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Abstract

In a previous work, we explained how Euler’s method for computing
approximate solutions of systems of ordinary differential equations can be
used to synthesize safety controllers for sampled switched systems. We
continue here this line of research by showing how Euler’s method can
also be used for synthesizing safety controllers in a distributed manner.
The global system is seen as an interconnection of two (or more) sub-
systems where, for each component, the sub-state corresponding to the
other component is seen as an “input”; the method exploits (a variant of)
the notions of incremental input-to-state stability (δ-ISS) and ISS Lya-
punov function. We illustrate this distributed control synthesis method
on a building ventilation example.

1 Introduction

The computation of reachable sets for continuous-time dynamical systems has
been intensively studied during the last decades. Most of the methods to com-
pute the reachable set start from an initial value problem for a system of ordinary
differential equations (ODE) defined by

ẋ(t) = f(t, x(t)) with x(0) ∈ X0 ⊂ Rn and t ∈ [0, tend] . (1)

As an analytical solution of Equation (1) is usually not computable, numerical
approaches have been considered. A numerical method to solve Equation (1),
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when X0 is reduced to one value, produces a discretization of time, such that
t0 6 · · · 6 tN = tend, and a sequence of states x0, . . . , xN based on an integra-
tion method which starts from an initial value x0 at time t0 and a finite time
horizon h (the step-size), produces an approximation xk+1 at time tk+1 = tk+h,
of the exact solution x(tk+1), for all k = 0, . . . , N − 1. The simplest numeri-
cal method is Euler’s method in which tk+1 = tk + h for some step-size h and
xk+1 = xk + hf(tk, xk); so the derivative of x at time tk, f(tk, xk), is used as
an approximation of the derivative on the whole time interval.

The global error error(t) at t = t0 +kh is equal to ‖x(t)−xk‖. In case n = 1,
if the solution x has a bounded second derivative and f is Lipschitz continuous
in its second argument, then it satisfies:

error(t) ≤ hM

2L
(eL(t−t0) − 1) (2)

where M is an upper bound on the second derivative of x on the given in-
terval and L is the Lipschitz constant of f [3]. 1

In [13], we gave an upper bound on the global error error(t), which is more
precise than (2). This upper bound makes use of the notion of One-Sided Lip-
schitz (OSL) constant. This notion has been used for the first time by [7] in
order to treat “stiff” systems of differential equations for which the explicit Euler
method is numerically “unstable” (unless the step size is taken to be extremely
small). Unlike Lipschitz constants, OSL constants can be negative, which ex-
press a form of contractivity of the system dynamics. Even if the OSL constant
is positive, it is in practice much lower than the Lipschitz constant [5]. The use
of OSL thus allows us to obtain a much more precise upper bound for the global
error. We also explained in [13] how such a precise estimation of the global error
can be used to synthesize safety controllers for a special form hybrid systems,
called “sampled switched systems”.

In this paper, we explain how such an Euler-based method can be extended
to synthesize safety controllers in a distributed manner. This allows us to control
separately a component using only partial information on the other components.
It also allows us to scale up the size of the global systems for which a control can
be synthesized. In order to perform such a distributed synthesis, we will see the
components of the global systems as being interconnected (see, e.g., [17]), and
use (a variant of) the notions of incremental input-to-state stability (δ-ISS) and
ISS Lyapunov functions [10] instead of the notion of OSL used in the centralized
framework.

The plan of the paper is as follows: In Section 2, we recall the results of [13]
obtained in the centralized framework; in Section 3 we extend these results to
the framework of distributed systems; we then apply the distributed synthesis
method to a nontrivial example (Section 4), and conclude in Section 5.

1Such a bound has been used in hybridization methods: error(t) = ED
L

(eLt − 1) [2, 4],
where ED gives the maximum difference of the derivatives of the original and approximated
systems.
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2 Euler’s method applied to control synthesis

In this Section, we recall the results obtained in [13]. We first give results con-
cerning a system governed by a single ODE system (Section 2.1), then consider
results for a switched system composed of several ODEs (Section 2.2).

