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Abstract

For a simple Lie algebra g and an irreducible faithful representation π of g, we introduce
the Schur polynomials of (g, π)-type. We then derive the Sato–Zhou type formula for
tau functions of the Drinfeld–Sokolov (DS) hierarchy of g-type. Namely, we show that
the tau functions are linear combinations of the Schur polynomials of (g, π)-type with the
coefficients being the Plücker coordinates. As an application, we provide a way of computing
polynomial tau functions for the DS hierarchy. For g of low rank, we give several examples
of polynomial tau functions, and use them to detect bilinear equations for the DS hierarchy.

1 Introduction

Given a simple Lie algebra g over C, Drinfeld and Sokolov in [14] explained how to associate to
it a family of commuting bi–hamiltonian PDEs known as the Drinfeld–Sokolov (DS) hierarchy of
g–type. Nowadays, Drinfeld–Sokolov hierarchies are certainly among the most studied examples
of integrable systems; one of their remarkable properties is that they are tau–symmetric [19,
18, 36, 7], meaning that they admit the so-called tau function of an arbitrary solution to the
hierarchy. For the case g = sln(C) the DS hierarchy of g-type coincides (under a particular
choice of the DS gauge [14, 2]) with the Gelfand–Dickey hierarchy, and so, in particular, for
n = 2, with the celebrated Korteweg–de Vries (KdV) hierarchy. It is known that tau functions
of the Gelfand–Dickey hierarchies can be expressed as linear combinations of Schur polynomials
with the coefficients being Plücker coordinates1 [32, 38, 3, 30]. In this short paper we aim
to generalize this fact to an arbitrary given Lie algebra g. The generalization will depend on
matrix realizations of g (note that the tau function itself is independent of the realizations of g
[6]!). Indeed, one of our main observations is that the generalization of Schur polynomials are
associated to faithful representations.

1Indeed, more generally this is true for the KP hierarchy, of which the Gelfand–Dickey hierarchies are reduc-
tions.
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As an application of our result, we describe a systematic way of finding simple solutions (i.e.
solutions whose tau function is a polynomial or a fractional power of it) of the DS hierarchy of
g-type. Of course, in the case of the hierarchies of type An, we recover the well-known results,
since polynomial tau functions of these hierarchies (more generally of the KP hierarchy) had
been studied for many years, due to their relations with Bäcklund transformations [1] and the
dynamical systems of Calogero type (see for instance [35] and the references therein). Moreover,
it had been proved that the polynomial tau functions of the so–called BKP hierarchy can be
written in terms of the projective representations of the symmetric group [37] and this hierarchy,
moreover, contains as reductions some of the DS hierarchies of Dn-type, as explained in [12].
Nevertheless, it seems to us that a systematic approach to the study of polynomial tau functions
associated to the general case (i.e. for an arbitrary Lie algebra) is still missing, and this paper
gives a first result in this direction. The polynomial tau functions we obtain are, actually, quite
non–trivial, and can also be used to give some explicit information about the structure of the
bilinear equations for the hierarchy.

In order to state precisely our results, we need to fix some notations about finite dimensional
Lie algebras, loop algebras and Toeplitz determinants. Let g be a simple Lie algebra over C of
rank n, and h, h∨ the Coxeter and dual Coxeter numbers, respectively. Fix h a Cartan subalgebra
of g. Take Π = {α1, . . . , αn} ⊂ h∗ a set of simple roots, and let △ ⊂ h∗ be the root system. We
know that g has the root space decomposition

g = h⊕
⊕

α∈△

gα.

Let θ denote the highest root with respect to Π, and (·|·) : g × g → C the normalized Cartan–
Killing form, i.e. (θ|θ) = 2. For a root α ∈ △, denote by Hα the unique vector in h satisfying
(Hα|Hβ) = (α|β), ∀ β ∈ △.

