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Introduction

The computation of reachable sets for continuous-time dynamical systems has been intensively studied during the last decades. Most of the methods to compute the reachable set start from an initial value problem for a system of ordinary differential equations (ODE) defined by ẋ(t) = f (t, x(t)) with x(0) ∈ X 0 ⊂ R n and t ∈ [0, t end ] .

(

As an analytical solution of Equation ( 1) is usually not computable, numerical approaches have been considered. A numerical method to solve Equation (1), 1 when X 0 is reduced to one value, produces a discretization of time, such that t 0 • • • t N = t end , and a sequence of states x 0 , . . . , x N based on an integration method which starts from an initial value x 0 at time t 0 and a finite time horizon h (the step-size), produces an approximation x k+1 at time t k+1 = t k +h, of the exact solution x(t k+1 ), for all k = 0, . . . , N -1. The simplest numerical method is Euler's method in which t k+1 = t k + h for some step-size h and x k+1 = x k + hf (t k , x k ); so the derivative of x at time t k , f (t k , x k ), is used as an approximation of the derivative on the whole time interval. The global error error(t) at t = t 0 +kh is equal to x(t)-x k . In case n = 1, if the solution x has a bounded second derivative and f is Lipschitz continuous in its second argument, then it satisfies:

error(t) ≤ hM 2L (e L(t-t0) -1) (2) 
where M is an upper bound on the second derivative of x on the given interval and L is the Lipschitz constant of f [START_REF] Kendall E Atkinson | An introduction to numerical analysis[END_REF]. 1In [START_REF] Le Coënt | Control synthesis of nonlinear sampled switched systems using Euler's method[END_REF], we gave an upper bound on the global error error(t), which is more precise than [START_REF] Asarin | Hybridization methods for the analysis of nonlinear systems[END_REF]. This upper bound makes use of the notion of One-Sided Lipschitz (OSL) constant. This notion has been used for the first time by [START_REF] Donchev | Stability and euler approximation of one-sided lipschitz differential inclusions[END_REF] in order to treat "stiff" systems of differential equations for which the explicit Euler method is numerically "unstable" (unless the step size is taken to be extremely small). Unlike Lipschitz constants, OSL constants can be negative, which express a form of contractivity of the system dynamics. Even if the OSL constant is positive, it is in practice much lower than the Lipschitz constant [START_REF] Dahlquist | Error analysis for a class of methods for stiff non-linear initial value problems[END_REF]. The use of OSL thus allows us to obtain a much more precise upper bound for the global error. We also explained in [START_REF] Le Coënt | Control synthesis of nonlinear sampled switched systems using Euler's method[END_REF] how such a precise estimation of the global error can be used to synthesize safety controllers for a special form hybrid systems, called "sampled switched systems".

In this paper, we explain how such an Euler-based method can be extended to synthesize safety controllers in a distributed manner. This allows us to control separately a component using only partial information on the other components. It also allows us to scale up the size of the global systems for which a control can be synthesized. In order to perform such a distributed synthesis, we will see the components of the global systems as being interconnected (see, e.g., [START_REF] Yang | A lyapunov-based small-gain theorem for interconnected switched systems[END_REF]), and use (a variant of) the notions of incremental input-to-state stability (δ-ISS) and ISS Lyapunov functions [START_REF] Jiang | A Lyapunov formulation of the nonlinear small-gain theorem for interconnected iss systems[END_REF] instead of the notion of OSL used in the centralized framework.

The plan of the paper is as follows: In Section 2, we recall the results of [START_REF] Le Coënt | Control synthesis of nonlinear sampled switched systems using Euler's method[END_REF] obtained in the centralized framework; in Section 3 we extend these results to the framework of distributed systems; we then apply the distributed synthesis method to a nontrivial example (Section 4), and conclude in Section 5.

Euler's method applied to control synthesis

In this Section, we recall the results obtained in [START_REF] Le Coënt | Control synthesis of nonlinear sampled switched systems using Euler's method[END_REF]. We first give results concerning a system governed by a single ODE system (Section 2.1), then consider results for a switched system composed of several ODEs (Section 2.2).