2.1 ODE systems

We make the following hypothesis:

(H0) f is a locally Lipschitz continuous map.

We make the assumption that the vector field f is such that the solutions of
the differential equation (7) are defined. We will denote by φ(t;x0) the solution
at time t of the system:

ẋ(t) = f(x(t)),

x(0) = x0.
(3)

Consider a compact and convex set S ⊂ Rn, called “safety set”. We denote
by T a compact overapproximation of the image by φ of S for 0 ≤ t ≤ τ , i.e., T
is such that

T ⊇ {φ(t;x0) | 0 ≤ t ≤ τ, x0 ∈ S}.

The existence of T is guaranteed by assumption (H0). We know furthermore
by (H0) that there exists a constant L > 0 such that:

‖f(y)− f(x)‖ ≤ L ‖y − x‖ ∀x, y ∈ S. (4)

Let us define C:
C = sup

x∈S
L‖f(x)‖. (5)

We make the additional hypothesis that the mapping f is one-sided Lipschitz
(OSL) [7]. Formally:

(H1) There exists a constant λ ∈ R such that

〈f(y)− f(x), y − x〉 ≤ λ ‖y − x‖2 ∀x, y ∈ T,

where 〈·, ·〉 denotes the scalar product of two vectors of Rn.

Remark 1. Constants λ, L and C can be computed using (constrained) opti-
mization algorithms.

Given an initial point x̃0 ∈ S, we define the following “linear approximate
solution” φ̃(t; x̃0) for t on [0, τ ] by:

φ̃(t; x̃0) = x̃0 + tf(x̃0). (6)

We define the closed ball of center x ∈ Rn and radius r > 0, denoted B(x, r),
as the set {x′ ∈ Rn | ‖x′ − x‖ ≤ r}.

Given a positive real δ, we now define the expression δ(t) which, as we will
see in Theorem 1, represents (an upper bound on) the error associated to φ̃(t; x̃0)
(i.e., ‖φ̃(t; x̃0)− φ(t;x0)‖).
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Figure 1: Illustration of Corollary 1, with x̃1 = φ̃(τ ; x̃0) and x1 = φ(τ ;x0).

Definition 1. Let δ be a positive constant. Let us define, for all 0 ≤ t ≤ τ , δ(t)
as follows:

• if λ < 0:

δ(t) =

(
δ2eλt +

C2

λ2

(
t2 +

2t

λ
+

2

λ2

(
1− eλt

))) 1
2

• if λ = 0 :

δ(t) =
(
δ2et + C2(−t2 − 2t+ 2(et − 1))

) 1
2

• if λ > 0 :

δ(t) =

(
δ2e3λt +

C2

3λ2

(
−t2 − 2t

3λ
+

2

9λ2

(
e3λt − 1

))) 1
2

Note that δ(t) = δ for t = 0. The function δ(·) depends implicitly on
parameter: δ ∈ R. In Section 2.2, we will use the notation δ′(·) where the
parameter is denoted by δ′.

Theorem 1. Given an ODE system satisfying (H0-H1), consider a point x̃0

and a positive real δ. We have, for all x0 ∈ B(x̃0, δ), t ∈ [0, τ ]:

φ(t;x0) ∈ B(φ̃(t; x̃0), δ(t)).

Corollary 1. Given an ODE system satisfying (H0-H1), consider a point x̃0 ∈
S and a real δ > 0 such that:

1. B(x̃0, δ) ⊆ S,

2. B(φ̃(τ ; x̃0), δ(τ)) ⊆ S, and

3. d2(δ(t))
dt2 > 0 for all t ∈ [0, τ ].