Let Ei ∈ gαi
, Fi ∈ g−αi

, Hi = 2Hαi
/(αi|αi) be a set of Weyl generators of g. They satisfy

[Ei, Fi] = Hi, [Hi, Ej] = Aij Ej, [Hi, Fj] = −Aij Fj, 1 ≤ i, j ≤ n,

where (Aij)
n
i,j=1 is the Cartan matrix of g. Choose E−θ ∈ g−θ, Eθ ∈ gθ, normalized by the

conditions (Eθ |E−θ) = 1 and ω(E−θ) = −Eθ, where ω : g → g is the Chevalley involution. Let
I+ :=

∑n
i=1Ei be a principal nilpotent element of g. Denote by L(g) = g ⊗ C[λ, λ−1] the loop

algebra of g. On L(g) there is the principal gradation defined by assigning

degEi = 1, degHi = 0, deg Fi = −1, i = 1, . . . , n, deg λ = h

such that L(g) decomposes into homogeneous subspaces

L(g) =
⊕

j∈Z

L(g)j .

Here, elements in L(g)j have degree j. Define Λ ∈ L(g) by

Λ = I+ + λE−θ. (1)

Clearly, Λ is homogeneous of degree 1. Denote by L(g)<0 elements in L(g) with negative degrees,
similarly, by L(g)≤0 elements with non-positive degrees.
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It was shown in [26, 29] that Ker adΛ ⊂ L(g) has the following decomposition

Ker adΛ =
⊕

ℓ∈E

CΛℓ, deg Λℓ = ℓ ∈ E :=
n⊔

i=1

(mi + hZ)

where the integers m1, . . . , mn are the exponents of g, and E is called the set of exponents of
L(g). We use E+ to denote the set of positive exponents. The elements Λi commute pairwise

[Λi,Λj] = 0, ∀ i, j ∈ E. (2)

They can be normalized by

Λma+kh = Λma
λk, k ∈ Z,

(Λma
|Λmb

) = hλ δa+b,n+1.

In particular, we can choose Λ1 = Λ.

Let us now take
π : g → gl(m,C) (3)

an irreducible faithful representation. When no confusion can arise, for b ∈ g, we write π(b)
simply as b. Our generalization will be based on the infinite Grassmannian approach [32, 33] and
the related Plucker coordinates.

Notations:
a) For M =

∑
k∈Z Mk λ

k with Mk ∈ gl(m,C), define the Laurent matrix L(M) associated with
M by

[L(M)]IJ = MI−J , I, J ∈ Z. (4)

Here, capital-letter indices I, J,K, . . . are used for block row/column coordinates, and small-
letter indices are for ordinary row/column coordinates.
b) Y will denote the set of all partitions; for λ = (λ1 ≥ λ2 ≥ . . . ) ∈ Y, ℓ(λ) denotes the length of
λ, |λ| the weight of λ; denote by λ = ( k1, . . . , kd | l1, . . . , ld ) be the Frobenius notation of λ with
d being the Frobenius rank.

Definition 1.1. Let ξ :=
∑

ℓ∈E+
tℓ Λℓ with tℓ, ℓ ∈ E+ being indeterminates and let s denote the

Laurent matrix associated with eξ, namely,

s := L(eξ). (5)

The Schur polynomials of (g, π)-type are labelled by partitions and defined by

sλ := det
(
si−1, j−λj−1

)ℓ(λ)
i,j=1

, λ ∈ Y− ∅,

s∅ := 1. (6)

Definition 1.2. In the case π is taken as the adjoint representation of g, we call sλ, λ ∈ Y the
intrinsic Schur polynomials of g-type.

Remark 1.3. In the case g = An. Take π(g) the well-known matrix realization of g, i.e. π(g) =
sln+1(C). We have Λ =

∑n
i=1Ei,i−1+λE1,n+1. The Schur polynomials of (g, π)-type then coincide

with the Schur polynomials [30] under the restriction t(n+1)k ≡ 0, k = 1, 2, 3, . . . .
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Definition 1.4. ∀X ∈ λ−1g[[λ−1]], denote by rX the Laurent matrix associated with eX , i.e.

rX := L(eX). (7)

For λ = (λ1, . . . , λℓ(λ)) ∈ Y, define

rX,λ := det (rX,i−λi−1,j−1)
ℓ(λ)
i,j=1 .

