
HAL Id: hal-01593137
https://hal.science/hal-01593137v1

Submitted on 13 Dec 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evaluation of Secure Multi-Hop Node Authentication
and Key Establishment Mechanisms for Wireless Sensor

Networks
Ismail Mansour, Gérard Chalhoub, Pascal Lafourcade

To cite this version:
Ismail Mansour, Gérard Chalhoub, Pascal Lafourcade. Evaluation of Secure Multi-Hop Node Authen-
tication and Key Establishment Mechanisms for Wireless Sensor Networks. Journal of sensor and
actuator networks, 2014, 3 (3), pp.224 - 244. �10.3390/jsan3030224�. �hal-01593137�

https://hal.science/hal-01593137v1
https://hal.archives-ouvertes.fr

J. Sens. Actuator Netw. 2014, 3, 224-244; doi:10.3390/jsan3030224
OPEN ACCESS

Journal of Sensor

and Actuator Networks
ISSN 2224-2708

www.mdpi.com/journal/jsan

Article

Evaluation of Secure Multi-Hop Node Authentication and Key

Establishment Mechanisms for Wireless Sensor Networks

Ismail Mansour 1,2, Gérard Chalhoub 1,2,* and Pascal Lafourcade 1,2

1 Clermont Université, Université d’Auvergne, LIMOS, BP 10448, F-63000, Clermont-Ferrand,

France; E-Mails: ismail.mansour@udamail.fr (I.M.); pascal.lafourcade@udamail.fr (P.L.)
2 CNRS, UMR 6158, LIMOS, F-63173 Aubière, France

* Author to whom correspondence should be addressed; E-Mail: gerard.chalhoub@udamail.fr;

Tel.: +33-4-73-17-70-48; Fax: +33-4-73-17-71-11.

Received: 12 June 2014; in revised form: 25 August 2014 / Accepted: 26 August 2014 /

Published: 3 September 2014

Abstract: Designing secure authentication mechanisms in wireless sensor networks in order

to associate a node to a secure network is not an easy task due to the limitations of this type

of networks. In this paper, we propose different multi-hop node authentication protocols for

wireless sensor networks. For each protocol, we provide a formal proof to verify the security

of our proposals using Scyther, which is an automatic cryptographic protocols verification

tool. We also provide implementation results in terms of execution time consumption

obtained by real measurements on TelosB motes. These protocols offer different security

mechanisms depending on the design of the protocol itself. Moreover, we evaluate the

overhead of protection of each solution by studying the effect on execution time overhead

of each protocol. Finally, we propose a mechanism to detect possible attack based on our

evaluation results.

Keywords: authentication; wireless sensor networks; security; overhead of protection;

multi-hop; formal verification

1. Introduction

Wireless sensor networks (WSNs) are increasingly used in critical applications where the identity of

each communicating entity should be authenticated before exchanging data in the network. The wireless

J. Sens. Actuator Netw. 2014, 3 225

nature of this technology makes it easy for intruders to try to intervene in the network activity and create

any of the known attacks in WSNs [1]. Many of the current propositions focus on message authentication

for ensuring data authentication and integrity, and others focus on user authentication to give access to

the network for certain user profiles. In this paper we propose, on one hand, authentication protocols that

allow nodes to join the network in a secure manner, and on the other hand, key establishment protocols

that allow nodes to establish keys with nodes that are multiple hops away.

Designing secure protocols is an error-prone task. One of the well-known examples is the famous

flaw found in the Needham–Schroeder protocol seventeen years after its publication [2]. This protocol

aims at establishing a new key between two participants. It is simple since it uses only three exchanges of

messages. It clearly shows that designing secure protocols is not an easy task and is error-prone. During

the past decades, several automatic tools for verifying the security of cryptographic protocols have been

elaborated by several authors, e.g., Proverif [3], Avispa [4] or Scyther [5]. These symbolic tools use the

Dolev–Yao intruder model [6], which considers that the intruder is controlling the network and makes

the perfect encryption hypothesis (meaning that it is impossible to obtain the plain text of an encrypted

message unless the secret key is known). The state-of-the-art [7] shows that formal methods are now

mature and efficient enough to be used in the design of security protocol in order to avoid such logical

flaws.

Another aspect that should be taken into account during WSNs protocol analysis is the performance

related to the security operations. Traditional approach assumes that the best way is to apply the strongest

possible security measures to make the system as secure as possible. Unfortunately, such reasoning leads

to the overestimation of security measures, which causes an unreasonable increase in the system load [8].

The system performance is especially critical in systems with limited resources such as wireless sensor

networks or mobile devices. It is important to design secure mechanisms using, when possible, a fixed

number of cryptographic operations regardless of the network size, and to be able to evaluate their

performance in such constrained devices. In this paper, we propose several protocols that do not add

cryptographic operations on intermediate nodes. We systematically evaluate their overhead and prove

their correctness with the automatic formal security verification tool Scyther [5].

The originality of our work resides in the fact that it suites large scale multi-hop wireless sensor

networks, which is due to the limited number of cryptographic operations regardless of the number

of hops separating the communicating nodes. In addition, it combines several aspects of security,

from designing secure protocols to evaluating the implementation of our solution, going through formal

automatic analysis of security and overhead of protection analysis. Our contributions can be summarized

in the five following points:

1. Design of multi-hop node authentication mechanisms.

2. Formal automatic analysis of our solutions.

3. Implementation on TelosB motes.

4. Evaluation of the overhead of protection of our solutions.

5. Attack detection based on the a priori overhead evaluation.

Our main contribution is the design of several secure authentication protocols. In order to avoid

security flaws, we prove the correctness of all our protocols automatically using Scyther [9], which

J. Sens. Actuator Netw. 2014, 3 226

is a tool for the automatic verification of security protocols. This tool considers neither the cost of the

communications nor the execution time of the cryptographic operations. Therefore we have implemented

our protocols on TelosB motes in order to obtain the execution time and communication. Note that we

used TelosB motes as a means for comparing the different protocols. We would have obtained better

overall performance if we used motes with more computation capacities such as Tmotesky.The overhead

of protection analysis for WSN cryptographic protocols is almost impossible to perform manually.

This increases the difficulty to design secure and efficient protocols at the same time. Using our real

implementation on TelosB motes, we have measured the execution time of every cryptographic operation

and every step in each protocol. These measurements were obtained from a testbed of the minimal

number of nodes. In addition, using the overhead evaluation results, we were able to put in place an

attack detection process.

This paper does not aim to show that the proposed protocols are faster than existing protocols. Instead,

the main objective is to present secure solutions for node authentication and key establishment using

standard cryptographic algorithms and primitives available on the Internet. The chosen primitives can be

replaced by more optimized primitives for better performance. The evaluation we presented is essentially

a proof of concept and shows that the steps of each protocol can be implemented on low cost motes such

as TelosB motes that are known for their low capacities in computation speed.