Then we have, for all x0 ∈ B(x̃0, δ) and t ∈ [0, τ ]: φ(t;x0) ∈ S.
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2.2 Sampled switched systems

Let us consider the nonlinear switched system

ẋ(t) = fσ(t)(x(t)) (7)

defined for all t ≥ 0, where x(t) ∈ Rn is the state of the system, σ(·) : R+ −→ U
is the switching rule. The finite set U = {1, . . . , N} is the set of switching modes
of the system. We focus on sampled switched systems: given a sampling period
τ > 0, switchings will occur at times τ , 2τ , . . . The switching rule σ(·) is thus
constant on the time interval [(k − 1)τ, kτ) for k ≥ 1. For all j ∈ U , fj is a
function from Rn to Rn.

We will denote by φσ(t;x0) the solution at time t of the system:

ẋ(t) = fσ(t)(x(t)),

x(0) = x0.
(8)

Often, we will consider φσ(t;x0) on the interval 0 ≤ t < τ for which σ(t)
is equal to a constant, say j ∈ U . In this case, we will abbreviate φσ(t;x0) as
φj(t;x

0). We will also consider φσ(t;x0) on the interval 0 ≤ t < kτ where k
is a positive integer, and σ(t) is equal to a constant, say jk′ , on each interval
[(k′ − 1)τ, k′τ) with 1 ≤ k′ ≤ k; in this case, we will abbreviate φσ(t;x0) as
φπ(t;x0), where π is a sequence of k modes (or “pattern”) of the form π =
j1 · j2 · · · · · jk.

We will assume that φσ is continuous at time kτ for all positive integer k.
This means that there is no “reset” at time k′τ (1 ≤ k′ ≤ k); the value of
φσ(t, x0) for t ∈ [(k′ − 1)τ, kτ ] corresponds to the solution of ẋ(u) = fjk′ (x(u))
for u ∈ [0, τ ] with initial value φσ((k′ − 1)τ ;x0).

More generally, given an initial point x̃0 ∈ S and pattern π of Uk, we
can define a “(piecewise linear) approximate solution” φ̃π(t; x̃0) of φπ at time
t ∈ [0, kτ ] as follows:

• φ̃π(t; x̃0) = tfj(x̃
0) + x̃0 if π = j ∈ U , k = 1 and t ∈ [0, τ ], and

• φ̃π(kτ + t; x̃0) = tfj(z̃) + z̃ with z̃ = φ̃π′((k − 1)τ ; x̃0), if k ≥ 2, t ∈ [0, τ ],
π = j · π′ for some j ∈ U and π′ ∈ Uk−1.

We wish to synthesize a safety control σ for φσ using the approximate func-
tions φ̃π. Hypotheses (H0) and (H1), as defined in Section 2.1, are naturally
extended to every mode j of U , as well as definition of T , constants L, C and λ,
definitions of φ̃j and δ (see [13]). From a notation point of view, we will assign an
index j to symbols λ, L,C, . . . in order to relate them to the dynamics of mode j.

Consider a point x̃0 ∈ S, a positive real δ and a pattern π of length k. Let
π(k′) denote the k′-th element (mode) of π for 1 ≤ k′ ≤ k. Let us abbreviate
the k′-th approximate point φ̃π(k′τ ; x̃0) as x̃k

′

π for k′ = 1, ..., k, and let x̃k
′

π = x̃0

for k′ = 0. It is easy to show that x̃k
′

π can be defined recursively for k′ = 1, ..., k,
by: x̃k

′

π = x̃k
′−1
π + τfj(x̃

k′−1
π ) with j = π(k′).

Let us now define the expression δk
′

π as follows: For k′ = 0: δk
′

π = δ, and for
1 ≤ k′ ≤ k: δk

′

π = δ′j(τ) where δ′ denotes δk
′−1
π , and j denotes π(k′). Likewise,

for 0 ≤ t ≤ kτ , let us define the expression δπ(t) as follows:

5



• for t = 0: δπ(t) = δ,

• for 0 < t ≤ kτ : δπ(t) = δ′j(t
′) with δ′ = δ`−1

π , j = π(`), t′ = t − (` − 1)τ

and ` = d tτ e.

