each dataset by
randomly choosing the training and testing sets, with an
exception for outex and KTH-TIPS-2b which have a pre-
defined sets of those. Then the average results of all splits
are reported. In addition to the BF preprocessing technique
[21], PCA classifier [13], and Scaterring Network (Scat-
Net) [11], [31] which plays Scattering Transform role are
used in our experiment.

Parameters for the BF preprocessing technique are:
o1 = 1.25,09 = 6,¢ = 0.15 as recommended in [21].

Regarding CLBP [17], the parameters chosen as
follows: the number of neighbors (P=16), and Radius
(r=1,2,3) or (r=3,5,7) for three different scales. Arguments
of ScatNet [11], [31] for the Scattering Transform are
selected such that number of scale is J=4 for datasets
with resolution of images at 200 x 200 or below, J=5
otherwise, Orientations of filter bank (L=8), number of
ScatNet Orders (M=3). Sifre et al. showed in [12] that
the maximum number of layers of the network is 3, if



TABLE 5. INTEGRATED DESCRIPTOR WITH BF+CLBP+SCATNET: CLASSIFICATION ACCURACY (%) ON OUTEX DATASET

Methods ' OUTEX TCIQ ] OUTEX TC12_QO . OUTEX TCIZ_QI
Single-scale ~ Multi-scale  Single-scale ~ Multi-scale  Single-scale ~ Multi-scale
BF+CLBP_S/M 99.40 99.60 95.05 97.29 96.34 97.99
BF+CLBP_S/M/C 99.43 99.50 96.88 97.13 97.38 98.40
ScatNet 98.39 98.39 96.23 96.23 98.38 98.38
BF+CLBP_S/M+ScatNet 99.77 99.82 97.91 98.22 98.40 99.40
BF+CLBP_S/M/C+ScatNet 99.66 99.87 98.15 98.43 98.77 99.63

TABLE 6. COMPARING PROPOSAL CLASSIFICATION ACCURACY (%)
WITH THOSE OF WELL-KNOWN METHODS ON OUTEX DATASET

TCI2

Method TCI0 184 horizon
MRELBP [20] | 9987 99.49  99.75
AnID(ours) 99.87 98.43  99.63
TP [3] 0854 9259  89.17
LBP [15] 9770 8730  86.40
PRICOLBP [29] | 9448 9257  92.50
VZMRB [25] | 9359 9255 02.82
NRLBP [30] 0344 8613 8738
VZPah [22] | 9200 9141 92.06

this number exceeds 3 then the energy will decay, and so
no more useful signal for discrimination.

Experiments were conducted on following datasets,
samples of those represented in Figure 4.

UIUC [32] has 25 classes of texture, each class con-
tains 40 different images which has resolution of 640 x480
include changes of viewing angle, scale, and illumination
conditions. The mean classification accuracy, 100 random
splits between training and testing with a half of samples
per class chosen for training, is reported.

CUReT [33] database contains 61 texture classes,
205 images per class, acquired at different viewpoints,
illumination, and orientations. There are 118 images shot
from a viewing angle of less than 60 degrees. We choose a
subset 92 images from 118 each class for our experiments,
in total 61 x 92 = 5612 images are selected. Large
images are cropped to (200 x 200) across all texture
classes. All cropped regions are converted to grey scale.
For the experiments on CUReT database, we follow the
common training and testing scheme used in [18], [20],
[21], a half of class samples chosen for training while the
remaining for testing. Splits are implemented 100 times
independently, the average accuracy over 100 randomly
partitions are reported.

The material databases KTHTIPS2b [34], with 3
viewing angles, 4 illuminants, and 9 different scales,
produce 432 images per class, with the image size of
200 x 200 and 11 classes in total. Regarding the KTH-
TIPS2b databases, we follow the testing and training
protocols applied in [20], [35]. Only unseen data is used
for testing, with three out of four samples used for training
and the remaining for testing.

OUTEX [36] database contains textural images which
are captured from a wide variety of real material sur-
faces. We consider the two commonly used test suites,
Outex_TC_00010 (TC10) and Outex_TC_00012 (TC12),
containing 24 classes with up to 200 texture images per

class. This database is built by taking images under three
different illuminations ("horizon”, “inca”, and t184”)
with resolution of images at 128 x 128. Standard protocols
with predefined training and testing sets are exploited for
this dataset.

4.2. Classification Results

Intensive experiments were conducted on four texture
datasets, the results are compared with well-known and
state-of-the-art of those, we chose the highest results
reported by relevant articles for the comparison. Our
method reaches state-of-the-art on UIUC [32], CUReT
[33], KTHTIPS2-b [34], and are comparable on three
testing suites of Outex [36]. Details are shown in Table
1,3,4,6. The bold lines are results of our proposal while
others are taken from works in [18], [20]. It is worth
noticing that our novel descriptor is consistently better
than the ones it inherits from on the experimented datasets
while we do not use the multi-scale training technique of
ScatNet [12].

Details about classified accuracy on experimented
databases as:

UIUC: We get around 2% classification enhancement
on this dataset when using our single scale integrated
descriptor (from 96.48% to 98.69%) comparing to the
its original version. Results from Table 1 shows that our
accurate rate on this dataset is just slightly lower than
those of works in [24] while beating all others. Data used
for comparing in talbe 1 is taken from works in [18].

CUReT: The correct classified rate of our method
reaches State-of-the-art on this dataset, the proportion are
above 99% which gains a competitive advantage over the
results that have been reported in research by Ryu et al.
[18].

KTHTIPS2b: As can be seen from Table 4, our
method outperforms BF+CLBP and Scattering Transform
descriptor up to 8%. Also, our classification result on this
database is the best among those of recent state-of-the-art
reported in [20].

OUTEX: In case of Outex database, experiment con-
ducted on 2 test suites, Outex_TC10 and Outex_TC12.
For Outex_TC10, the accuracy is at 99.87% (exactly the
same result of recent state-of-the-art reported in [20]).
Results on Outex_TC12 “horizon” and t184” are also
very good, they are at 98.43% and 99.63% respectively.
Ours outperforms all competing results except MRELBP
[20]. Details can be seen in (Table 6).



5. Conclusion

In this paper, we have proposed a three-in-one hand-

crafted descriptor, namely an integrated descriptor. It takes
full advantages of the BF preprocessing technique (our
previous works [21]), the local LBP features, and the
global ones extracted from ScatNet. It is proved by exper-
iments that this novel descriptor enhances distinctiveness
of texture while preserving the robustness to variations
in illumination, rotation, and noise. Overall, ScatNet and
LBP are not concurrent, but complementary while the
preprocessing technique makes the descriptor more robust.
Future study can be drawn on the same domain with scale
variation tolerance by using multi-scale training technique.
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