Definition 1.5. For ξ =
∑

ℓ∈E+
tℓ Λℓ (as above), and for any X ∈ λ−1g[[λ−1]], define matrices

DIJ and ZX,IJ (I, J ≥ 0) by

I − eξ(λ) e−ξ(µ)

λ− µ
=

∞∑

I,J=0

DIJ λ
I+1µJ+1, (8)

I − eX(λ) e−X(µ)

λ− µ
=

∞∑

I,J=0

ZX, IJ λ
−I−1µ−J−1. (9)

Define s(i|j), r(i|j) (i, j ≥ 0) via

(DIJ)ab = sm·I+a−1,m·J+m−b,

(ZX, IJ)ab = rm·I+m−a,m·J+b−1

where a, b = 1, . . . , m. We call ZX, IJ the matrix-valued affine coordinates and rX, (i|j) the affine
coordinates.

Remark 1.6. The matrix-valued affine coordinates ZX, IJ and their generating formula (9) were
introduced in [3] by F. Balogh and one of the authors of the present paper for the sl2(C) case.

The following theorem is the main result of the paper. Denote by κ the constant such that

(a|b) = κTr(π(a)π(b)) ∀a, b ∈ g. (10)

Theorem 1.7. For any X ∈ λ−1g[[λ−1]], the formal series τ defined by

τ :=

(
∑

ν∈Y

rX,ν sν

)κ

(11)

is a tau function of the Drinfeld–Sokolov hierarchy of g-type. Moreover, sν and rX,ν have the
following expressions

sν = det
(
s(ki|lj)

)d
i,j=1

, (12)

rX,ν = (−1)l1+···+ld det
(
rX,(ki|lj)

)d
i,j=1

. (13)

We refer to (11)–(13) as the Sato–Zhou type formula for tau functions of the DS hierarchy.
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Remark 1.8. As the reader might already have noticed, here the terminology is very similar to the
one used to deal with the KP hierarchy in the Sato’s approach. However, it is worth mentioning
that tau functions of the DS hierarchies of g-type in general are not KP tau functions (except for
g = sln+1(C)). One way to see it (which is close to the spirit of this paper) is that the generalized
Schur polynomials sν of (g, π)-type we defined are “reductions” (in the sense of the Remark 1.3)
of the usual ones [30] just in the An case.

Remark 1.9. The formula (11) is intrinsic when π is taken as the adjoint representation of g.
We will study the intrinsic Schur polynomials associated to g in a future publication.

Remark 1.10. For the ABCD cases, a result similar to Theorem 1.7 was obtained in [39] where
a different method was used; see also in [4] for more details for the An case.

Organization of the paper In Section 2 we review the Drinfeld–Sokolov hierarchies and their
tau functions. In Section 3 we prove Theorem 1.7. Some explicit examples and applications are
given in Section 4. A list of first few Schur polynomials of (g, π)-type for g of low ranks and
particular choices of π are given in the Appendix.
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John Harnad, Leonardo Patimo, Daniele Valeri, Chao-Zhong Wu and Jian Zhou for helpful
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Lebesgue ANR-11-LABX-0020-01 for creating an attractive mathematical environment. Part
of the work of D.Y. was done during his visits to LAREMA; he acknowledges the support of
LAREMA and warm hospitality.

2 Review of the Grassmannian approach to the DS hier-

archy

Denote by b the Borel subalgebra of g, i.e. b := g≤0, and by n the nilpotent subalgebra n := g<0.
Define a linear operator L by

L := ∂x + Λ + q(x) (14)

where q(x) ∈ b. It is proved by V. G. Drinfeld and V. V. Sokolov [14] that there exists a unique
smooth function U(x) ∈ g((λ−1))<0 ∩ Im adΛ such that

e−adU(x)L = ∂x + Λ +H(x), H(x) ∈ Ker adΛ.

The following commuting system of PDEs

∂L

∂tℓ
= −

[
(eadUΛℓ)≥0 , L

]
, ℓ ∈ E+ (15)

are called the pre-DS hierarchy of g-type.
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Gauge transformations. For any smooth function N(x) ∈ n, the map

L 7→ L̃ = eadNL = ∂x + Λ + q̃

is called a gauge transformation. A vector space V ⊂ g is called a DS gauge if it satisfies

[I+, n]⊕ V = b. (16)

Below we fix V a DS gauge. It was observed in [14] that the flows (15) can be reduced to gauge
equivalent classes; moreover, for any q(x) ∈ b, there exists a unique N(x) such that q̃(x) ∈ V .
Let us denote

Lcan := ∂x + Λ + qcan(x), qcan(x) ∈ V.