Note that, for 0 ≤ k′ ≤ k, we have: δπ(k′τ) = δk
′

π . We have

Theorem 2. Given a sampled switched system satisfying (H0-H1), consider a
point x̃0 ∈ S, a positive real δ and a pattern π of length k such that, for all
1 ≤ k′ ≤ k:

1. B(x̃k
′

π , δ
k′

π ) ⊆ S and

2.
d2(δ′j(t))

dt2 > 0 for all t ∈ [0, τ ], with j = π(k′) and δ′ = δk
′−1
π .

Then we have, for all x0 ∈ B(x̃0, δ) and t ∈ [0, kτ ]: φπ(t;x0) ∈ S.

Remark 2. In Theorem 2, we have supposed that the step size h used in Euler’s
method was equal to the sampling period τ of the switching system. Actually, in
order to have better approximations, it is often convenient to take a fraction of
τ as for h (e.g., h = τ

10). Such a splitting is called “sub-sampling” in numerical
methods.

Consider now a compact set R, called “recurrence set”, contained in the
safety set S ⊂ Rn (R ⊆ S). We are interested in the synthesis of a control such
that: starting from any initial point x ∈ R, the controlled trajectory always
returns to R within a bounded time while never leaving S.

Corollary 2. Given a switched system satisfying (H0-H1), consider a positive
real δ and a finite set of points x̃1, . . . x̃m of S such that all the balls B(x̃i, δ)
cover R and are included into S (i.e., R ⊆

⋃m
i=1B(x̃i, δ) ⊆ S).

Suppose furthermore that, for all 1 ≤ i ≤ m, there exists a pattern πi of
length ki such that:

1. B((x̃i)
k′

πi
, δk

′

πi
) ⊆ S, for all k′ = 1, . . . , ki − 1

2. B((x̃i)
ki
πi
, δkiπi

) ⊆ R.

3.
d2(δ′j(t))

dt2 > 0 with j = πi(k
′) and δ′ = δk

′−1
πi

, for all k′ ∈ {1, ..., ki} and
t ∈ [0, τ ].

These properties induce a control σ2 which guarantees

• (safety): if x ∈ R, then φσ(t;x) ∈ S for all t ≥ 0, and

• (recurrence): if x ∈ R then φσ(kτ ;x) ∈ R for some k ∈ {k1, . . . , km}.

Corollary 2 gives the theoretical foundations of the following method for
synthesizing σ ensuring recurrence in R and safety in S:

2Given an initial point x ∈ R, the induced control σ corresponds to a sequence of patterns
πi1 , πi2 , . . . defined as follows: Since x ∈ R, there exists a a point x̃i1 with 1 ≤ i1 ≤ m such
that x ∈ B(x̃i1 , δ); then using pattern πi1 , one has: φπi1

(ki1τ ;x) ∈ R. Let x′ = φπi1
(ki1τ ;x);

there exists a point x̃i2 with 1 ≤ i2 ≤ m such that x′ ∈ B(x̃i2 , δ), etc.

6
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Figure 2: (a): A set of balls covering R and contained in S. (b): Control of ball
B(x̃3, δ) with Euler-based method.

• we (pre-)compute λj , Lj , Cj for all j ∈ U ;

• we find m points x̃1, . . . x̃m of S and δ > 0 such that R ⊆
⋃m
i=1B(x̃i, δ) ⊆

S;

• we find m patterns πi (i = 1, ...,m) such that conditions 1-2-3 of Corol-
lary 2 are satisfied.

A covering of R with balls as stated in Corollary 2 is illustrated in Figure 2 (a).
The control synthesis method based on Corollary 2 is illustrated in Figure 2 (b).

3 Distributed synthesis

The goal is to split the system into two (or more) sub-systems and synthesize
controllers for the sub-systems independently. The allows to break the expo-
nential complexity (curse of dimensionality) of the method w.r.t. the dimension
of the system, as well as the dimension of the control input.