This work is an extension of the conference paper [10] and the book chapter [11]. The original

authenticated join protocol was proposed in [11] and evaluated in different versions according to the

level of protection in [10]. It is the only intersection with the current paper.

In the next section, we summarize the related work. In Section 3, we present the cryptographic

primitives we use to design our protocols. Then in Section 4, we propose two protocols for

establishing secure multi-hop communications. In Section 5, we give two key establishment protocols

that use the sink as a trusted third party and in Section 6 we propose four protocols that establish a new

key without passing by the sink. Then in Section 8, we use Scyther to formally prove the security of

our solutions. In Section 9, we evaluate the overhead of our eight protocols. Based on the overhead

evaluation results, we explain in Section 10 how a node is able to detect attack attempts launched by

other nodes in the network. We conclude the paper in the last section.

2. Related Work

Very few works have been done for node authentication protocols in multi-hop WSNs. Most of the

existing authentication protocols proposed for WSNs neglect the multi-hop factor. In [12], Al-mahmud

et al. propose a protocol where the base station broadcast authentication elements for in-range sensor

nodes to be able to authenticate new arriving nodes. In fact, they consider that any previously

authenticated node can authenticate new nodes using identity-based signature (IBS) algorithm, Elliptic

Curve Cryptography (ECC) and a digital signature algorithm (DSA). They provide an informal security

analysis and have not implemented their protocols.

In [13,14], the authors propose an authentication mechanism for users and consider that sensor nodes

inside the WSN are trusted nodes. In [14], Yeh et al. show the weakness of some protocols proposed

in [13], due to lack of authentication. Then they propose a stronger authentication protocol using

J. Sens. Actuator Netw. 2014, 3 227

ECC that ensures mutual authentication and protection against attacks from other users, which was not

included in [13]. They also provide a manual security analysis of their solution and only a theoretical

complexity evaluation of their protocols.

Recently in [15], Han et al. propose an authentication model that aims at reducing overhead for the

re-authentication of sensor nodes using symmetric and public key cryptography. It is based on a ticket

encrypted using a common secret key between neighbouring fixed nodes. This ticket is sent to a mobile

node during the first authentication phase. This ticket is only useful when the mobile node decides to

re-authenticate with this neighbour fixed node. In addition, the protocol only works well when the fixed

node is in direct range with the base station, and the initial authentication phase suffers from internal

attacks. Sinks in the network can easily take the place of each other when they are not in communication

range with the base station. The authors only give a quick informal security analysis of their solutions

and they have not deployed their solutions on real motes.

In [16], Manjusha et al. propose an authentication technique using ECC and ElGamal digital signature

scheme for message authentication. The authors do not perform any security analysis of their solution.

Moreover, the proposition is evaluated on a computer using MATLAB simulator, which makes it

difficult to estimate compared with a real testbed implementation, since digital signatures and public

key cryptographic primitives are very resource consuming operations.

In [17], Zhang et al. propose a node authentication protocol for hierarchical WSNs. The hierarchical

topology is limited to a base station, cluster heads and sensor nodes. The cluster heads can reach the

sensors of their clusters directly, and can also reach the base station directly. The authentication is based

on hash chain functions and symmetric encryption. The proposed protocol is not resilient to insider

attacks as cluster heads are trusted to forward join requests to base station. In addition, the coverage of

the network is limited due to the limited number of hops in a hierarchical topology.

Many contributions have been made in the key establishment and symmetric key distribution in

WSNs using symmetric cryptography and hash functions. Some of them are based on a probabilistic

pre-distribution that guarantees that any two nodes in the network are able to share a key with a certain

probability, and others are deterministic but cause more storage overhead [18]. They do not evaluate on

real motes their solutions and the security analysis is only informal. One of the most known symmetric

key systems that were proposed for wireless sensor networks is SPINS (Security Protocols for Sensor

Networks) [19], which uses a simplified version of TESLA (Timed, Efficient, Streaming, Loss-tolerant

Authentication) protocol [20]. Perrig et al. test several symmetric encryption functions and MAC

(Message Authentication Code) for their protocols using an extremely limited sensor network platform.

They show that data transmission takes 71% of the time. In SPINS, the base station plays an essential

role in the key establishment process. It is a lightweight cryptography protocol but has limited scalability

and depends heavily on the base station.

Munivel et al. in [21] propose a multi-hop key establishment between nodes called Micro-PKI, using

ECC and MAC. Their method is based on the pre-distribution of the public key of the base station. Using

this public key, every node is able to create a secret key with any other node of the network. They evaluate

the energy consumption of their solution and perform an informal security analysis. The authentication

process in this proposal is only dependent on the public key of the base station; if a node has this key,

J. Sens. Actuator Netw. 2014, 3 228

it is considered authenticated. This makes the procurement of this public key very critical for the whole

security architecture.

In [22] Chan et al. propose PIKE (Peer Intermediaries for Key Establishment), one of the most

famous key establishment protocols that is not dependent on a central trusted node. According to PIKE,

symmetric keys are pre-deployed in the nodes in such a way to guarantee that any two nodes in the

network have at least one node in common with which each one of the two nodes has a secret key with

it. Therefore, these two nodes are able to establish a secret key by using the trusted channel established

with the common node. They provide a simulation evaluation of the protocol and estimate the energy

and memory cost of several schemes. They also give an informal security analysis of the protocol against

node compromise. PIKE suffers from high memory storage to make sure that nodes are able to find at

least one node in common to establish a new key.

CARPY and CARPY+ are proposed in [23]. They are based on the symmetric keys of Blom [24] with

a perturbation function that makes it more difficult for an attacker to guess the pairwise keys. In their

paper they discuss the five criteria proposed in [25] and claim that CARPY+ satisfies all of them. These

criteria are:

- Resilience to the Adversary’s Intervention during the key establishment phase,

- Directed and Guaranteed Key Establishment for any couple of nodes in the network,

- Resilience to Network Configurations, i.e., nodes should be able to establish keys in any kind of

network topology,

- Efficiency of the key establishment process in terms of memory storage, communication overhead

and complexity,

- Resilience to Dynamic Node Deployment, which allows nodes to be added at any time to the

network and establish keys on demand.

The authors give a detailed security analysis including a security model to prove manually the

resistance against a given number of compromised nodes. They have implemented their solutions on

TelosB compatible mote to evaluate their performances. The main weakness of this scheme is the lack

of a re-keying process. The pre-shared matrices will only help to create one pairwise key for every

couple of nodes.

Comparing these protocols to determine which is the most suitable requires to possession of all

different implementations on one platform. However, most of the implementations, if exist at all, are

very platform-dependent, thus an implementation on one platform might not give reproducible results

on another platform and might not even operate on incompatible platforms. For this reason, in this

paper, we will not compare execution results between protocols. On the other hand, Table 1 summarizes

a comparison between the related work schemes and our proposition. The comparison is based on some

repudiated criteria in the WSNs area. As the table shows, Yu et al.’s scheme [23] is the closest to our

schemes. The authors use TelosB motes to evaluate the energy consumption of the basic operations

used in their schemes and they provide a large scale simulation for thousands of nodes based on these

measurements.