Take v1, . . . , vn a homogeneous basis of V , namely deg vi = −mi, and write

qcan(x) =

n∑

i=1

ui(x) vi.

The DS hierarchy of g-type is defined as the system of the pre-DS flows for the complete set
of representatives (aka gauge invariants) u1, . . . , un. Clearly, the precise form2 of this integrable
hierarchy depends on the choice of the DS gauge V ; the hierarchies under different choices of V
are Miura equivalent [?, 24, 25, 19, 6]. We remark that a unified algorithm of writing the DS
hierarchy of g-type for an arbitrary choice V was obtained recently in [6]; it has the form

∂ui

∂tℓ
= aiℓ[u

1, . . . , un], ℓ ∈ E+ (17)

where ai,ℓ[u
1, . . . , un] are differential polynomials of u1, . . . , un. It should also be noted that for

the DS hierarchy of g-type the time variable t1 can be identified with −x.

The hierarchy (17) is known to be Hamiltonian and tau-symmetric [19, 24, 36, 7]. Therefore,
for an arbitrary solution qcan of (17), there exists a tau function τ(t) of qcan. The tau function is
determined up to a multiplicative factor of the form

exp
(∑

ℓ∈E+

cℓ tℓ

)

where cℓ are arbitrary constants. We review in this subsection the Grassmannian approach to
tau functions.

Denote E = Cm where m is defined in (3). Let H := E((λ−1)) be the linear space of E-valued
formal series in z with finitely many positive powers and let H+ := E[z]. Denote by Gr the
Sato–Segal–Wilson Grassmannian [32, 33]. A point W ∈ Gr is a subspace of H . Here we are
interested in the big cell Gr(0) ⊂ Gr which consists of points W of the form

W = SpanC

{
ei λ

ℓ +
∑

k≥0

Ak,ℓ,i ei λ
−k−1

}

i=1,...,m, ℓ≥0

.

Here Ak,ℓ,i are called the affine coordinates [20] of W .

2It also depends on scalings of the basis vi which gives rise to scalings of ui. Such a coordinate change is trivial
(In the case g = Deven other linear transformation of ui needs to be considered but is again trivial).
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Definition 2.1. Define Gr(0)g as the following subset of the big cell Gr(0)

Gr(0)g =
{
eaH+ | a ∈ λ−1g[[λ−1]]

}
.

We call Gr(0)g the embedded big cell of g-type.

For a ∈ λ−1g[[λ−1]], write G = ea =
∑

k≥0Gkλ
−k. The matrices G0, G1, . . . serve as the

matrix-valued coordinates for the point W corresponding to a; see Fig. 1. Clearly, G0 = I.

...
... . .

.

· · ·

· · ·

· · ·

· · ·

. . .

G2

G1

G0

G3

G2

G1

G0

Figure 1: Matrix-valued coordinates in Sato–Segal–Wilson Grassmannian

Definition 2.2. ∀M =
∑

k∈Z Mk λ
k, Mk ∈ gl(m,C), the N-th (N ≥ 0) block Toeplitz matrix

associated to M is defined by
TN (M) = (MI−J)

N
I,J=0.

The following theorem comes from the results obtained in [9, 10].

Theorem A. (Cafasso–Wu [9, 10]) For any X ∈ λ−1g[[λ−1]], let γ = eξeX . Define τ = τ(t) by

τ =
[
lim

N→∞
det TN (γ)

]κ
, (18)

where κ is defined in (10). Then τ is a tau function of the DS hierarchy associated to g.

Remark 2.3. The stabilization proved in [22] for the case of the Witten–Kontsevich tau function
and extended in [10] for the general cases ensures that the limit in (18) is meaningful.