We consider the distributed control system

ẋ1 = f1
σ1

(x1, x2) (9)

ẋ2 = f2
σ2

(x1, x2) (10)

where x1 ∈ Rn1 and x2 ∈ Rn2 , with n1 + n2 = n. Furthermore, σ1 ∈ U1 and
σ2 ∈ U2 and U = U1 × U2.

Note that the system (9-10) can be seen as the interconnection of sub-
system (9) where x2 plays the role of an “input” given by (10), with sub-
system (10) where x1 is an “input” given by (9).

Let R = R1×R2, S = S1×S2, T = T1×T2 and xm1 (resp. xm2 ) be the center
of R1 (resp. R2). We denote by L1

σ1
the Lipschitz constant for sub-system 1

under mode σ1:

‖f1
σ1

(x1, x2)− f1
σ1

(y1, y2)‖ ≤ L1
σ1

∥∥∥∥(x1

x2

)
−
(
y1

y2

)∥∥∥∥
7



We then introduce the constant:

C1
σ1

= sup
x1∈S1

L1
σ1
‖f1
σ1

(x1, x
m
2 )‖

Similarly, we define the constants for sub-system 2:

‖f2
σ2

(x1, x2)− f2
σ2

(y1, y2)‖ ≤ L2
σ2

∥∥∥∥(x1

x2

)
−
(
y1

y2

)∥∥∥∥
and

C2
σ2

= sup
x2∈S2

L2
σ2
‖f2
σ2

(xm1 , x2)‖

Let us now make additional assumptions on the coupled sub-systems, closely
related to the notion of (incremental) input-to-state stability.

(H2) For every mode σ1 ∈ U1, there exists constants λ1
σ1
∈ R and γ1

σ1
∈ R>0

such that ∀x, x′ ∈ T 2
1 and ∀y, y′ ∈ T 2

2 , the following expression holds

〈f1
σ1

(x, y)− f1
σ1

(x′, y′), x− x′〉 ≤ λ1
σ1
‖x− x′‖2 + γ1

σ1
‖x− x′‖‖y − y′‖.

(H3) For every mode σ2 ∈ U2, there exists constants λ2
σ2
∈ R and γ2

σ2
∈ R>0

such that ∀x, x′ ∈ T 2
1 and ∀y, y′ ∈ T 2

2 , the following expression holds

〈f2
σ2

(x, y)− f2
σ2

(x′, y′), y − y′〉 ≤ λ2
σ2
‖y − y′‖2 + γ2

σ2
‖x− x′‖‖y − y′‖.

These assumptions express (a variant of) the fact that the function V (x, x′) =
‖x− x′‖2 is an ISS-Lyapunov function (see, e.g., [1, 8]). Note that all the con-
stants defined above can be numerically computed using constrained optimiza-
tion algorithms.

Let us define the distributed Euler scheme:

x̃1(τ) = x̃1(0) + τf1
σ1

(x̃1(0), xm2 ) (11)

x̃2(τ) = x̃2(0) + τf2
σ2

(xm1 , x̃2(0)) (12)

The exact trajectory is now denoted, for all t ∈ [0, τ ], by φ(j1,j2)(t;x
0) for an

initial condition x0 =
(
x0

1 x0
2

)T
, and when sub-system 1 is in mode j1 ∈ U1,

and sub-system 2 is in mode j2 ∈ U2.
We define the approximate trajectory computed with the distributed Euler

scheme by φ̃1
j1

(t; x̃0
1) = x̃0

1 + tf1
σ1

(x̃0
1, x

m
2 ) for t ∈ [0, τ ], when sub-system 1

is in mode j1 and with an initial condition x̃0
1. Similarly, for sub-system 2,

φ̃2
j2

(t; x̃0
2) = x̃0

2 + tf2
σ2

(xm1 , x̃
0
2) when sub-system 2 is in mode j2 and with an

initial condition x̃0
2.

We now give a distributed version of Theorem 1.