In this paper, we did not compare our execution time results with other protocols from the

state-of-the-art because, as stated in the related work section, implementations are dependent on

J. Sens. Actuator Netw. 2014, 3 229

hardware and system. In addition, they can be optimized for certain platforms, which makes the

comparison unfair using different platforms and cryptographic primitives. In our proposition, we take

into account the multi-hop factor for node authentication and key establishment, which is often neglected

in existing propositions. Any node in the network is able to be authenticated by sending a request in a

multi-hop manner towards the base station, or send a key establishment request towards a multi-hop

neighbour. Finally, our main difference with other works is that we formally prove the security of all our

protocols using the automatic verification tool Scyther [5].

Table 1. Comparison of related work schemes.

Proposed Scheme Standard Algorithms Cryptographic Technique Simulation Implementation Verification

Perrig et al., 2002 [19] yes symmetric none Smart dust [26] manual

Chan et al., 2005 [22] not specified symmetric yes none none

Yu et al., 2009 [23] not specified symmetric none TelosB manual

Munivel et al., 2010 [21] yes symmetric/asymmetric none none none

Yeh et al., 2011 [14] yes symmetric/asymmetric none none none

Zhang et al., 2012 [17] not specified symmetric none none none

Al-mahmud et al., 2012 [12] yes symmetric/asymmetric none none none

Han et al., 2012 [15] not specified symmetric/asymmetric none none none

Manjusha et al., 2013 [16] yes symmetric/asymmetric MATLAB none none

Our schemes yes symmetric/asymmetric none TelosB automatic

3. Pre-deployed Keys and Cryptographic Notations

Before deployment, each node N knows the public key pk(S) of the sink S and also its own

pair of public and private keys, denoted (pk(N), sk(N)) respectively. Based on ECC (Elliptic Curve

Cryptography), we have that pk(N) = sk(N) × G, where G is a public generator point of the elliptic

curve. Using this material, each node N can compute a shared key with the sink S using a variation

of the Diffie–Hellman key exchange without interaction between the nodes, denoted KDH(N, S).

These computations can be done by the sink and by all nodes before deployment in order to preserve

their energy.

• The sink knows its own secret key sk(S) and the public key pk(N) of a node N . The sink computes

KDH(N, S) = sk(S)× pk(N).

• Node N multiplies its secret key sk(N) by the public key of the sink pk(S) to get KDH(N, S).

Both computations give the same shared key since:

KDH(N, S) = sk(N)× pk(S) = sk(N)× (sk(S)×G) = (sk(N)×G)× sk(S) = pk(N)× sk(S)

In what follows, we use the following notations to describe exchanged messages in our protocols:

• I: a new node that initiates the protocol,

• N : a neighbour of node I ,

• R: a node multi-hop away from I called responder,

• S: the sink of the network (also called base station),

J. Sens. Actuator Netw. 2014, 3 230

• T : a trusted node between the initiator node I and the responder node R (T shares a session key

with I and R),

• nA: a nonce generated by node A,

• {x}k: the encryption of message x with the symmetric or asymmetric key k,

• pk(A): the public key of node A,

• sk(A): the secret (private) key of node A,

• K(I, S): the session key between I and S,

• KDH(N, S): the shared symmetric key between N and S using the Diffie–Hellman key exchange

without interaction described above.

In the next section, we recall two protocols that allow a node to join a multi-hop WSN in a secure way

and establish secure links with the sink and a neighbour node. A new node is able to establish a secure

link with the nearest node that is already part of the network. Then in the following sections, we propose

six other protocols that allow any node to establish secure links with any another node in its multi-hop

neighbourhood. Two protocols use the sink for key establishment and four protocols establish new keys

without resort to the sink. In all figures that describe our protocol, we denote a direct communication

by an arrow between two nodes, and denote a communication passing by several possible intermediate

nodes by a dotted arrow. We also explicate the size of each exchanged message in Bytes.

4. Authenticated Multi-hop Join Protocols: DJS and IJS

In this section, for the sake of completeness and to make the paper self-sufficient, we recall the

authenticated multi-hop join protocols that our key establishment protocols are based upon. Protocol

DJS (Direct Join to the Sink), presented in Figure 1, was presented in [11]. It allows new nodes in range

of the sink to join the network directly. A new node I sends a direct request to S in order to establish

a session key with it. Node I begins the join process by computing the symmetric key KDH(I, S) with

the sink S. Then, node I generates a nonce nI and adds its identity in order to form the request {nI , I}.

The request is encrypted with KDH(I, S) and sent to S. Upon reception, in order to decrypt the request,

S computes KDH(I, S) using the public key of I . Then, S verifies the identity of I by checking if the

identity of I belongs to the list of authorized nodes, and generates a new session key K(I, S). The join

response contains nI , the identity of S and the new symmetric session key. The response is encrypted

using pk(I) and is sent to I . Only I is able to decrypt the response with its secret key sk(I). We note

that nI helps I to authenticate the response message of S.

Figure 1. DJS: node I joins the network by communicating directly with the sink S.

Initiator

I

Sink

S

{nI , I}KDH(I,S)

5B

{nI , S,K(I, S)}pk(I)

61B

J. Sens. Actuator Netw. 2014, 3 231

The protocol IJS (Indirect Join to the Sink), presented in Figure 2, was also presented in [11] and

allows a new node to join the network through a neighbour node N . The new node I sends an indirect

request to S in order to be authenticated and to establish a session key with N . Node N forwards the

request to S through intermediate nodes. We note that the request and the response are just forwarded by

these nodes without being modified. They are unable to decrypt either the request part or the response

part of the message; only nodes I and S are able to decrypt messages encrypted with KDH(I, S), and

only N and S are able to decrypt the messages encrypted with KDH(N, S).

Figure 2. IJS: I joins the network through N . Intermediate nodes between N and S

forward messages without any encryption or decryption.

Initiator

I

Neigh. node

N

Sink

S

{nI , I, N}KDH(I,S)

5B {nI , I, N}KDH(I,S)

5B

{nI , S, pk(I)}KDH(S,N)

45B{nI , N,K(N, I)}pk(I)

61B

Our aim is to establish a shared key between any two authenticated nodes I and R of the network (not

necessary in range). We propose six different protocols, called MKES , MKES − light, MKET − a,

MKET − b, MKET − c and MKET − d.

5. Multi-hop Key Establishment Protocols Using the Sink

We start by explaining protocol MKES and its optimization MKES − light. They both use the

sink to establish a new key between two nodes. Protocol MKES , depicted in Figure 3, uses the shared

symmetric keys KDH(I, S) and KDH(R, S) computed before the deployment between any node in the

network and the sink S. These shared keys are used to communicate the public keys of I and R. We

consider that the sink knows all the public keys of all nodes and a node only knows its public key and the

public of the sink. The initiator node I builds a request containing the identity of node R and a nonce

nI . This request is encrypted with KDH(I, S) and sent to S. The sink S sends

• to R, the identity of I , a nonce nS , the nonce nI received from I and the public key of I encrypted

with the shared symmetric key KDH(S,R).