3 Proof of Theorem 1.7

Define γ = eξeX , where we recall that X is the given element in λ−1g[[λ−1]], and ξ =
∑

ℓ∈E+
tℓ Λℓ.

We have
L(γ) = L(eξ)L(eX) = s rX
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where s, rX are defined in (5), (7), respectively. For any N ≥ 1, define two matrices

sN = (sN , ij)i∈{0,...,N}, j∈{−N−1,...,N}

and
rN = (rN , ij)i∈{−N−1,...,N}, j∈{0,...,N}

by
sN, ij := L(eξ)ij, rN, ij := L(eX)ij .

Then we have
lim

N→∞
det TN(γ) = lim

N→∞
det(sN rN).

By using the well-known Cauchy–Binet formula (see for instance [21]) we obtain [32, 20] from
Theorem A that

τ 1/κ =
∑

λ∈Y

rX,λ sλ

where we recall that rX,λ and sλ are defined by

rX,λ = det (ri−λi−1,j−1)
ℓ(λ)
i,j=1

and
sλ = det

(
si−1,j−λj−1

)ℓ(λ)
i,j=1

.

As explained in [3], formulae (8) and (9) give the Gaussian eliminations and formulae (12)
and (13) are due to the Giambelli-type formula [20, 30, 3]. The theorem is proved.

4 Polynomial tau functions and bilinear equations

Theorem 1.7 gives a simple procedure to compute the tau function τ when τ 1/κ is a polynomial.
Indeed, let us fix the Lie algebra g and take a faithful representation π. Choosing X ∈ λ−1g[[λ−1]]
such that π(X) is a nilpotent matrix, the infinite series in (11) becomes finite, as it is easy to
verify that only finitely many Plücker coordinates {rµ, µ ∈ Y} are non zero. Consequently, τ 1/κ

is polynomial. This simple idea was used for example in [3] for the KdV hierarchy. If κ = 1,
then the tau function itself is a polynomial. Interestingly enough, in the computations we will
perform, even when κ = 1/2, we obtain some polynomial tau functions: in other words, the finite
sum in (11) is a perfect square. Even if this result has not been proved in general, we expect that
our procedure gives a systematic way to compute all the polynomials tau functions (up to a shift
of the time variables {ti, i ∈ E+}) of the DS hierarchy of g-type. As stated in the introduction
of [28], this is an interesting open problem.

In what follows we compute the first few polynomial tau functions of the DS hierarchy of
g-type for g = A1, A2, B2 and D4. We use these particular tau functions to deduce possible
bilinear equations of small degrees. Note that each Drinfeld–Sokolov hierarchy has infinitely
many solutions. The usual question is to find particular solutions to the DS hierarchy (solve all
PDEs in this hierarchy together). Here we consider the inverse:

Deduce possible PDEs from particular solutions.
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Sometimes, one particular solution already contains all the information of an equation and
of the whole hierarchy. For example, the “topological solution” was used by B. Dubrovin and
Y. Zhang to construct the integrable hierarchy of topological type [19, 17]. However, a polynomial
tau function τpoly of the DS hierarchy contains less information, namely, if τpoly satisfies some
PDE, it will not guarantee directly that other tau functions of the DS hierarchy satisfy this PDE.
Nevertheless, if τpoly does not satisfy a PDE, then the PDE cannot belong to the DS hierarchy.

4.1 Bilinear derivatives

Given two smooth functions f(x), g(x) with independent variables x = (xi)i∈I , where I denotes
an index set. The bilinear derivatives Di1 · · ·Dik are operators defined via the identity

e
∑

i∈I hi Di(f, g) ≡ f(x+ h) g(x− h), ∀h.

It means that, expanding both sides of this identity in h

e
∑

i∈I hi Di(f, g) = (f, g) +
∑

i∈I

hi Di(f, g) +
∑

i,j∈I

hihj

2
DiDj(f, g) + · · · ,

f(x+ h) g(x− h) = f(x)g(x) +
∑

i∈I

hi

( ∂f
∂xi

g − f
∂g

∂xi

)
+ · · ·

and comparing the coefficients of monomials of h, we obtain, for example,

Di(f, g) =
∂f

∂xi

g − f
∂g

∂xi

,

DiDj(f, g) =
∂2f

∂xi∂xj

g + f
∂2g

∂xi∂xj

−
∂f

∂xi

∂g

∂xj

−
∂f

∂xj

∂g

∂xi

.