ODE systems

We make the following hypothesis:

(H0) f is a locally Lipschitz continuous map.

We make the assumption that the vector field f is such that the solutions of the differential equation ( 7) are defined. We will denote by φ(t; x 0 ) the solution at time t of the system:

ẋ(t) = f (x(t)), x(0) = x 0 . ( 3 
)
Consider a compact and convex set S ⊂ R n , called "safety set". We denote by T a compact overapproximation of the image by φ of S for 0 ≤ t ≤ τ , i.e., T is such that

T ⊇ {φ(t; x 0 ) | 0 ≤ t ≤ τ, x 0 ∈ S}.
The existence of T is guaranteed by assumption (H0). We know furthermore by (H0) that there exists a constant L > 0 such that:

f (y) -f (x) ≤ L y -x ∀x, y ∈ S. (4) 
Let us define C:

C = sup x∈S L f (x) . (5) 
We make the additional hypothesis that the mapping f is one-sided Lipschitz (OSL) [START_REF] Donchev | Stability and euler approximation of one-sided lipschitz differential inclusions[END_REF]. Formally:

(H1) There exists a constant λ ∈ R such that

f (y) -f (x), y -x ≤ λ y -x 2 ∀x, y ∈ T,
where •, • denotes the scalar product of two vectors of R n .

Remark 1. Constants λ, L and C can be computed using (constrained) optimization algorithms.

Given an initial point x0 ∈ S, we define the following "linear approximate solution" φ(t; x0 ) for t on [0, τ ] by:

φ(t; x0 ) = x0 + tf (x 0 ). ( 6 
)
We define the closed ball of center x ∈ R n and radius r > 0, denoted B(x, r),

as the set {x ∈ R n | x -x ≤ r}.
Given a positive real δ, we now define the expression δ(t) which, as we will see in Theorem 1, represents (an upper bound on) the error associated to φ(t; x0 ) (i.e., φ(t; x0 ) -φ(t; x 0 ) ). Definition 1. Let δ be a positive constant. Let us define, for all 0 ≤ t ≤ τ , δ(t) as follows:

• if λ < 0:

δ(t) = δ 2 e λt + C 2 λ 2 t 2 + 2t λ + 2 λ 2 1 -e λt 1 2
• if λ = 0 :

δ(t) = δ 2 e t + C 2 (-t 2 -2t + 2(e t - 1)) 1 2 
• if λ > 0 :

δ(t) = δ 2 e 3λt + C 2 3λ 2 -t 2 - 2t 3λ + 2 9λ 2 e 3λt -1 1 2
Note that δ(t) = δ for t = 0. The function δ(•) depends implicitly on parameter: δ ∈ R. In Section 2.2, we will use the notation δ (•) where the parameter is denoted by δ .

Theorem 1. Given an ODE system satisfying (H0-H1), consider a point x0 and a positive real δ. We have, for all x 0 ∈ B(x 0 , δ), t ∈ [0, τ ]:

φ(t; x 0 ) ∈ B( φ(t; x0 ), δ(t)).
Corollary 1. Given an ODE system satisfying (H0-H1), consider a point x0 ∈ S and a real δ > 0 such that:

1. B(x 0 , δ) ⊆ S, 2. B( φ(τ ; x0 ), δ(τ )) ⊆ S, and 3. d 2 (δ(t)) dt 2 > 0 for all t ∈ [0, τ ].
Then we have, for all x 0 ∈ B(x 0 , δ) and t ∈ [0, τ ]: φ(t; x 0 ) ∈ S.