Theorem 3. Given a distributed sampled switched system, suppose that sub-
system 1 satisfies (H2), and consider a point x̃0

1 and a positive real δ. We have,
for all x0

1 ∈ B(x̃0
1, δ), x

0
2 ∈ S2, t ∈ [0, τ ], j1 ∈ U1 and any σ2 ∈ U2:

φ(j1,σ2)(t;x
0)|1 ∈ B(φ̃1

j1(t; x̃0
1), δj1(t)).

with x0 =
(
x0

1 x0
2

)T
and
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• if λ1
j1
< 0,

δj1(t) =

(
(C1

j1
)2

−(λ1
j1

)4

(
−(λ1

j1)2t2 − 2λ1
j1t+ 2eλ

1
j1
t − 2

)
+

1

(λ1
j1

)2

(
C1
j1
γ1
j1
|T2|

−λ1
j1

(
−λ1

j1t+ eλ
1
j1
t − 1

)

+ λ1
j1

(
(γ1
j1

)2(|T2|/2)2

−λ1
j1

(eλ
1
j1
t − 1) + λ1

j1δ
2eλ

1
j1
t

)))1/2

(13)

• if λ1
j1
> 0,

δj1(t) =
1

(3λ1
j1

)3/2

(
C2

1

λ1
j1

(
−9(λ1

j1)2t2 − 6λ1
j1t+ 2e3λ1

j1
t − 2

)
+ 3λ1

j1

(
C1γ

1
j1
|T2|

λ1
j1

(
−3λ1

j1t+ e3λ1
j1
t − 1

)

+ 3λ1
j1

(
(γ1
j1

)2(|T2|/2)2

λ1
j1

(e3λ1
j1
t − 1) + 3λ1

j1δ
2e3λ1

j1
t

)))1/2

(14)

• if λ1
j1

= 0,

δj1(t) =
(
(C1

j1)2
(
−t2 − 2t+ 2et − 2

)
+
(
C1
j1γ

1
j1 |T2|

(
−t+ et − 1

)
+
(
(γ1
j1)2(|T2|/2)2(et − 1) + δ2et

)))1/2
(15)

A similar result can be established for sub-system 2, permitting to perform
a distributed control synthesis.

Proof. In order to simplify the reading, we omit the mode j1 (which does not
intervene in the proof as long as t ∈ [0, τ ]) and write the proof for f1

j1
= f1,

L1
j1

= L1, C1
j1

= C1, λ1
j1

= λ1. We have

1

2

d(‖x1 − x̃1‖2)

dt
= 〈f1(x1, x2)− f1(x̃1(0), xm2 ), x1 − x̃1〉

= 〈f1(x1, x2)− f1(x̃1, x
m
2 ) + f1(x̃1, x

m
2 )− f1(x̃1(0), xm2 ), x1 − x̃1〉

≤ 〈f1(x1, x2)− f1(x̃1, x
m
2 ), x1 − x̃1〉+ 〈f1(x̃1, x

m
2 )− f1(x̃1(0), xm2 ), x1 − x̃1〉

≤ 〈f1(x1, x2)− f1(x̃1, x
m
2 ), x1 − x̃1〉+ ‖f1(x̃1, x

m
2 )− f1(x̃1(0), xm2 )‖‖x1 − x̃1‖

≤ 〈f1(x1, x2)− f1(x̃1, x
m
2 ), x1 − x̃1〉+ L1

∥∥∥∥( x̃1

xm2

)
−
(
x̃1(0)
xm2

)∥∥∥∥ ‖x1 − x̃1‖

≤ λ1‖x1 − x̃1‖2 + γ1‖x2 − xm2 ‖‖x1 − x̃1‖+ L1t ‖f1(x̃1(0), xm2 )‖ ‖x1 − x̃1‖

≤ λ1‖x1 − x̃1‖2 +

(
γ1
|T2|
2

+ C1t

)
‖x1 − x̃1‖

where |T2| denotes the diameter of T2. Using the fact that ‖x1−x̃1‖ ≤ 1
2 (α‖x1−

x̃1‖2 + 1
α ) for any α > 0, we can write three formulas following the sign of λ1.
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• if λ1 < 0, we can choose α = −λ1