• to I , the identity of R, the same nonce nS , the public key of R encrypted with the shared symmetric

key KDH(I, S),

Once these two messages are received by I and R, the two nodes are able to compute KDH(I, R)

as follows:

• Node I computes sk(I)× pk(R) = sk(I)× sk(R)×G = KDH(I, R).

• Node R computes sk(R)× pk(I) = sk(R)× sk(I)×G = KDH(I, R).

J. Sens. Actuator Netw. 2014, 3 232

Figure 3. MKES : Multi-hop Key Establishment using the sink S to deliver public keys.

KDH(I, R) is computed by the initiator I and the responder R.

Sink

S

Initiator

I

Responder

R

{I, R, nI}KDH(I,S)

6B
{I, nI , nS, pk(I)}KDH(S,R)

49B
{R, nS, pk(R)}KDH(I,S)

45B
KDH(I, R)

KDH(I, R)

{I, R, nI , nS}KDH(I,R)

10B
{R, nI , nS}KDH(I,R)

9B

The mutual authentication of R and I is ensured using the sink S as the trusted third party. Indeed,

only S in this protocol is able to deliver public keys to nodes. The authentication between nodes is done

by the verification of nonces. Node R verifies that the received nonces nI and nS from S are the same

as the ones sent by I . Then, node R confirms the establishment of KDH(I, R), by sending nI and nS to

the initiator I encrypted with KDH(I, R). Upon reception, node I verifies first its own nonce and if nS

received from R is the same as the one sent by the sink.

Notice that the computation of the new key KDH(I, R) can be done by the sink in order to save

some computations on nodes R and I . Instead of sending the respective public keys, the sink generates

the new shared key and sends it to the two nodes. Indeed, the sink is the trusted entity that generated

and distributed the public/private keys to all nodes in the first place during the pre-deployment phase.

Another possibility would be to generate symmetric keys at the sink using any standard random key

generation function. In this version, we chose to use the DH method at the sink. This version, called

MKES − light, is depicted in Figure 4.

Figure 4. MKES − light: Multi-hop Key Establishment using the sink S to compute and

deliver KDH(I, R) to the initiator and the responder.

Sink

S

Initiator

I

Responder

R

{I, R, nI}KDH(I,S)

6B
KDH(I, R)

{I, nI , nS, KDH(I, R)}KDH(S,R)

25B
{R, nS, KDH(I, R)}KDH(I,S)

21B
{I, R, nI , nS}KDH(I,R)

10B

{R, nI , nS}KDH(I,R)

9B

J. Sens. Actuator Netw. 2014, 3 233

6. Multi-hop Key Establishment Protocols without the Sink

We propose four protocols that use a trusted intermediate node T instead of the sink S to establish

a new key. The main idea is to allow other nodes to authenticate new key establishment. In this way,

we avoid exhausting the sink and we preserve energy of its neighbours that are relaying requests all the

time. Doing so also helps to avoid traffic congestion around the sink. When other nodes share this role,

the traffic for key establishment will be spread throughout the network.

A node T is considered as trusted by a node I if nodes I and T have at least one secret key in common.

This secret key is previously established either during the join process or using protocol MKES . Indeed,

if node I has a secret key with T , it means that I has joined the network through T (or vice versa) or

has established a new key with node T using MKES (or MKES − light). Node T might have the

public key of both nodes I and R, have only one of the two public keys, or have neither, according to the

protocol that has served for the secret key establishment. In order to establish a secret key, an initiator

node I first tries to find a common trusted node T with the responder R. This discovery mechanism is

out of the scope of this paper, and can be done using one of the several existing secure routing protocols

such as SDSR [27]. We describe the four possible situations according to the knowledge of node T :

• if T has both pk(I) and pk(R), then I follows protocol MKET − a,

• if T has pk(R) but not pk(I), then I follows protocol MKET − b,

• if T has pk(I) but not pk(R), then I follows protocol MKET − c,

• if T has neither pk(I) nor pk(R), then I follows protocol MKET − d.

Note that if T does not exist, then I follows MKES or MKES − light. We note that these four

protocols are very useful when nodes are located far from the sink. Indeed, it preserves the energy

of intermediate nodes between I and S and those between R and S. We explain the main difference

between our four variations of the multi-hop key establishment:

• In protocol MKET − a (Figure 5), the trusted node T possesses pk(I) and pk(R). Therefore,

protocols MKET − a and MKES are very similar. We note two differences: the sink S of

MKES is replaced by the trusted node T , and the messages exchanged between both nodes and

S are encrypted using the session keys established after deployment instead of using shared keys

computed before deployment. After receiving a request from the initiator I , the trusted node T

delivers pk(R) to I and pk(I) to R.

• In protocol MKET − b, the trusted node T possesses pk(R) but not pk(I). Protocol MKET − b

is the same as protocol MKET − a except that the first message sent by I is replaced by

{R, nI , pk(I)}K(I,T). Indeed, since T does not possess the public key of node I , I should send it

to T in order to send it to R.

• In protocol MKET − c (Figure 6), the trusted node T possesses pk(I) but not pk(R). After

receiving pk(I) from T , the responder R sends its own public key to T in order to send it to I .

• In protocolMKET−d, the trusted node T possesses neither pk(I) nor pk(R). Protocol MKET−d

is the same as protocol MKET − c except that the first message sent by I is replaced by

{R, nI , pk(I)}K(I,T). Node I sends pk(I) to T in its request in order to send it to R.

J. Sens. Actuator Netw. 2014, 3 234

Note that the last two messages have the same role in all proposed protocols. These messages are

used to verify nonces and confirm the establishment of the shared key KDH(I, R). In addition, in order

for node R to know if it needs to include its public key in the reply to T or not, it can keep a record of

how it obtained the shared key with T and react accordingly. Alternatively, we can add in the header of

the message sent from T to R the identifier of the protocol used for the key establishment. In both cases,

the description of the protocols remains the same.

Figure 5. MKET −a: Multi-hop Key Establishment using a trusted node T to deliver public

keys. T possesses pk(I) and pk(R). The key KDH(I, R) is computed by the initiator I and

the responder R.

Trusted node

T

Initiator

I

Responder

R

{I, R, nI}K(I,T)

6B
{I, nI , nT , pk(I)}K(T,R)

49B
{R, nT , pk(R)}K(I,T)

45B
KDH(I, R)

{I, R, nI , nT}KDH(I,R)

10B
KDH(I, R)

{R, nI , nT}KDH(I,R)

9B

Figure 6. MKET −c: Multi-hop Key Establishment using a trusted node T to deliver public

keys. T possesses pk(I) but not pk(R). KDH(I, R) is computed by the initiator I and the

responder R.