Sampled switched systems

Let us consider the nonlinear switched system

ẋ(t) = f σ(t) (x(t)) (7) 
defined for all t ≥ 0, where x(t) ∈ R n is the state of the system, σ(•) : R + -→ U is the switching rule. The finite set U = {1, . . . , N } is the set of switching modes of the system. We focus on sampled switched systems: given a sampling period τ > 0, switchings will occur at times τ , 2τ , . . . The switching rule σ(•) is thus constant on the time interval

[(k -1)τ, kτ ) for k ≥ 1. For all j ∈ U , f j is a function from R n to R n .
We will denote by φ σ (t; x 0 ) the solution at time t of the system:

ẋ(t) = f σ(t) (x(t)), x(0) = x 0 . (8) 
Often, we will consider φ σ (t; x 0 ) on the interval 0 ≤ t < τ for which σ(t) is equal to a constant, say j ∈ U . In this case, we will abbreviate φ σ (t; x 0 ) as φ j (t; x 0 ). We will also consider φ σ (t; x 0 ) on the interval 0 ≤ t < kτ where k is a positive integer, and σ(t) is equal to a constant, say j k , on each interval [(k -1)τ, k τ ) with 1 ≤ k ≤ k; in this case, we will abbreviate φ σ (t; x 0 ) as φ π (t; x 0 ), where π is a sequence of k modes (or "pattern") of the form π =

j 1 • j 2 • • • • • j k .
We will assume that φ σ is continuous at time kτ for all positive integer k. This means that there is no "reset" at time k τ

(1 ≤ k ≤ k); the value of φ σ (t, x 0 ) for t ∈ [(k -1)τ, kτ ] corresponds to the solution of ẋ(u) = f j k (x(u)) for u ∈ [0, τ ] with initial value φ σ ((k -1)τ ; x 0 ).
More generally, given an initial point x0 ∈ S and pattern π of U k , we can define a "(piecewise linear) approximate solution" φπ (t; x0 ) of φ π at time t ∈ [0, kτ ] as follows:

• φπ (t; x0 ) = tf j (x 0 ) + x0 if π = j ∈ U , k = 1 and t ∈ [0, τ ],
and

• φπ (kτ + t; x0 ) = tf j (z) + z with z = φπ ((k -1)τ ; x0 ), if k ≥ 2, t ∈ [0, τ ], π = j • π for some j ∈ U and π ∈ U k-1 .
We wish to synthesize a safety control σ for φ σ using the approximate functions φπ . Hypotheses (H0) and (H1), as defined in Section 2.1, are naturally extended to every mode j of U , as well as definition of T , constants L, C and λ, definitions of φj and δ (see [START_REF] Le Coënt | Control synthesis of nonlinear sampled switched systems using Euler's method[END_REF]). From a notation point of view, we will assign an index j to symbols λ, L, C, . . . in order to relate them to the dynamics of mode j. , and j denotes π(k ). Likewise, for 0 ≤ t ≤ kτ , let us define the expression δ π (t) as follows:

• for t = 0: δ π (t) = δ, • for 0 < t ≤ kτ : δ π (t) = δ j (t ) with δ = δ -1 π , j = π( ), t = t -( -1)τ and = t τ .
Note that, for 0 ≤ k ≤ k, we have:

δ π (k τ ) = δ k π .
We have Theorem 2. Given a sampled switched system satisfying (H0-H1), consider a point x0 ∈ S, a positive real δ and a pattern π of length k such that, for all 1 ≤ k ≤ k:

1. B(x k π , δ k π ) ⊆ S and 2. d 2 (δ j (t)) dt 2 > 0 for all t ∈ [0, τ ], with j = π(k ) and δ = δ k -1 π .
Then we have, for all x 0 ∈ B(x 0 , δ) and t ∈ [0, kτ ]: φ π (t; x 0 ) ∈ S.

Remark 2. In Theorem 2, we have supposed that the step size h used in Euler's method was equal to the sampling period τ of the switching system. Actually, in order to have better approximations, it is often convenient to take a fraction of τ as for h (e.g., h = τ 10 ). Such a splitting is called "sub-sampling" in numerical methods.

Consider now a compact set R, called "recurrence set", contained in the safety set S ⊂ R n (R ⊆ S). We are interested in the synthesis of a control such that: starting from any initial point x ∈ R, the controlled trajectory always returns to R within a bounded time while never leaving S.