C1t+γ1|T2|/2 , and we get the differential

inequality:

d(‖x1 − x̃1‖2)

dt
≤ λ1‖x1 − x̃1‖2 +

C2
1

−λ1
t2 +

C1γ1|T2|
−λ1

t+
γ2

1(|T2|/2)2

−λ1

• if λ1 > 0, we can choose α = λ1

C1t+γ1|T2|/2 , and we get the differential

inequality:

d(‖x1 − x̃1‖2)

dt
≤ 3λ1‖x1 − x̃1‖2 +

C2
1

λ1
t2 +

C1γ1|T2|
λ1

t+
γ2

1(|T2|/2)2

λ1

• if λ1 = 0, we can choose α = 1
C1t+γ1|T2|/2 , and we get the differential

inequality:

d(‖x1 − x̃1‖2)

dt
≤ ‖x1 − x̃1‖2 + C2

1 t
2 + C1γ1|T2|t+ γ2

1(|T2|/2)2

In every case, the differential inequalities can be integrated to obtain the
formulas of the theorem.

It then follows a distributed version of Corollary 2.

Corollary 3. Given a positive real δ, consider two sets of points x̃1
1, . . . , x̃

1
m1

and x̃2
1, . . . , x̃

2
m2

such that all the balls B(x̃1
i1
, δ) and B(x̃2

i2
, δ), for 1 ≤ i1 ≤ m1

and 1 ≤ i2 ≤ m2, cover R1 and R2. Suppose that there exists patterns π1
i1

and
π2
i2

of length ki1 and ki2 such that :

1. B((x̃1
i1

)k
′

π1
i1

, δk
′

π1
i1

) ⊆ S1, for all k′ = 1, . . . , ki1 − 1

2. B((x̃1
i1

)
ki1
π1
i1

, δ
ki1
π1
i1

) ⊆ R1.

3.
d2(δ′j1

(t))

dt2 > 0 with j1 = π1
i1

(k′) and δ′ = δk
′−1
π1
i1

, for all k′ ∈ {1, ..., ki1} and

t ∈ [0, τ ].

1. B((x̃2
i2

)k
′

π2
i2

, δk
′

π2
i2

) ⊆ S2, for all k′ = 1, . . . , ki2 − 1

2. B((x̃2
i2

)
ki2
π2
i2

, δ
ki2
π2
i2

) ⊆ R2.

3.
d2(δ′j2

(t))

dt2 > 0 with j2 = π2
i2

(k′) and δ′ = δk
′−1
π2
i2

, for all k′ ∈ {1, ..., ki2} and

t ∈ [0, τ ].

The above properties induce a distributed control σ = (σ1, σ2) guaranteeing
(non simultaneous) recurrence in R and safety in S. I.e.

• if x ∈ R, then φσ(t;x) ∈ S for all t ≥ 0

• if x ∈ R, then φσ(k1τ ;x)|1 ∈ R1 for some k1 ∈ {ki1 , . . . , kim1
}, and

symmetrically φσ(k2τ ;x)|2 ∈ R2 for some k2 ∈ {ki2 , . . . , kim2
}
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4 Application

We demonstrate the feasibility of our approach on a (linearized) building ven-
tilation application adapted from [15]. The system is a four-room apartment
subject to heat transfer between the rooms, with the external environment and
with the underfloor. The dynamics of the system is given by the following
equation:

dTi
dt

=
∑

j∈N *\{i}

aij(Tj − Ti) + ci max

(
0,
Vi − V *

i

V̄i − V *
i

)
(Tu − Ti). (16)

The state of the system is given by the temperatures in the rooms Ti, for i ∈
N = {1, . . . , 4}. Room i is subject to heat exchange with different entities stated
by the indexes N * = {1, 2, 3, 4, u, o, c}. The heat transfer between the rooms is
given by the coefficients aij for i, j ∈ N 2, and the different perturbations are
the following:

• The external environment: it has an effect on room i with the coefficient
aio and the outside temperature To, set to 30◦C.