Trusted node

T

Initiator

I

Responder

R

{I, R, nI}K(I,T)

6B
{I, nI , nT , pk(I)}K(T,R)

49B

{R, nT , nR, pk(R)}K(T,R)

49B
{I, R, nT , nR, pk(R)}K(I,T)

50B
KDH(I, R)

{I, R, nI , nT , nR}KDH(I,R)

14B
KDH(I, R)

{R, nI , nT}KDH(I,R)

9B

J. Sens. Actuator Netw. 2014, 3 235

7. Key Dependency

It is important to note that cryptographic keys are interdependent. In order for a certain protocol to

be executed, nodes should have the appropriate keys. In this section we recapitulate the dependency

between the keys for each of our protocols.

Table 2 presents the dependency between keys for each of our protocols. The public/private keys

of nodes are used to compute the shared symmetric keys using Diffie–Hellman without interaction

described in Section 3. These shared keys are then used to deliver public keys in the case of

protocols IJS and MKES , or to deliver the pre-computed Diffie–Hellman key in the case of protocol

MKES − light. In protocols MKET − a, MKET − b, MKET − cand MKET − d, the public keys

of I and R are delivered using the session keys between these nodes and T . For example, in protocol

MKET − a, the key pk(R) is encrypted by T using the key K(I, T) in order to deliver it to I , which

is denoted by K(I, T)
T :I
−→ pk(R). Similarly, in this protocol pk(I) is encrypted by T using the key

K(R, T) in order to deliver it to R, which is denoted by K(R, T)
T :R
−→ pk(I).

Table 2. Key dependency in our protocols. K1
A:B
−→ K2 denotes that K2 is delivered by A to

B and encrypted with K1.

Protocol Name Delivering

DJS pk(I)
S:I
−→ K(I, S)

IJS KDH(N,S)
S:N
−→ pk(I)

N :I
−→ K(I,N)

MKES

KDH(I, S)
S:I
−→ pk(R)

KDH(R,S)
S:R
−→ pk(I)

MKES − light
KDH(I, S)

S:I
−→ KDH(I,R)

KDH(R,S)
S:R
−→ KDH(I,R)

MKET − a
K(I, T)

T :I
−→ pk(R)

K(R,T)
T :R
−→ pk(I)

MKET − b

K(I, T)
I:T
−→ pk(I)

K(I, T)
T :I
−→ pk(R)

K(R,T)
T :R
−→ pk(I)

MKET − c

K(R,T)
T :R
−→ pk(I)

K(R,T)
R:T
−→ pk(R)

K(I, T)
T :I
−→ pk(R)

MKET − d

K(I, T)
I:T
−→ pk(I)

K(R,T)
T :R
−→ pk(I)

K(R,T)
R:T
−→ pk(R)

K(I, T)
T :I
−→ pk(R)

J. Sens. Actuator Netw. 2014, 3 236

8. Formal Security Evaluation

Evaluating the security of cryptographic protocols is not an easy task and flaws can readily occur in

protocols. During the past decades, several tools [3,5,28] have been developed to automatically verify

cryptographic protocols. We use Scyther [5] because it is one of the fastest as has been shown in [29]

and also one of the most user friendly.

Cas Cremers has developed an automatic tool called Scyther [5]. It is a free tool available on all

operating systems (Linux, Mac and Windows). This tool can automatically find attacks on cryptographic

protocols and prove their security for bounded and unbounded numbers of sessions. One main advantage

of Scyther is that it provides an easy way to model security properties like secrecy and authentication.

Scyther uses the Dolev–Yao intruder model [6]. In this model, the intruder controls the network

and all communications pass through it, which means that all packets can be captured by the intruder.

This is why we do not consider multiple forwarder nodes in our analysis, since it does not provide

more security. Moreover, the intruder has its own public and secret pairs of keys, enabling it to play

the role of any participant in the protocol. It can also encrypt messages with all public or symmetric

keys that it knows and it decrypts cipher texts only if it knows the decryption key. We verified all our

protocols using Scyther without any intermediate nodes. When Scyther proves a security property, the

tool only outputs “OK”, meaning that the property is satisfied. However, if there is a flaw, then a graphical

description of the discovered attack is given and the attack is automatically generated. More precisely,

we proved the secrecy of all sensitive data exchanged (keys and nonces) and also the authenticity of the

communication. Our Scyther codes are available at [9]. The secrecy of the keys and the nonces means

that an intruder cannot learn these data. The authentication property of the communication means that

each node does indeed communicate with the expected node. This property protects our protocols from

replay or man-in-the-middle attacks. Our protocols might appear simple, but they are the result of an

optimization process using Scyther. It leads us to minimal protocol in the sense that removing any piece

of information in any message will enable an attack.

9. Evaluations

In order to compare the execution time of our different protocols, we implemented each protocol on

TelosB motes. In what follows, we describe the settings of our testbed. We also provide and discuss

the results of the overhead of each protocol. We did not compare our protocols with other existing

protocols because implementations are very heterogeneous. Implementation on sensor nodes is very

hardware-dependent; optimization can be done for certain functions depending on the capacities and

the design of the hardware. Thus comparing different implementations on different motes is not really

conclusive, as is shown in [30–33]. The same applies for comparison by simulation, which is even less

conclusive because simulation does not give an idea about how complex the operations are.

TelosB motes have an 8 MHz microcontroller with 10 KB of RAM, 48 KB of ROM and a

CC2420 radio using the IEEE 802.15.4 standard. In our evaluation, we use public key Elliptic Curve

Cryptography (ECC), with parameters secp160r1 given by the Standards for Efficient Cryptography

Group. Our implementation of ECC on TelosB is based on the TinyECC library [34]. More precisely, we

use Elliptic Curve Integrated Encryption Scheme (ECIES), the public key encryption system proposed

J. Sens. Actuator Netw. 2014, 3 237

by Victor Shoup in 2001, and the Elliptic Curve Diffie–Hellman (ECDH) key agreement scheme [35].

For all symmetric encryptions, we use an optimized implementation of AES [36] with a 128-bit key

proposed by [37] in CTR mode. In order to explain why we choose AES with CTR mode and the

128-bit key k, we recall the mechanism of this scheme: let us consider a message m composed of p

blocks m1||m2|| . . . ||mp, and an initial counter value IV randomly chosen. The cipher of the block mi

is ci = {IV + i}k ⊕ mi, where ⊕ denotes the bitwise XOR operator. If one knows IV and the key k,

then one can easily recover from ci the message mi = {IV + i}k⊕ci. When the size of the last block mp

is smaller than 128 bits, it is usual to pad it with 0s to reach 128 bits in order to let both operands have

the same length to perform the bitwise XOR. In this case, the size of the transmitted encrypted packets

is always a multiple of 128 bits. However, in the CTR mode, we can just cut the {IV + p}k message

to the size of mp. Hence we can transmit encrypted messages with exactly the same size as the original

message, and therefore save some execution time.

During the experiments, we considered topologies without intermediate nodes, since these nodes

would only forward the packets without doing any modification on the packets. The cost of these

communications is therefore dependent on the network density, topology and traffic load. In this paper,

we only consider a minimal topology containing only the nodes involved in the cryptographic operations.