Corollary 2. Given a switched system satisfying (H0-H1), consider a positive real δ and a finite set of points x1 , . . . xm of S such that all the balls B(x i , δ) cover R and are included into S (i.e., R ⊆ m i=1 B(x i , δ) ⊆ S). Suppose furthermore that, for all 1 ≤ i ≤ m, there exists a pattern π i of length k i such that:

1. B((x i ) k πi , δ k πi ) ⊆ S, for all k = 1, . . . , k i -1 2. B((x i ) ki πi , δ ki πi ) ⊆ R.
3.

d 2 (δ j (t)) dt 2 > 0 with j = π i (k ) and δ = δ k -1 πi , for all k ∈ {1, ..., k i } and t ∈ [0, τ ].
These properties induce a control σ2 which guarantees • (safety): if x ∈ R, then φ σ (t; x) ∈ S for all t ≥ 0, and • we (pre-)compute λ j , L j , C j for all j ∈ U ;

• (recurrence): if x ∈ R then φ σ (kτ ; x) ∈ R for some k ∈ {k 1 , . . . , k m }.
• we find m points x1 , . . . xm of S and δ > 0 such that R ⊆

m i=1 B(x i , δ) ⊆ S;
• we find m patterns π i (i = 1, ..., m) such that conditions 1-2-3 of Corollary 2 are satisfied.

A covering of R with balls as stated in Corollary 2 is illustrated in Figure 2 (a). The control synthesis method based on Corollary 2 is illustrated in Figure 2 (b).

Distributed synthesis

The goal is to split the system into two (or more) sub-systems and synthesize controllers for the sub-systems independently. The allows to break the exponential complexity (curse of dimensionality) of the method w.r.t. the dimension of the system, as well as the dimension of the control input. We consider the distributed control system

ẋ1 = f 1 σ1 (x 1 , x 2 ) (9) ẋ2 = f 2 σ2 (x 1 , x 2 ) ( 10 
)
where

x 1 ∈ R n1 and x 2 ∈ R n2 , with n 1 + n 2 = n. Furthermore, σ 1 ∈ U 1 and σ 2 ∈ U 2 and U = U 1 × U 2 .
Note that the system (9-10) can be seen as the interconnection of subsystem (9) where x 2 plays the role of an "input" given by [START_REF] Jiang | A Lyapunov formulation of the nonlinear small-gain theorem for interconnected iss systems[END_REF], with subsystem (10) where x 1 is an "input" given by [START_REF] Jiang | Small-gain theorem for ISS systems and applications[END_REF].

Let

R = R 1 × R 2 , S = S 1 × S 2 , T = T 1 × T 2 and x m 1 (resp. x m
2 ) be the center of R 1 (resp. R 2 ). We denote by L 1 σ1 the Lipschitz constant for sub-system 1 under mode σ 1 :

f 1 σ1 (x 1 , x 2 ) -f 1 σ1 (y 1 , y 2 ) ≤ L 1 σ1 x 1 x 2 - y 1 y 2
We then introduce the constant:

C 1 σ1 = sup x1∈S1 L 1 σ1 f 1 σ1 (x 1 , x m 2 )
Similarly, we define the constants for sub-system 2:

f 2 σ2 (x 1 , x 2 ) -f 2 σ2 (y 1 , y 2 ) ≤ L 2 σ2 x 1 x 2 - y 1 y 2 and C 2 σ2 = sup x2∈S2 L 2 σ2 f 2 σ2 (x m 1 , x 2 )
Let us now make additional assumptions on the coupled sub-systems, closely related to the notion of (incremental) input-to-state stability.

(H2) For every mode σ 1 ∈ U 1 , there exists constants λ 1 σ1 ∈ R and γ 1 σ1 ∈ R >0 such that ∀x, x ∈ T 2 1 and ∀y, y ∈ T 2 2 , the following expression holds

f 1 σ1 (x, y) -f 1 σ1 (x , y ), x -x ≤ λ 1 σ1 x -x 2 + γ 1 σ1 x -x y -y .
(H3) For every mode σ 2 ∈ U 2 , there exists constants λ 2 σ2 ∈ R and γ 2 σ2 ∈ R >0 such that ∀x, x ∈ T 2 1 and ∀y, y ∈ T 2 2 , the following expression holds

