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An Intermediary Quaternion-based Control for Trajectory Following
Using a Quadrotor

J. Colmenares-Vázquez, N. Marchand, P. Castillo, J.E. Gómez-Balderas

Abstract— This work uses the intermediary quaternions in
the design of a backstepping control technique with integral
properties in order to perform an autonomous trajectory
tracking using a quadcopter vehicle. Nowadays, in order to
determine the orientation of a vehicle, most of the inertial
systems of aircrafts can give directly the rotation matrix and
taking advantage of this fact, the intermediary quaternions can
be determined in a simple way from this matrix. Moreover,
one specific orientation corresponds to only one intermediary
quaternion and this helps to cope the unwinding phenomenon
presented when working with the classical quaternions. The
proposed control algorithm is validated numerically and ex-
perimentally when the quadrotor follows a circular trajectory.
In addition, during the simulation part, some external per-
turbations and white noise were added in order to test the
robustness of the algorithm.

I. INTRODUCTION

In the domain of aerial vehicles, the Euler angles are com-
monly used for representing the orientation of a vehicle, but
working with them involves problems of singularity for some
specific angle values. Another possible parameterization could
be the rotation matrix, but its use implies more computational
cost because there are nine values that change as its rotation
axis and angle changes. Also, during the design of an attitude
control algorithm, it is necessary to work with vectors instead
of matrices and this reason will make necessary to use another
equivalent to the rotation matrix. One third option would be
the use of quaternions because they do not have the singularity
issue presented when working with the Euler angles and also
they has a lower computational cost compared to that of rotation
matrices. Therefore, the use of quaternions seems to be a good
option but because the quaternions are not a complete represen-
tation as a rotation matrix, there are some aspects to have into
consideration. For example, there are always two quaternions
that can indicate one specific orientation and this fact leads
to a drawback known as the unwinding phenomenon. This
phenomenon consists in taking a longer attitude path instead of
the shortest one and this leads to undesirable behaviors, partic-
ularly when the vehicle is in an environment with disturbances.
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To cope this problem, it is needed to choose the convenient
quaternion at each instant during the phase of control design.
Then, it will be significant to question if it is possible to use
another parameterization similar to the quaternions but without
their drawbacks. The intermediary quaternions described in
[1], [2] could be used as an alternative to the classical ones.
Nowadays, most of the inertial systems can provide the rotation
matrix for determining the orientation of a body and taking
advantage of this fact, the intermediary quaternions can be
easily obtained from this rotation matrix. Moreover, to one
specific orientation corresponds only one of theses quaternions.
On the contrary, the computation of the classical quaternions
from a rotation matrix have more than one expression and each
one satisfies some criteria in order to be chosen. This motivates
the use of the intermediary quaternions and the way to adapt
them in the control design of a trajectory following.

In this work, it is considered a mathematical model of an ideal
quadrotor obtained by the Euler-Newton approach, see [3],
[4] for more details. This model does not take into account
the asymmetries in the geometry of the drone, nor the fact
the helices are flexible neither the dynamics of the motors.
Thus, the model is simple and is similar to those in [5], [6]
but not equal because these quaternions take into account the
full rotation angle instead of the half angle considered in the
classical quaternions. With regard to the control algorithms,
there exist several ones in the literature, for instance, and just to
mention a few, there are the ones based on saturations, sliding
modes or on backstepping techniques and some of these are
treated in [7]–[11].

The contribution of this work is the implementation of the inter-
mediary quaternions in a backstepping technique with integral
properties in order to design a control algorithm for perform-
ing an autonomous quadcopter navigation with circular path
tracking. The mainly criterion for choosing the backstepping
technique was its well-known robustness and, additionally, this
is complemented by the integral property which helps to reduce
the effects of the dynamics not taken into account in the ideal
model and also the effects of the disturbances. The control law
will be free of the unwinding phenomenon and will be validated
by the tracking of a circular trajectory.

II. PRELIMINARIES

A. Intermediate Quaternion
The rotation matrix R can also be expressed in function of its

axis σ and angle ϑ of rotation. That is,

R = cosϑ I + (1− cosϑ) σσT + sinϑ [σ]× (1)



where [σ]× stands for the skew symmetric matrix and it is
defined as:

[σ]× =

 0 −σz σy
σz 0 −σx
−σy σx 0

 (2)

with σ = [σx, σy, σz]
T . From this representation, a

unitary quaternion can be formed as q = cosϑ + σ sinϑ.
This quaternion is related to the classical unitary rotation
quaternion. The difference resides on one takes the full angle
and the classical one takes the half of the rotation angle. This
quaternion is called intermediary because of its relation to the
rotation one.