• The heat transfer through the ceiling: it has an effect on room i with the
coefficient aic and the ceiling temperature Tc, set to 30◦C.

• The heat transfer with the underfloor: it is given by the coefficient aiu
and the underfloor temperature Tu, set to 17◦C (Tu is constant, regulated
by a PID controller).

The control Vi, i ∈ N , is applied through the term ci max(0,
Vi−V *

i

V̄i−V *
i

)(Tu−Ti).
A voltage Vi is applied to force ventilation from the underfloor to room i, and the
command of an underfloor fan is subject to a dry friction. Because we work in a
switching control framework, Vi can take only discrete values, which removes the
problem of dealing with a “max” function in interval analysis. In the experiment,
V1 and V4 can take the values 0V or 3.5V, and V2 and V3 can take the values
0V or 3V. This leads to a system of the form (8) with σ(t) ∈ U = {1, . . . , 16},
the 16 switching modes corresponding to the different possible combinations of
voltages Vi. The system can be decomposed in sub-systems of the form (9)-(10).
The sampling period is τ = 30s. The parameters V *

i , V̄i, aij , bi, ci are given
in [15] and have been identified with a proper identification procedure detailed
in [16].

The main difficulty of this example is the large number of modes in the
switching system, which induces a combinatorial issue. The centralized con-
troller was obtained with 256 balls in 48 seconds, the distributed controller was
obtained with 16 + 16 balls in less than a second. In both cases, patterns of
length 2 are used. A sub-sampling of h = τ/20 is required to obtain a controller
with the centralized approach. For the distributed approach, no sub-sampling is
required for the first sub-system, while the second one requires a sub-sampling of
h = τ/10. Simulations of the centralized and distributed controllers are given in
Figure 3, where the control objective is to stabilize the temperature in [20, 22]4

while never going out of [19, 23]4.
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Table 1: Numerical results for centralized four-room example.
Centralized

R [20, 22]4

S [19, 23]4

τ 30
Time subsampling τ/20
Complete control Yes

Error parameters max
j=1,...,16

λj = −6.30× 10−3

max
j=1,...,16

Cj = 4.18× 10−6

Number of balls/tiles 256
Pattern length 2

CPU time 48 seconds

Table 2: Numerical results for the distributed four-room example.
Sub-system 1 Sub-system 2

R [20, 22]2 × [20, 22]2

S [19, 23]2 × [19, 23]2

τ 30
Time subsampling No τ/10
Complete control Yes Yes
Error parameters max

j1=1,...,4
λ1
j1 = −1.39× 10−3 max

j2=1,...,4
λ2
j2 = −1.42× 10−3

max
j1=1,...,4

γ1
j1 = 1.79× 10−4 max

j2=1,...,4
γ2
j2 = 2.47× 10−4

max
j1=1,...,4

C1
j1 = 4.15× 10−4 max

j2=1,...,4
C2
j2 = 5.75× 10−4

Number of balls/tiles 16 16
Pattern length 2 2

CPU time < 1 second < 1 second

5 Final remarks and future work

We have given a new distributed control synthesis method based on Euler’s
method. The method makes use of the notions of δ-ISS-stability and ISS Lya-
punov functions. From a certain point of view, this method is along the lines
of [6] and [11] which are inspired by small-gain theorems of control theory (see,
e.g., [9]). In the future, we plan to apply our distributed Euler-based method
to significant examples such as the 11-room example treated in [12, 14].
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Grenoble Alpes, September 2015.

[16] Pierre-Jean Meyer, Hosein Nazarpour, Antoine Girard, and Emmanuel
Witrant. Experimental implementation of UFAD regulation based on ro-
bust controlled invariance. In Proc. of European Control Conference, pages
1468–1473, 2014.

[17] Guosong Yang and Daniel Liberzon. A lyapunov-based small-gain theorem
for interconnected switched systems. Systems & Control Letters, 78:47–54,
2015.

14