f 2 σ2 (x, y) -f 2 σ2 (x , y ), y -y ≤ λ 2 σ2 y -y 2 + γ 2 σ2 x -x y -y .
These assumptions express (a variant of) the fact that the function V (x, x ) = x -x 2 is an ISS-Lyapunov function (see, e.g., [START_REF] Angeli | A Lyapunov approach to incremental stability[END_REF][START_REF] João | Lyapunov conditions for input-to-state stability of impulsive systems[END_REF]). Note that all the constants defined above can be numerically computed using constrained optimization algorithms.

Let us define the distributed Euler scheme:

x1 (τ ) = x1 (0) + τ f 1 σ1 (x 1 (0), x m 2 ) (11) x2 (τ ) = x2 (0) + τ f 2 σ2 (x m 1 , x2 (0)) (12) 
The exact trajectory is now denoted, for all t ∈ [0, τ ], by φ (j1,j2) (t; x 0 ) for an initial condition x 0 = x 0 1 x 0 2 T , and when sub-system 1 is in mode j 1 ∈ U 1 , and sub-system 2 is in mode j 2 ∈ U 2 . We define the approximate trajectory computed with the distributed Euler scheme by φ1 j1 (t; x0

1 ) = x0 1 + tf 1 σ1 (x 0 1 , x m 
2 ) for t ∈ [0, τ ], when sub-system 1 is in mode j 1 and with an initial condition x0

1 . Similarly, for sub-system 2, φ2 j2 (t; x0

2 ) = x0 2 + tf 2 σ2 (x m 1 , x0 
2 ) when sub-system 2 is in mode j 2 and with an initial condition x0

2 . We now give a distributed version of Theorem 1.

Theorem 3. Given a distributed sampled switched system, suppose that subsystem 1 satisfies (H2), and consider a point x0

1 and a positive real δ. We have, for all

x 0 1 ∈ B(x 0 1 , δ), x 0 2 ∈ S 2 , t ∈ [0, τ ], j 1 ∈ U 1 and any σ 2 ∈ U 2 : φ (j1,σ2) (t; x 0 ) |1 ∈ B( φ1 j1 (t; x0 1 ), δ j1 (t))
.

with x 0 = x 0 1 x 0 2 T and • if λ 1 j1 < 0, δ j1 (t) = (C 1 j1 ) 2 -(λ 1 j1 ) 4 -(λ 1 j1 ) 2 t 2 -2λ 1 j1 t + 2e λ 1 j 1 t -2 + 1 (λ 1 j1 ) 2 C 1 j1 γ 1 j1 |T 2 | -λ 1 j1 -λ 1 j1 t + e λ 1 j 1 t -1 + λ 1 j1 (γ 1 j1 ) 2 (|T 2 |/2) 2 -λ 1 j1 (e λ 1 j 1 t -1) + λ 1 j1 δ 2 e λ 1 j 1 t 1/2 (13) 
• if λ 1 j1 > 0, δ j1 (t) = 1 (3λ 1 j1 ) 3/2 C 2 1 λ 1 j1 -9(λ 1 j1 ) 2 t 2 -6λ 1 j1 t + 2e 3λ 1 j 1 t -2 + 3λ 1 j1 C 1 γ 1 j1 |T 2 | λ 1 j1 -3λ 1 j1 t + e 3λ 1 j 1 t -1 + 3λ 1 j1 (γ 1 j1 ) 2 (|T 2 |/2) 2 λ 1 j1 (e 3λ 1 j 1 t -1) + 3λ 1 j1 δ 2 e 3λ 1 j 1 t 1/2 (14) 
• if λ 1 j1 = 0, δ j1 (t) = (C 1 j1 ) 2 -t 2 -2t + 2e t -2 + C 1 j1 γ 1 j1 |T 2 | -t + e t -1 + (γ 1 j1 ) 2 (|T 2 |/2) 2 (e t -1) + δ 2 e t 1/2 (15) 
A similar result can be established for sub-system 2, permitting to perform a distributed control synthesis.