The intermediary quaternion can be written also as the sum
of a real part and a vectorial one, i.e., q = qr + qv , and that
sense, a vector could be seen as a quaternion with a zero real
part. From Eqn. (1) it can be deduced the following expressions
for these parts can be deduced

qr = cosϑ =
1

2
(tr(R)− 1) (3)

[qv]
× = sinϑ [σ]× =

1

2
(R− RT ) (4)

where [qv]
× is the skew symmetric matrix of the vector qv

as defined for σ in (2). The previous expressions let us easily
to determine the intermediary quaternion. This quaternion are
also related to the angular velocity of the body and taking into
account that this quaternion takes the full angle, it results q̇ =
q ◦ ω; where ◦ means the multiplication between quaternions,
and developing this last expression, it follows

q̇r = − qTvω (5)

q̇v = qrω + qv × ω (6)

Now, supposing that a desired rotation matrix Rd is given, then
the desired angular velocity satisfies

d

dt
Rd = Rd[ωd]

× =⇒ [ωd]
× = RT

d

d

dt
Rd (7)

where [ωd]
× means the skew symmetric matrix of the desired

angular velocity. Alternatively, ωd can be rewritten in terms of
quaternions as follows q̇d = qd◦ωd =⇒ ωd = q̄d◦q̇d; with q̄
as the conjugated quaternion of q. This becomes useful because
this lets compute ωd faster than the Eqn. (7). In the same way,
the derivative of this desired angular velocity is given by

ω̇d = ‖ωd‖2 + q̄d ◦ q̈d (8)

with ‖ωd‖ stands for the magnitude ofωd. More references see
[1], [2].

B. Mathematical Model
Our mathematical model is based on the Newton Euler

approach and it is given by

mr̈ = RF + Fg

q̇ = q ◦ ω
Jω̇ = τ − [ω]×Jω

(9)

The bold letters represent vectors or quaternions.
F = [0, 0, f ]T means the thrust generated by the helices

where f represents the magnitude of the thrust, Fg indicates
the gravity force. q stands for the intermediary quaternion, ω
represents the angular velocity in the body frame. m stands for
the drone mass and r defines the position of the mass center
in a inertial frame. R describes the rotation matrix generated
in the zyx convention. J is the inertia matrix of the drone. τ
defines the torques applied to the vehicle. The parameters m
and J are supposed to be known.

III. CONTROL ALGORITHMS
The control goal is to develop a control scheme based on the

intermediary quaternion for path tracking.

A. Position Control
The position control law is based on the backstepping tech-

nique with integral properties which helps to compensate the
uncertainties in the model and the asymmetries not considered
in the model. Firstly, let us define the position error as er =
r − rd, thus, ėr = ṙ − ṙd = v − ṙd; where rd means
the reference position and v indicates the velocity. Next, let us
propose a positive definite function in order to design a virtual
velocity vv that will ensure the convergence to the desired
position

Vr =
1

2
χT

1Kirχ1 +
1

2
eTr er (10)

where Kir stands for a positive constant matrix and χ1 =∫ t
0 er dτ represents the integral property in the position

model. Differentiating the expression for Vr, it results V̇r =
χT

1Kirer + eTr ėr and taking the virtual velocity as:

vv = ṙd −Kirχ1 −Krer (11)

it follows that V̇r|v=vv = −eTrKrer ≤ 0 ∀ t ≥ 0 with
Kr as a positive constant matrix. Now, let us define the velocity
error ev = v − vv , thus, ėv = v̇ − v̇v = 1

mu− v̇
v with

u = RF + Fg (12)

Now, proposing the following positive definite function in order
to make converge the position error to zero VL = Vr +

1
2e

T
v ev

thus, V̇L = V̇r + e
T
v ėv and taking into account that v = vv +

ev , the expression V̇L can be written as V̇L = −eTrKrer +
eTr ev + eTv ėv , then by choosing,

u = m (v̇v − er −Kvev) (13)

with Kv as a positive constant matrix, it yields

V̇L = −eTrKrer − eTvKvev ≤ 0 ∀ t ≥ 0

Substituting Eqn. (11) into Eqn. (13), the expression for u
becomes

u = m( r̈d − (Kr +Kv)(v − ṙd)
−(I +Kir +KvKr)er −KvKirχ1 )

(14)