This means that for all protocols we tested them with a topology of 3 nodes, except for DJS where only 2

nodes were needed for the execution. This does not affect the feasibility of our protocols for more hops,

because adding more intermediate nodes does not add more cryptographic operations—intermediate

nodes will only forward the message to the next hop according the routing protocol. In addition, nodes do

not have other traffic to exchange during the execution of the protocols. Of course, additional overhead

should be considered because of the routing process and exchanged messages, but this is very dependent

on the routing and MAC layers used during the evaluation. For this reason, we preferred to include

only overhead induced by the cryptographic operations and not the overhead induced by the network

protocols.

In the Table 3, we provide the real execution time for all our protocols. For the sake of completeness

and to make the paper self-sufficient, we also included the results of DJS and IJS. These results are

the averages of 100 experiments. We added in the table the standard deviation of these averages.

Table 3. Total execution time and total size of exchanged messages of our protocols using a

160-bit ECIES key and a 128-bit AES-CTR key.

Protocol Name Execution Time on the Testbed (ms) Standard Deviation (ms) Message Size (Bytes)

DJS 10,112.62 78.09 66

IJS 10,180.81 111.94 116

MKES 6828.48 5.96 119

MKES − light 3649.74 6.10 71

MKET − a 6831.18 6.76 119

MKET − b 6950.10 5.77 159

MKET − c 7324.88 7.77 177

MKET − d 7447.32 8.61 217

J. Sens. Actuator Netw. 2014, 3 238

Moreover, the differences in our protocols come from the usage of cryptographic primitives. All

protocols using asymmetric encryption (DJS and IJS) require more execution time than protocols

using only symmetric encryption (MKES , MKES − light, MKET − a, MKET − b, MKET − c and

MKET − d). In what follows, we analyze the results:

• Note that the two slowest protocols are the join protocols proposed in [11]. Hence, it is more

efficient to establish keys after the deployment than to rejoin the network.

• Protocols MKES and MKET −a have practically the same execution time. The small difference

comes from the use of symmetric keys established after the deployment instead of symmetric

shared keys computed before deployment.

• Protocol MKES− light is the fastest protocol because the sink computes KDH(I, R) and delivers

it to I and R in order to save their energy.

• Protocols MKET − c and MKET − d are slower than MKES , MKET − a and MKET − b due

to the additional messages sent from R to S containing the public key of R.

• The difference of execution time between MKET−a and MKET−b, on one side, and MKET−c

and MKET − d, on the other side, is almost equal to 130 ms. This is due to the encryption,

decryption and transmission of pk(I) added to the request message sent by node I .

• In Table 3, we also provide the total size in Bytes of all exchanged messages for each protocol.

In the figures of protocols presented in Sections 4 and 6, the size in Bytes is also tagged at the

bottom of each message. We have fixed the size of the identity of a node to 1 Byte and the size of

a nonce to 4 Bytes. It should be noted that the size of KDH(I, R) is fixed to 16Bytes. Indeed, the

result of computation of pk(I)× sk(R) gives a key length of 20 Bytes. We use the first 16 Bytes

of the computation result for KDH(I, R).

• Also note that we use symmetric encryption in all protocols for key establishment of Section 6.

Therefore, the size of the input message in Bytes is the same as the size of the output message. In

contrast, we use both asymmetric encryption and symmetric encryption in the two join protocols

of Section 4. Therefore, in order to obtain the tagged value of message size, we must add to the

output encrypted message the size of the MAC, which is equal to 20 Bytes. For example, the

total size of last message in Figure 1 sent to I is 66 Bytes, containing nI(4 Bytes), S (1 Byte),

K(I, S) (16 Bytes) and a MAC (20 Bytes).

Notice that the standard variation values are small compared with the execution time of the protocol.

These variations are essentially caused by the various interruptions of the micro-controller. Nevertheless,

we can see that the highest standard deviation values are obtained for protocols using public key

encryption (DJS and IJS). These complex computations take more time and for each experiment

the execution time can vary a little bit more. Indeed, the public encryption starts with a random number

generation and then multiplies it with the generator point of the curve. The multiplication operation takes

undetermined time, depending on the random number that was chosen. This explains the larger variation

in the results for protocols DJS and IJS.

In order to verify the cause of this variation, we made 100 iterations for protocols DJS and IJS using

the same random number. Table 4 shows that when we fix the random number, the obtained standard

variation is considerably reduced and becomes equivalent to that of the other protocols. This shows

J. Sens. Actuator Netw. 2014, 3 239

that the value of the random number affects the overall execution time of DJS and IJS. Note that the

averages in Table 4 are not the same as the averages in Table 3, which is normal because the averages in

Table 3 are over 100 iterations with 100 different random numbers. The size of the fixed random number

used in the experiments is 20 bytes. The hexadecimal values of each byte starting with most significant

byte are: da 52 cd de 28 d5 c5 2a 8b 5c 18 b9 28 3f 1a 68 b7 2d 01 7b.

Table 4. Total execution time for protocols DJS and IJS using the same random number

in ECIES encryption.

Protocol Name Execution Time on the Testbed (ms) Standard Deviation (ms)

DJS 10,186.49 5.94

IJS 10,291.24 5.71

10. Attack Detection Perspective

Based on the overhead estimation of our protocol, we are able to allow nodes to detect certain types

of attack attempts. Indeed, when a node is attempting an attack, it will induce additional overhead

due to the execution time of cryptographic operations that the attacker needs. Moreover, even in the

man-in-the-middle attack, the wormhole attack or the replay attack, the attacker needs to listen, forward

or generate some encrypted messages. All these operations will cause an additional delay to the estimated

overall request/reply procedure of the authenticated join protocol or key establishment protocol. We

assume that the attacker has the same processing capacities of the nodes; in other words, we assume that

an intruder was able to control one or more nodes of the network and is trying to launch the attack using

the compromised nodes.

The attacks that this technique is able to detect are the ones that will introduce additional delay

to the process. For example, the node that is requesting to join the network will be waiting for an

authenticated response. This response should be received before a certain timeout expires. This timeout

can be estimated according to the number of hops that separate the new node from the sink and the type

of protocol that is used to join the network.

For example, if the new node is 5 hops away from the sink, with a 160-bit key, it will take 6834.20

plus the end-to-end communication delay for a node to establish a key with another node in the network

by passing through the sink (MKES). Indeed, the results shown in Table 3 represent the execution time

without taking into consideration the end-to-end communication delay that is induced by the intermediate

nodes. This delay can be estimated by the routing protocol and taken into account when calculating the

estimated overall time of the process.