Proof. In order to simplify the reading, we omit the mode j 1 (which does not intervene in the proof as long as t ∈ [0, τ ]) and write the proof for

f 1 j1 = f 1 , L 1 j1 = L 1 , C 1 j1 = C 1 , λ 1 j1 = λ 1 . We have 1 2 d( x 1 -x1 2 ) dt = f 1 (x 1 , x 2 ) -f 1 (x 1 (0), x m 2 ), x 1 -x1 = f 1 (x 1 , x 2 ) -f 1 (x 1 , x m 2 ) + f 1 (x 1 , x m 2 ) -f 1 (x 1 (0), x m 2 ), x 1 -x1 ≤ f 1 (x 1 , x 2 ) -f 1 (x 1 , x m 2 ), x 1 -x1 + f 1 (x 1 , x m 2 ) -f 1 (x 1 (0), x m 2 ), x 1 -x1 ≤ f 1 (x 1 , x 2 ) -f 1 (x 1 , x m 2 ), x 1 -x1 + f 1 (x 1 , x m 2 ) -f 1 (x 1 (0), x m 2 ) x 1 -x1 ≤ f 1 (x 1 , x 2 ) -f 1 (x 1 , x m 2 ), x 1 -x1 + L 1 x1 x m 2 -x1 (0) x m 2 x 1 -x1 ≤ λ 1 x 1 -x1 2 + γ 1 x 2 -x m 2 x 1 -x1 + L 1 t f 1 (x 1 (0), x m 2 ) x 1 -x1 ≤ λ 1 x 1 -x1 2 + γ 1 |T 2 | 2 + C 1 t x 1 -x1
where |T 2 | denotes the diameter of T 2 . Using the fact that

x 1 -x1 ≤ 1 2 (α x 1 - x1 2 + 1 α )
for any α > 0, we can write three formulas following the sign of λ 1 .

• if λ 1 < 0, we can choose α = -λ1

C1t+γ1|T2|/2 , and we get the differential inequality:

d( x 1 -x1 2 ) dt ≤ λ 1 x 1 -x1 2 + C 2 1 -λ 1 t 2 + C 1 γ 1 |T 2 | -λ 1 t + γ 2 1 (|T 2 |/2) 2 -λ 1 • if λ 1 > 0, we can choose α = λ1
C1t+γ1|T2|/2 , and we get the differential inequality:

d( x 1 -x1 2 ) dt ≤ 3λ 1 x 1 -x1 2 + C 2 1 λ 1 t 2 + C 1 γ 1 |T 2 | λ 1 t + γ 2 1 (|T 2 |/2) 2 λ 1 • if λ 1 = 0, we can choose α = 1 
C1t+γ1|T2|/2 , and we get the differential inequality:

d( x 1 -x1 2 ) dt ≤ x 1 -x1 2 + C 2 1 t 2 + C 1 γ 1 |T 2 |t + γ 2 1 (|T 2 |/2) 2
In every case, the differential inequalities can be integrated to obtain the formulas of the theorem.

It then follows a distributed version of Corollary 2. 

. , x2

m2 such that all the balls B(x 1 i1 , δ) and B(x 2 i2 , δ), for 1 ≤ i 1 ≤ m 1 and 1 ≤ i 2 ≤ m 2 , cover R 1 and R 2 . Suppose that there exists patterns π 1 i1 and π 2 i2 of length k i1 and k i2 such that :

1. B((x 1 i1 ) k π 1 i 1 , δ k π 1 i 1 ) ⊆ S 1 , for all k = 1, . . . , k i1 -1 2. B((x 1 i1 ) ki 1 π 1 i 1 , δ ki 1 π 1 i 1 ) ⊆ R 1 .
3.

d 2 (δ j 1 (t)) dt 2 > 0 with j 1 = π 1 i1 (k ) and δ = δ k -1 π 1 i 1
, for all k ∈ {1, ..., k i1 } and

t ∈ [0, τ ]. 1. B((x 2 i2 ) k π 2 i 2 , δ k π 2 i 2 ) ⊆ S 2 , for all k = 1, . . . , k i2 -1 2. B((x 2 i2 ) ki 2 π 2 i 2 , δ ki 2 π 2 i 2 ) ⊆ R 2 .
3.

d 2 (δ j 2 (t)) dt 2 > 0 with j 2 = π 2 i2 (k ) and δ = δ k -1 π 2 i 2
, for all k ∈ {1, ..., k i2 } and

t ∈ [0, τ ].
The above properties induce a distributed control σ = (σ 1 , σ 2 ) guaranteeing (non simultaneous) recurrence in R and safety in S. I.e.