Note that rd is the position reference and ṙd and r̈d are
the velocity and acceleration obtained from this reference.
Besides, it is always possible to generate this u from a pair
(Rd,Fd), where Rd and Fd are the desired rotation matrix
and desired force which will generate the control law defined
by (14). Firstly, replacing F given in the body frame by the



desired thrust Fd = [0, 0, fd]
T in Eqn. (12), it follows that

fd = ‖u − Fg‖. Then, defining the desired rotation matrix as
Rd = [Rd1,Rd2,Rd3] where Rdi is a column vector. From
Eqn. (12) it can be deduced that

Rd3 =

 Rd3,x

Rd3,y

Rd3,z

 =
1

fd
(u− Fg) (15)

Now, using the expression for the rotation matrix in the zyx
convention, the expressions forRd1 andRd2 can be obtained

Rd1 =

 Rd1,x

Rd1,y

Rd1,z

 =

 cosψd cos θd
sinψd cos θd
− sin θd

 (16)

Rd2 =Rd3 ×Rd1 (17)

with

cos θd =

(
1 +

[
1

Rd3,z
(Rd3,x cosψd +Rd3,y sinψd)

]2)−1

(18)

sin θd =cos θd

[
1

Rd3,z
(Rd3,x cosψd +Rd3,y sinψd)

]
(19)

where ψd is the desired yaw angle. These equations are valid
when uz 6= −mg. In applications where uz > −mg the
expressions forRdi always hold.

B. Attitude Control
The next step is to design an orientation control algorithm

which follows the desired rotation matrix. In order to com-
pensate the effect of the unknown dynamics in our simplified
model, an integral part is added to the controller. First, the
rotation error matrix is defined as

Rd = RRe =⇒ Re = RTRd (20)

This error matrix represents the orientation that the vehicle
needs to rotate from its actual attitude in order to reach the
desired attitude. From (20) and using (2) and (4), the error
intermediate quaternion is computed as

qe,r =
1

2
( tr(Re)− 1 ) (21)

qe,v =
1

2

 Re3,2 − Re2,3

Re1,3 − Re3,1

Re2,1 − Re1,2

 (22)

The control goal is to make converge Re → I or equivalently
qe → 1 + 0. Proposing the following positive function

Vq = 1
2 (1− qe) ◦ (1− q̄e) +

1
2 χ

T
2Kiqχ2

= 1
2 (1− qe,r)

2 + 1
2q

T
e,vqe,v + 1

2 χ
T
2Kiqχ2

(23)

with Kiq as a positive constant diagonal matrix and χ2 =∫ t
0 qe,v dτ , and differentiating (23), it follows

V̇q = (1− qe,r)(−q̇e,r) + qTe,vq̇e,v + χT
2Kiqqe,v (24)

then by using Eqns. (5) and (6), it yields V̇q = qTe,vωe +
qTe,vKiqχ2, where ωe is the error angular rate that satisfies

d

dt
Re = Re[ωe]

× (25)

In order to find the relationship between ωe, ω and ωd, the
Eqn. (20) is differentiated and by using Ṙ = R[ω]× and the
Eqns. (7) and (25), it results

[ωe]
× = [ωd]

× − RT
e [ω]

×Re (26)

An alternative vectorial relationship can be deduced for these
angular rates. For that purpose, considering Figure 1, it is
observed that the angular rates belong to two different systems.
Taking into account that Re[ω]

×Re is the equivalent matrix
in the system SB

d to the matrix [ω]× in the system SB , the
following vectorial relationship is deduced

ωe = wd − RT
e ω (27)

Then, let us propose a virtual angular rate error which makes
converge the vehicle to the desired attitude. Thus, ωv

e =
−Kqqe,v − Kiqχ2 where Kq is a constant positive diagonal
matrix used for tuning the algorithm. This virtual velocity leads
to

V̇q|ωe=ωv
e
= −qTe,vKqqe,v ≤ 0 (28)

Observe from Eqn. (28) that there are two possible equilibrium
points, that is, qe1 = −1 + 0 or qe2 = 1 + 0. Suppose the
dynamical system starts at qe = −1 + 0. Then, a small pertur-
bation is added and the system gets out from its equilibrium.
Also, note that (23) is a non-increasing function because of
(28). This prevent the system to return to this equilibrium point.
Therefore, the system will converge to the global minimum of
the (23), that is, qe → qe2 = 1 + 0.