For the Drinfeld–Sokolov hierarchy of g-type, we take I := E+. There is a natural gradation
for the bilinear derivatives, defined by assigning degDi = i for i ∈ E+. Denote by Hg the
linear space of bilinear equations satisfied by the Drinfeld–Sokolov hierarchies of g-type, which
decomposes into homogeneous subspaces

Hg =
⊕

i

H[i]
g .

The gradation allows us to list all possible bilinear equations up to certain degree.

4.2 Examples of polynomial tau functions

4.2.1 The A1 case

Let us chose the standard matrix realization g = sl(2;C). Consider the following two elements
in λ−1g[[λ−1]]

1

λ
F =

1

λ

(
0 0
1 0

)
,

1

λ
E =

1

λ

(
0 1
0 0

)
. (19)
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The associated polynomial tau functions are

τ1 = 1 + t1, τ2 = 1 + t3 −
t31
3

(20)

respectively. Similarly, one computes polynomial tau functions corresponding to elements of the
form λ−kF , λ−kE, k ≥ 2. For example, for k = 2, we obtain

τ3 = 1 + 2t3 − t5t1 + t23 +
t31
3
+

1

3
t3t

3
1 −

1

45
t61, (21)

τ4 = 1− t3t7 + 2t5 + t25 + t33t1 − t3t5t
2
1 − t3t

2
1 +

1

3
t7t

3
1 −

t51
15

−
1

15
t5t

5
1 +

1

105
t3t

7
1 −

t101
4725

, (22)

corresponding to λ−2F and λ−2E, respectively.

Now consider all bilinear equations up to degree 4:

(β + α0D
2
1 + α1D

4
1 + α2D1D3)(τ, τ) = 0 (23)

where β, α0, α1, α2 are complex constants. Requiring that τ1, τ2 satisfy the above ansatz (23), we
find that up to a multiplicative constant there is only one possible choice of coefficients:

(D4
1 − 4D1D3)(τ, τ) = 0. (24)

Similarly up to degree 6, we find out only two more possible linearly independent bilinear equa-
tions that are satisfied by τ1, τ2, τ3, τ4

(D6
1 + 20D3

1D3 − 96D1D5)(τ, τ) = 0, (25)

(D3
1D3 + 2D2

3 − 6D1D5)(τ, τ) = 0, (26)

which are well known to belong to the hierarchy of A1-type, that is the KdV hierarchy. Conse-
quently, we have shown that

dimC H
[deg≤6]
A1

≤ 3.

Moreover, (24)–(26) are the three only possible choices of homogeneous basis (up to constant

factors) of H
[deg≤6]
g .

Relation with the Adler–Moser polynomials. An alternative way of computing polynomial
tau functions for the KdV hierarchy was given by Adler and Moser [1]. Define a family of
polynomials θk(x = q1, q3, q5, . . . , q2k−1), k ≥ 0 recursively by

θ0 = 1, θ1 = x,

θ′k+1θk−1 + θk+1θ
′
k−1 = (2k − 1)θ2k, ∀ k ≥ 2,

where the prime denotes the x-derivative and for each k ≥ 2 the integration constant is chosen
to be q2k−1. The polynomials θk are known as the Adler–Moser polynomials. It was also proven
in [1] that there exists a unique change of variables q → t that transforms the Adler–Moser
polynomials into the polynomial tau functions of the KdV hierarychy. In [15], one of the authors
of the present paper proved that the desired change of variables is given by q1 = t1 = x and

∑

i≥2

q2i−1

α2i−1
z2i−1 = tanh

(
∑

i≥2

t2i−1z
2i−1

)
,

where α2i−1 := (−1)i−132 · · · (2i− 3)2(2i− 1). Up to a shift and renormalisation of the times, we
recover in particular the polynomials given in equations (20)–(22).
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4.2.2 The A2 case

We still chose the standard matrix realization g = sl(3;C). Consider for example the following
two elements in λ−1g[[λ−1]] :