• if x ∈ R, then φ σ (t; x) ∈ S for all t ≥ 0 

• if x ∈ R, then φ σ (k 1 τ ; x) |1 ∈ R 1 for some k 1 ∈ {k i1 , . . . ,

Application

We demonstrate the feasibility of our approach on a (linearized) building ventilation application adapted from [START_REF] Meyer | Invariance and symbolic control of cooperative systems for temperature regulation in intelligent buildings[END_REF]. The system is a four-room apartment subject to heat transfer between the rooms, with the external environment and with the underfloor. The dynamics of the system is given by the following equation:

dT i dt = j∈N * \{i} a ij (T j -T i ) + c i max 0, V i -V * i Vi -V * i (T u -T i ). ( 16 
)
The state of the system is given by the temperatures in the rooms T i , for i ∈ N = {1, . . . , 4}. Room i is subject to heat exchange with different entities stated by the indexes N * = {1, 2, 3, 4, u, o, c}. The heat transfer between the rooms is given by the coefficients a ij for i, j ∈ N 2 , and the different perturbations are the following:

• The external environment: it has an effect on room i with the coefficient a io and the outside temperature T o , set to 30 • C.

• The heat transfer through the ceiling: it has an effect on room i with the coefficient a ic and the ceiling temperature T c , set to 30 • C.

• The heat transfer with the underfloor: it is given by the coefficient a iu and the underfloor temperature T u , set to 17 • C (T u is constant, regulated by a PID controller).

The control V i , i ∈ N , is applied through the term c i max(0,

Vi-V * i Vi-V * i )(T u -T i ).
A voltage V i is applied to force ventilation from the underfloor to room i, and the command of an underfloor fan is subject to a dry friction. Because we work in a switching control framework, V i can take only discrete values, which removes the problem of dealing with a "max" function in interval analysis. In the experiment, V 1 and V 4 can take the values 0V or 3.5V, and V 2 and V 3 can take the values 0V or 3V. This leads to a system of the form (8) with σ(t) ∈ U = {1, . . . , 16}, the 16 switching modes corresponding to the different possible combinations of voltages V i . The system can be decomposed in sub-systems of the form ( 9)- [START_REF] Jiang | A Lyapunov formulation of the nonlinear small-gain theorem for interconnected iss systems[END_REF]. The sampling period is τ = 30s. The parameters V * i , Vi , a ij , b i , c i are given in [START_REF] Meyer | Invariance and symbolic control of cooperative systems for temperature regulation in intelligent buildings[END_REF] and have been identified with a proper identification procedure detailed in [START_REF] Meyer | Experimental implementation of UFAD regulation based on robust controlled invariance[END_REF].

The main difficulty of this example is the large number of modes in the switching system, which induces a combinatorial issue. The centralized controller was obtained with 256 balls in 48 seconds, the distributed controller was obtained with 16 + 16 balls in less than a second. In both cases, patterns of length 2 are used. A sub-sampling of h = τ /20 is required to obtain a controller with the centralized approach. For the distributed approach, no sub-sampling is required for the first sub-system, while the second one requires a sub-sampling of h = τ /10. Simulations of the centralized and distributed controllers are given in Figure 3, where the control objective is to stabilize the temperature in [20, 22] 4 while never going out of [19,23] 