Now, it is necessary to make convergeωe → ωv
e . From (27),

it results
ω̇e = ω̇d − RT

e ω̇ + ωe × RT
e ω (29)

and introducing the dynamics of ω from (9) into (29), it yields
ω̇e = ω̇d − RT

e J−1( τ − [ω]×Jω ) + ωe × RT
e ω. Then,

proposing an extended positive function Vqω = Vq+
1
2e

T
ωe
eωe ,

with eωe = ωe − ωv
e . Therefore, V̇qω = −qTe,vKqqe,v +

qTe,veωe + eTωe
ėωe . Thus, if τ is taken as

τ = [ω]×Jω + JRe

(
ωe × RT

e ω + ω̇d − τ̃
)

(30)

it yields ėωe = ω̇e − ω̇v
e = τ̃ − ω̇v

e and by choosing τ̃ =
ω̇v

e − qe,v −Kωe
eωe , then V̇qω becomes

V̇qω = −qTe,vKqqe,v − eTωe
Kωeeωe ≤ 0 (31)

with Kωe
as constant positive diagonal matrix. Eqn. (31)

implies the system attitude is stable in the Lyapunov sense.

Fig. 1: Systems generated by the rotation matrices. SI is the inertial
system, SB represents the body system and SB

d is generated by
the desired body orientation.
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Therefore, ωe → 0 and qe → 1 + 0. This as well implies
Re → I andω → Reωd which in turn leads toω → ωd. After
some substitutions, the complete expression for τ becomes

τ = [ω]×Jω + JRe{ ωe × RT
e ω + ω̇d

+(qe,rKq +Kωe
)ωe + (I +Kiq +Kωe

Kq)qe,v
Kq(qe,v × ωe) +KiqKωeχ2 }

(32)

C. The unwinding phenomenon

The intermediate quaternion qe = −1+0 corresponds to the
maximum orientation error. This happens when the maximum
rotation angle associated to Re is 180◦. This means that the
vehicle does not rotate more than 180◦ between two given
orientations which implies the UAV always takes the shorter
path. Now, supposing a perturbation is applied to the vehicle
in order to get out from the attitude equilibrium point, the
orientation control algorithm will force the vehicle to recover
its equilibrium qe = 1 + 0. Thus, with this attitude algorithm
the UAV will not undergo the unwinding phenomenon.

IV. SIMULATIONS RESULTS

In order to provide a physical sense, the orientation is
presented in Euler angles, but the simulations are carried out
using the intermediary quaternions. Two simulation results are
presented in this section, the first one is in order to show the
vehicle takes the shortest path between two given orientations,
for example if the vehicle needs to go from (ψ0, θ0, φ0) =
(180, 0, 0)◦ to (ψd, θd, φd) = (−170,−40, 40)◦ then the ve-
hicle will arrive to (ψf1, θf1, φf1) = (190,−40, 40)◦, another
possibility could be a longer path arriving to (ψf2, θf2, φf2) =
(190,−40,−320)◦. In practice, the two final angular positions
represent the same desired orientation, but the difference re-
sides in the length of the followed path. The second simulation
validates the control algorithm when the vehicle follows a cir-
cular trajectory. The parameters used in the attitude algorithm
are

Kq = diag(32, 32, 32)
Kωe = diag(128, 128, 128)
Kiq = diag(32, 32, 32)

Jxx = 0.008 kg ·m2

Jyy = Jxx
Jzz = 0.006 kg ·m2

For the first simulation, the initial condition was
(ψ0, θ0, φ0) = (180◦, 0◦, 0◦) while the desired orientations
were (ψd, θd, φd) = (±170◦,−40◦, 40◦). These orientations
are rewritten as rotation matrices in order to apply the
proposed algorithm. Figure 2 shows the trajectories followed
when two attitude control laws are applied, one law is based
on the intermediate quaternion and the other one on the
classical quaternion. Furthermore, the two algorithms use the
backstepping technique. Figure 3 confirms the intermediate
quaternion algorithm takes the shorter path while the other one
takes a longer one.

Note that in Fig. 3 the quadcopter attains different Eu-
ler angles, but in practice, these angles represent the same
desired orientation. For these two previous figures, the rota-
tion error matrices converge to the identity matrix in both
cases. In the second simulation, our goal is to validate the
proposed algorithm when a quadcopter performs a circular
path tracking. The parameters used for the position control
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Fig. 2: Orientation given by Euler angles in xyz convention. Dotted
lines represent the reference, diamond lines the responses when
using the intermediate quaternion algorithm while solid lines are
for the classical quaternion algorithm.

law are Kr = diag(16, 16, 12),Kv = diag(4, 4, 2),Kir =
diag(2, 2, 0.05),m = 0.260 kg.