X1 =
1

λ




0 0 0
a1 0 0
a2 a3 0



 , X2 =
1

λ




0 a1 a2
0 0 a3
0 0 0



 , (27)

where a1, a2, a3 are arbitrary constants. The corresponding polynomial tau functions will be
denoted by τ1, τ2, respectively. We have

τ1 = 1 + a2t1 +
1

2
a1t

2

1
−

1

2
a3t

2

1
+

1

8
a1a3t

4

1
−

1

160
a
2

1
a3t

6

1
+

1

160
a1a

2

3
t
6

1
−

a2

1
a2

3
t8
1

1792
+ a1t2 + a3t2 +

1

16
a
2

1
a3t

4

1
t2

+
1

16
a1a

2

3
t
4

1
t2 +

3

2
a1a3t

2

2
−

1

8
a
2

1
a3t

2

1
t
2

2
+

1

8
a1a

2

3
t
2

1
t
2

2
+

1

32
a
2

1
a
2

3
t
4

1
t
2

2
+

1

4
a
2

1
a3t

3

2
+

1

4
a1a

2

3
t
3

2
+

1

16
a
2

1
a
2

3
t
4

2
−

1

4
a
2

1
a3t

2

1
t4

−
1

4
a1a

2

3
t
2

1
t4 −

1

2
a
2

1
a3t2t4 +

1

2
a1a

2

3
t2t4 −

1

4
a
2

1
a
2

3
t
2

1
t2t4 −

1

4
a
2

1
a
2

3
t
2

4
+

1

2
a
2

1
a3t1t5 −

1

2
a1a

2

3
t1t5 +

1

4
a
2

1
a
2

3
t1t7 ,

τ2 = 1−
1

8
a1t

4

1
+

1

8
a3t

4

1
+

1

20
a2t

5

1
+

1

640
a1a3t

8

1
−

a2

1
a3t

12

1

358400
+

a1a
2

3
t12
1

358400
−

a2

1
a2

3
t16
1

90112000
−

1

2
a1t

2

1
t2 −

1

2
a3t

2

1
t2 −

a2

1
a3t

10

1
t2

12800
−

a1a
2

3
t10
1

t2

12800
+

1

2
a1t

2

2
−

1

2
a3t

2

2

− a2t1t
2

2
+

1

16
a1a3t

4

1
t
2

2
−

13a2

1
a3t

8

1
t2
2

17920
+

13a1a
2

3
t8
1
t2
2

17920
+

3a2

1
a2

3
t12
1

t2
2

1126400
−

1

320
a
2

1
a3t

6

1
t
3

2
−

1

320
a1a

2

3
t
6

1
t
3

2
−

3

8
a1a3t

4

2
−

1

128
a
2

1
a3t

4

1
t
4

2
+

1

128
a1a

2

3
t
4

1
t
4

2

−
a2

1
a2

3
t8
1
t4
2

10240
−

1

32
a
2

1
a3t

2

1
t
5

2
−

1

32
a1a

2

3
t
2

1
t
5

2
−

1

32
a
2

1
a3t

6

2
+

1

32
a1a

2

3
t
6

2
+

1

256
a
2

1
a
2

3
t
4

1
t
6

2
+

1

256
a
2

1
a
2

3
t
8

2
+ a1t4 + a3t4 +

a2

1
a3t

8

1
t4

1280
+

a1a
2

3
t8
1
t4

1280

−
3

2
a1a3t

2

1
t2t4+

1

160
a
2

1
a3t

6

1
t2t4−

1

160
a1a

2

3
t
6

1
t2t4−

a2

1
a2

3
t10
1

t2t4

12800
+

1

32
a
2

1
a3t

4

1
t
2

2
t4+

1

32
a1a

2

3
t
4

1
t
2

2
t4−

1

8
a
2

1
a3t

2

1
t
3

2
t4+

1

8
a1a

2

3
t
2

1
t
3

2
t4−

1

320
a
2

1
a
2

3
t
6

1
t
3

2