In order for the attack detection to be efficient, the end-to-end communication delay should remain

considerably lower than the delay induced by additional cryptographic operations. Hence, according

to the protocol that is being used, the new node is able to estimate when it is expected to receive its

response. Therefore, if a node does not receive an answer on time, it can deduce that this delay might

have been caused by an intruder and then decide to abort the current join process or key establishment

process and try to restart it. This means that a reply will be discarded if received later than expected. This

J. Sens. Actuator Netw. 2014, 3 240

attack detection will help prevent a node from accepting late replies, and restart the process to ensure

that the response is received within a certain timeout interval. Delay estimations should be done for each

network configuration and deployment because they are affected by the traffic state and the congestion

that might be present in the network. In this paper these estimations are out of scope and will be the

subject of future work.

Also, in order for the detection to work, the new node should know how many hops it is away from the

sink. This information can be obtained from the routing protocol. One way to obtain this information

could be the following. When the new node decides to join the network, it will listen for signalling

messages from neighbouring nodes. These signalling messages should contain how many hops the

signalling node is away from the sink. This way, the new node is able to estimate the delay in receiving

the response. In this simple approach, we do not consider the case where certain nodes will deliberately

announce that they are farther away from the sink in order to delay the process or try to launch attacks.

This kind of malicious behaviour is studied in [38], where the authors propose a solution based on the

reputation of nodes. This kind of solutions could be applied to our protocols and are part of our future

works.

11. Conclusions and Future Work

We proposed several multi-hop node authentication and key establishment protocols for WSNs. Our

key establishment solutions can be split into two categories. First, we propose two solutions that use the

sink as a trusted third party to establish a new key between two nodes of the network. Then, we proposed

four protocols that use other nodes in the network as trusted third parties in order to establish a new key.

We proved the security of all of our solutions using the automatic tool Scyther. Our protocols have very

few cryptographic operations but are free of flaws as proven by Scyther. Moreover, we implemented and

tested all our protocols on TelosB nodes in order to evaluate their execution time. The results show that

according to the load of the network and according to the topology, one category might be more efficient

than the others.

Based on our measurements, we were able to allow nodes to detect attack attempts from other nodes

in the network by simply measuring the delay of response reception. Each node can expect how much

time it should take to receive a response according to the protocol being used and the hops that separate

it from the sink. In the case of excessive delay, the node presumes that an attack is taking place and

terminates the protocol. This can be considered as a simple intrusion detection system.

In our future works, we plan on testing our protocols in more realistic platforms such as the

IoT-LAB [39] platform. It would then elucidate how our different protocols would perform in a large

scale network and how long it would take to establish the required secured links.

The decision to choose one or the other of the protocols could be dependent on the topology

information that each node has. For example, if the sink has constrained resource, it would be preferable

for nodes to choose another trusted third party node to establish new keys. The choice would be based on

the number of hops that might separate nodes that want to establish a secure link between each other and

the trusted third party. This kind of information could be built using a neighbour discovery protocol that

allows nodes to share neighbourhood discovery in order to establish n-hop neighbourhood information

J. Sens. Actuator Netw. 2014, 3 241

(where n is the number of hops that nodes will be able to discover). A trade-off should be made between

the cost of neighbourhood discovery and the gain of balancing key establishment overhead on a bigger

number of nodes. Of course, more extensive neighbourhood information enables higher possibility to

find trusted third parties. This study will be part of our future works.

Acknowledgments

This research was conducted with the support of the “Digital Trust” Chair from the University of

Auvergne Foundation.

Author Contributions

In this paper, Ismail Mansour, Gerard Chalhoub and Pascal Lafourcade have worked together on

the design and verification of the protocols, while the implementation and evaluation work has been

essentially done by Ismail Mansour.

Conflicts of Interest

The authors declare no conflicts of interest.

References

1. Kavitha, T.; Sridharan, D. Security Vulnerabilities in Wireless Sensor Networks: A Survey. J. Inf.

Assur. Secur. 2010, 5, 31–34.

2. Lowe, G. Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using FDR. Soft.

Concepts Tools 1996, 17, 93–102.

3. Blanchet, B. Automatic Proof of Strong Secrecy for Security Protocols. In Proceedings of the

IEEE Symposium on Security and Privacy, Berkeley, CA, USA, 9–12 May 2004; pp. 86–100.

4. Pérez, V.B.; González, P.; Cabaleiro, J.C.; Heras, D.B.; Pena, T.F.; Pombo, J.J.; Rivera, F.F.

AVISPA: Visualizing the performance prediction of parallel iterative solvers. Future Gener.

Comput. Syst. 2003, 19, 721–733.

5. Cremers, C. The Scyther Tool: Verification, Falsification, and Analysis of Security Protocols. In

Proceedings of the 2008 20th International Conference Computer Aided Verification (CAV 2008),

Princeton, NJ, USA, 7–14 July 2008; pp. 414–418.

6. Dolev, D.; Yao, A.C. On the Security of Public Key Protocols. IEEE Trans. Inf. Theory 1983, 29,

198–208.

7. Basin, D.; Cremers, C.; Meadows, C. Model Checking Security Protocols. In Handbook of Model

Checking; Springer: Berlin/Heidelberg, Germany, 2014; Chapter 24.

8. Ksiezopolski, B.; Kotulski, Z.; Szalachowski, P. Adaptive Approach to Network Security. In

Computer Networks; Springer: Berlin/Heidelberg, Germany, 2009; Volume 39, pp. 233–241.

9. Mansour, I.; Lafourcade, P.; Chalhoub, G. Scyther code of our authentication protocols, 2014.

Available online: http://sancy.univ-bpclermont.fr/~lafourcade/jsan-scyther-code.tar (accessed on

11 June 2014).

J. Sens. Actuator Netw. 2014, 3 242

10. Mansour, I.; Rusinek, D.; Chalhoub, G.; Lafourcade, P.; Ksiezopolski, B. Multihop Node

Authentication Mechanisms for Wireless Sensor Networks. In Proceedings of the 13th International

Conference (ADHOC-NOW 2014), Benidorm, Spain, 22–27June 2014.

11. Mansour, I.; Chalhoub, G.; Misson, M. Security architecture for multi-hop wireless sensor

networks. In Security for Multihop Wireless Networks; CRC Press Book: Boca Raton, FL, USA,

2014; pp. 157–178.

12. Al-mahmud, A.; Akhtar, R. Secure Sensor Node Authentication in Wireless Sensor Networks.

Int. J. Comput. Appl. 2012, 46, 10–17.

13. Das, M.L. Two-factor user authentication in wireless sensor networks. IEEE Trans. Wirel.

Commun. 2009, 8, 1086–1090.

14. Yeh, H.L.; Chen, T.H.; Liu, P.C.; Kim, T.H.; Wei, H.W. A Secured Authentication Protocol for

Wireless Sensor Networks Using Elliptic Curves Cryptography. Sensors 2011, 11, 4767–4779.

15. Han, K.; Shon, T. Sensor Authentication in Dynamic Wireless Sensor Network Environments.

Int. J. RFID Secur. Cryptogr. 2012, 1, 36–44.

16. Manjusha; Rananavare, L.B. A Robust Message Authentication Scheme in Multihop WSN Using

Elliptical Curve Cryptography and Elgamal Signature. Int. J. Eng. Res. Technol. (IJERT), 2013, 2.