The initial position is placed at (x0, y0, z0) = (0.7, 0, 0)m
and the initial orientation is (ψ0, θ0, φ0) = (180◦, 0◦, 0◦). The
desired path is generated by a circular trajectory at a rate of
1.6 rad/s with the vehicle front pointing to the circle center.
The center is placed at (0, 0, 0.5) m and the radius is 0.7 m.
In order to test the robustness of this algorithm, a constant
torque (0.125, 0.075,−0.125)N · m and a constant force
(0.05, 0.03,−0.05)N were added as external perturbations. In
addition, a white noise was added to the position and orienta-
tion. The results are shown in Fig. 6 when the vehicle follows
the desired trajectory with its front always pointing to the
circle center. The desired orientation generated by the position
control law is followed by the vehicle and the quaternion error
qe → 1+ 0. Note that the pitch angle takes a constant value in
order to counteract the centrifugal force when it is turning.

V. PLATFORM, PROTOTYPE AND
EXPERIMENTAL RESULTS

A. Platform and prototype
The experiments were carried out in the MOCA room, c.f.

[12]. This room has a VICON vision system, the software
VICON Tracker lets obtain the position and the orientation of
the vehicle at a rate of 100 hz. This capture is made by means
of markers placed on the vehicle. The data are used in the
position algorithm and this will compute the desired orientation
and the convenient thrust. The orientation and thrust are sent to
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Fig. 3: Orientation given by Euler angles. Dotted lines are the
references, diamond lines the intermediate quaternions and solid
lines the classical quaternions.



the vehicle via DSMX radio. The vehicle executes the attitude
algorithm based on intermediate quaternions and computes the
required speed in each motor in order to move to the desired
position. This process is described in Fig. 4.

The prototype used in the flight test is shown in Fig. 5 and its
parameters are: mass = 0.260 kg; payload = 0.120 kg; length =
0.30 m; height = 0.15 m; helix diam = 0.125 m; battery = 1200
mAh 2S 7.4V 30C Li-Po and motor Brushless 28000 kv 13 gr.
It uses a Crius One Pro V2 as a flight controller and its structure
was designed and printed in the Gipsa Lab workshop.

B. Experiment results

The experiment consists in testing the developed algorithm
in the tracking of a circular path at a rate of 1.6 rad/s using
a quadcopter vehicle. It is desired the vehicle front points to
the circle center while it makes the following. The circle center
is placed at (0, 0, 0.5) m and its radius is 0.7 m. First, the
UAV will take-off slowly and at the same time it will follow
the desired circular path. The code for the position control
algorithm is generated by Simulink of MATLAB R© with a
sample time of 0.01 s. This algorithm generates the desired
orientation that is sent to the drone via a DSMX transmitter.
Then, the embedded card will execute the attitude algorithm.
The results of this experiment are shown in the Fig. 7. Observe
that the results correspond to the expected values obtained in
simulation. The Fig. 7(a) shows the vehicle follows the desired
circular trajectory. Also, Fig. 7(b) demonstrates the orientation
error quaternion converges to qe = 1 + 0. Fig. 7(c) confirms
the pitch and roll angles agrees with their corresponding ones
observed in simulation and Fig. 7(d) describes the yaw angle
evolution when the vehicle is pointing to the circular center.

VI. CONCLUSIONS

The experimental and simulation results have validated the
control algorithm developed in this work when a quadcopter
vehicle performs a circular path tracking. Moreover, the
robustness of this algorithm was proven in simulation
by adding external perturbations and noise to the system
dynamics. The convergence of the vehicle attitude to those
produced by the attitude control law was confirmed in the
graphic corresponding to qe. Also, this algorithm based on
the intermediary quaternion has eliminated the concern of the
unwinding phenomenon.

As a part of the future work, in the experimental part, it is
envisaged to attain a greater turning speed and to reduce numer-

Fig. 4: Platform used in the experiments.

Fig. 5: Prototype used in the experiments.

ical computation by using vectors for finding the quadcopter
orientation.
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(a) Path described by the UAV in simulation when following the desired
trajectory. .
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(b) Error intermediate quaternion. The convergence qe → 1+0 ensures
the vehicle takes the desired orientation.
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(c) Behavior of roll and pitch.

Time (s)
0 5 10 15 20 25 30

Y
aw

 a
ng

le
 (

de
g)

-200

-100

0

100

200 ψ

(d) The yaw angle is varying according to the vehicle position.

Fig. 6: Simulation results. The vehicle follows a circular trajectory
at a angular speed of 1.6 rad/s with its front pointing to the center.
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(a) Path described by the UAV during the experiment.
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(b) Error intermediate quaternion. The quaternion is close to
qe → 1 + 0
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(c) Pitch and roll angles agrees with the behavior observed in simula-
tion.
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(d) Yaw angle when the vehicle is turning around the circle center.

Fig. 7: Experimental results. Followed paths when the vehicle
follows a circular trajectory at 1.6 rad/s centered at (0, 0, 0.5) m
and a radius of 0.7 m