Final remarks and future work

We have given a new distributed control synthesis method based on Euler's method. The method makes use of the notions of δ-ISS-stability and ISS Lyapunov functions. From a certain point of view, this method is along the lines of [START_REF] Dallal | On compositional symbolic controller synthesis inspired by small-gain theorems[END_REF] and [START_REF] Kim | Compositional controller synthesis for vehicular traffic networks[END_REF] which are inspired by small-gain theorems of control theory (see, e.g., [START_REF] Jiang | Small-gain theorem for ISS systems and applications[END_REF]). In the future, we plan to apply our distributed Euler-based method to significant examples such as the 11-room example treated in [12,[START_REF] Le Coënt | Distributed synthesis of state-dependent switching control[END_REF].
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 1 Figure 1: Illustration of Corollary 1, with x1 = φ(τ ; x0 ) and x 1 = φ(τ ; x 0 ).

  Consider a point x0 ∈ S, a positive real δ and a pattern π of length k. Let π(k ) denote the k -th element (mode) of π for 1 ≤ k ≤ k. Let us abbreviate the k -th approximate point φπ (k τ ; x0 ) as xk π for k = 1, ..., k, and let xk π = x0 for k = 0. It is easy to show that xk π can be defined recursively for k = 1, ..., k, by: xk π = xk -1 π + τ f j (x k -1 π ) with j = π(k ). Let us now define the expression δ k π as follows: For k = 0: δ k π = δ, and for 1 ≤ k ≤ k: δ k π = δ j (τ ) where δ denotes δ k -1 π

Corollary 2 Figure 2 :

 22 Figure 2: (a): A set of balls covering R and contained in S. (b): Control of ball B(x 3 , δ) with Euler-based method.

Corollary 3 .

 3 Given a positive real δ, consider two sets of points x1 1 , . . . , x1 m1 and x2 1 , . .

  k im 1 }, and symmetrically φ σ (k 2 τ ; x) |2 ∈ R 2 for some k 2 ∈ {k i2 , . . . , k im 2 }

Table 1 :

 1 4 . Numerical results for centralized four-room example.

			Centralized
	R			[20, 22] 4
	S			[19, 23] 4
	τ			30
	Time subsampling			τ /20
	Complete control			Yes
	Error parameters	max j=1,...,16	λ j = -6.30 × 10 -3
		max j=1,...,16	C j = 4.18 × 10 -6
	Number of balls/tiles			256
	Pattern length			2
	CPU time		48 seconds

Table 2 :

 2 Numerical results for the distributed four-room example.

		Sub-system 1	Sub-system 2
	R			[20, 22] 2 × [20, 22] 2
	S			[19, 23] 2 × [19, 23] 2
	τ			30	
	Time subsampling			No		τ /10
	Complete control			Yes		Yes
	Error parameters	max j1=1,...,4	λ 1 j1 = -1.39 × 10 -3	max j2=1,...,4	λ 2 j2 = -1.42 × 10 -3
		max j1=1,...,4	γ 1 j1 = 1.79 × 10 -4	max j2=1,...,4	γ 2 j2 = 2.47 × 10 -4
		max j1=1,...,4	C 1 j1 = 4.15 × 10 -4	max j2=1,...,4	C 2 j2 = 5.75 × 10 -4
	Number of balls/tiles			16		16
	Pattern length			2		2
	CPU time		< 1 second		< 1 second

Such a bound has been used in hybridization methods: error(t) = E D L (e Lt -1)[START_REF] Asarin | Hybridization methods for the analysis of nonlinear systems[END_REF][START_REF] Chen | Decomposed reachability analysis for nonlinear systems[END_REF], where E D gives the maximum difference of the derivatives of the original and approximated systems.

Given an initial point x ∈ R, the induced control σ corresponds to a sequence of patterns π i 1 , π i 2 , . . . defined as follows: Since x ∈ R, there exists a a point xi 1 with 1 ≤ i 1 ≤ m such that x ∈ B(x i 1 , δ); then using pattern π i 1 , one has:φπ i 1 (k i 1 τ ; x) ∈ R. Let x = φπ i 1 (k i 1 τ ; x);there exists a point xi 2 with 1 ≤ i 2 ≤ m such that x ∈ B(x i 2 , δ), etc.