17. Zhang, J.; Shankaran, R.; Orgun, M.A.; Sattar, A.; Varadharajan, V. A Dynamic Authentication

Scheme for Hierarchical Wireless Sensor Networks. In Proceedings of the 7th International ICST

Conference, MobiQuitous 2010, Sydeny, Australia, 6–9 December 2010; Volume 73, pp. 186–197.

18. Bala, S.; Sharma, G.; Verma, A. Classification of Symmetric Key Management Schemes for

Wireless Sensor Networks. Int. J. Secur. Its Appl. 2013.

19. Perrig, A.; Szewczyk, R.; Tygar, J.; Wen, V.; Culler, D. SPINS: Security Protocols for Sensor

Networks. Wirel. Netw. J. (WINE) 2002, 8, 521–534.

20. Perrig, A.; Canetti, R.; Tygar, J.; Song, D. Efficient authentication and signing of multicast streams

over lossy channels. In Proceedings of the 2000 IEEE Symposium on Security and Privacy,

Berkeley, CA, USA, 14–17 May 2000; pp. 56–73.

21. Munivel, E.; Ajit, G. Efficient Public Key Infrastructure Implementation in Wireless Sensor

Networks. In Proceedings of the International Conference on Wireless Communication and Sensor

Computing, Chennai, India, 2–4 January 2010; pp. 1–6.

22. Chan, H.; Perrig, A. PIKE: Peer Intermediaries for Key Establishment in Sensor Networks. In

Proceedings of the 24th Annual Joint Conference of the IEEE Computer and Communications

Societies, Miami, FL, USA, 13–17 March 2005; pp. 524–535.

23. Yu, C.; Lu, C.; Kuo, S. A Simple Non-Interactive Pairwise Key Establishment Scheme in Sensor

Networks. In Proceedings of the IEEE International Conference on Sensing, Communication, and

Networking (SECON 2009), Rome, Italy, 22–26 June 2009; pp. 1–9.

24. Blom, R. An optimal class of symmetric key generation systems. In Proceedings of the

International Conference on the Theory and Applications of Cryptographic Techniques, Paris,

France, 9–11 April 1984; pp. 335–338.

J. Sens. Actuator Netw. 2014, 3 243

25. Zhang, W.; Tran, M.; Zhu, S.; Cao, G. A Random Perturbation-Based Scheme for Pairwise

Key Establishment in Sensor Networks. In Proceedings of the ACM International Symposium

on Mobile Ad Hoc Networking and Computing (MobiHoc 2007), Montréal, QC, Canada, 9–14

September 2007; pp. 90–99.

26. Pister, K.S.; Kahn, J.M.; Boser, B.E. Smart dust: Wireless networks of millimeter-scale sensor

nodes. Available online: http://robotics.eecs.berkeley.edu/ pister/SmartDust/ (accessed on 1

September 2014).

27. Jiang, T.; Li, Q.; Ruan, Y. Secure dynamic source routing protocol. In Proceedings of the 2004

Fourth International Conference on Computer and Information Technology (CIT ’04), Wuhan,

China, 14–16 September 2004; pp. 528–533.

28. Armando, A.; Basin, D.; Boichut, Y.; Chevalier, Y.; Compagna, L.; Cuellar, J.; Drielsma, P.H.;

Heám, P.C.; Kouchnarenko, O.; Mantovani, J.; et al. The AVISPA Tool for the Automated

Validation of Internet Security Protocols and Applications. In Proceedings of the 17th International

Conference (CAV’2005), Edinburgh, Scotland, UK, 6–10 July 2005; pp. 281–285.

29. Cremers, C.J.; Lafourcade, P.; Nadeau, P. Comparing State Spaces in Automatic Protocol Analysis.

In Formal to Practical Security; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5458,

pp. 70–94.

30. Kerckhof, S.; Durvaux, F.; Hocquet, C.; Bol, D.; Standaert, F. Towards Green Cryptography:

A Comparison of Lightweight Ciphers from the Energy Viewpoint. In Proceedings of the 14th

International Workshop, Leuven, Belgium, 9–12 September 2012; pp. 390–407.

31. Eisenbarth, T.; Gong, Z.; Guneysu, T.; Heyse, S.; Indesteege, S.; Kerckhof, S.; Koeune, F.; Nad, T.;

Plos, T.; Regazzoni, F.; et al. Compact Implementation and Performance Evaluation of Block

Ciphers in ATtiny Devices. In Proceedings of the 5th International Conference on Cryptology in

Africa, Ifrance, Morocco, 10–12 July 2012; pp.172–187.

32. Balasch, J.; Ege, B.; Eisenbarth, T.; Gerard, B.; Gong, Z.; Guneysu, T.; Heyse, S.; Kerckhof, S.;

Koeune, F.; Plos, T.; et al. Compact Implementation and Performance Evaluation of Hash

Functions in ATtiny Devices. In Proceedings of the 11th International Conference (CARDIS

2012), Graz, Austria, 28–30 November 2012; pp. 158–172.

33. Cazorla, M.; Marquet, K.; Minier, M. Survey and Benchmark of Lightweight Block Ciphers for

Wireless Sensor Networks. In Proceedings of the 10th International Conference on Security and

Cryptography (SECRYPT 2013), Reykjavik, Iceland, 29–31 July 2013; pp. 543–548.

34. Liu, A.; Ning, N. TinyECC: A Configurable Library for Elliptic Curve Cryptography in Wireless

Sensor Networks. In Proceedings of the 7th International Conference on Information Processing

in Sensor Networks, St. Louis, MO, USA, 22–24 April 2008; pp. 245–256.

35. Diffie, W.; Hellman, M. New directions in cryptography. IEEE Trans. Inf. Theory 1976,

22, C644–C654.

36. Daemen, J.; Rijmen, V. The Design of Rijndael: AES—The Advanced Encryption Standard;

Springer-Verlag: Berlin/Heidelberg, Germany, 2002.

37. Toldo, P; Saloni, M.; Manica, N. AES implementation in TinyOS, June 2008.

J. Sens. Actuator Netw. 2014, 3 244

38. Moati, N.; Otrok, H.; Mourad, A.; Robert, J.M. Reputation-Based Cooperative Detection Model

of Selfish Nodes in Cluster-Based QoS-OLSR Protocol. Wirel. Personal Commun. 2014,

75, 1747–1768.

39. Internet of Things Lab. Available online: https://www.iot-lab.info/ (accessed on 11 June 2014).

c© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

	Introduction
	Related Work
	Pre-deployed Keys and Cryptographic Notations
	Authenticated Multi-hop Join Protocols: DJS and IJS
	Multi-hop Key Establishment Protocols Using the Sink
	Multi-hop Key Establishment Protocols without the Sink
	Key Dependency
	Formal Security Evaluation
	Evaluations
	Attack Detection Perspective
	Conclusions and Future Work
	Acknowledgments
	Author Contributions
	Conflicts of Interest