t4

−
3

16
a
2

1
a3t

4

2
t4 −

3

16
a1a

2

3
t
4

2
t4 −

1

32
a
2

1
a
2

3
t
2

1
t
5

2
t4 +

3

2
a1a3t

2

4
+

1

32
a
2

1
a3t

4

1
t
2

4
−

1

32
a1a

2

3
t
4

1
t
2

4
+

a2

1
a2

3
t8
1
t2
4

2560
−

3

8
a
2

1
a3t

2

1
t2t

2

4
−

3

8
a1a

2

3
t
2

1
t2t

2

4
−

1

8
a
2

1
a3t

2

2
t
2

4

+
1

8
a1a

2

3
t
2

2
t
2

4
+

1

64
a
2

1
a
2

3
t
4

1
t
2

2
t
2

4
−

3

32
a
2

1
a
2

3
t
4

2
t
2

4
+

1

4
a
2

1
a3t

3

4
+

1

4
a1a

2

3
t
3

4
−

1

8
a
2

1
a
2

3
t
2

1
t2t

3

4
+

1

16
a
2

1
a
2

3
t
4

4
+ a2t5 +

1

2
a1a3t

3

1
t5 +

3a2

1
a3t

7

1
t5

1120
−

3a1a
2

3
t7
1
t5

1120

+
a2

1
a2

3
t11
1

t5

140800
+

1

80
a
2

1
a3t

5

1
t2t5 +

1

80
a1a

2

3
t
5

1
t2t5 +

1

8
a
2

1
a3t

3

1
t
2

2
t5 −

1

8
a1a

2

3
t
3

1
t
2

2
t5 +

1

320
a
2

1
a
2

3
t
7

1
t
2

2
t5 +

1

4
a
2

1
a3t1t

3

2
t5 +

1

4
a1a

2

3
t1t

3

2
t5 −

1

32
a
2

1
a
2

3
t
3

1
t
4

2
t5

+
1

4
a
2

1
a3t

3

1
t4t5 +

1

4
a1a

2

3
t
3

1
t4t5 −

1

2
a
2

1
a3t1t2t4t5 +

1

2
a1a

2

3
t1t2t4t5 +

1

80
a
2

1
a
2

3
t
5

1
t2t4t5 +

1

4
a
2

1
a
2

3
t1t

3

2
t4t5 +

1

8
a
2

1
a
2

3
t
3

1
t
2

4
t5 +

1

4
a
2

1
a3t

2

1
t
2

5
−

1

4
a1a

2

3
t
2

1
t
2

5

−
1

160
a
2

1
a
2

3
t
6

1
t
2

5
−

1

2
a
2

1
a3t2t

2

5
−

1

2
a1a

2

3
t2t

2

5
−

1

8
a
2

1
a
2

3
t
2

1
t
2

2
t
2

5
−

1

2
a
2

1
a
2

3
t2t4t

2

5
−

1

4
a
2

1
a
2

3
t1t

3

5
−

1

40
a
2

1
a3t

5

1
t7 +

1

40
a1a

2

3
t
5

1
t7 +

1

2
a
2

1
a3t1t

2

2
t7 −

1

2
a1a

2

3
t1t

2

2
t7

−
1

2
a
2

1
a3t5t7 +

1

2
a1a

2

3
t5t7 −

1

16
a
2

1
a3t

4

1
t8 −

1

16
a1a

2

3
t
4

1
t8 −

1

4
a
2

1
a3t

2

1
t2t8 +

1

4
a1a

2

3
t
2

1
t2t8 −

1

160
a
2

1
a
2

3
t
6

1
t2t8 +

1

4
a
2

1
a3t

2

2
t8 +

1

4
a1a

2

3
t
2

2
t8 +

1

8
a
2

1
a
2

3
t
2

1
t
3

2
t8

+
1

2
a
2

1
a3t4t8 −

1

2
a1a

2

3
t4t8 −

1

16
a
2

1
a
2

3
t
4

1
t4t8 +

1

4
a
2

1
a
2

3
t
2

2
t4t8 +

1

2
a
2

1
a
2

3
t1t2t5t8 −

1

4
a
2

1
a
2

3
t
2

8
+

1

80
a
2

1
a
2

3
t
5

1
t11 −

1

4
a
2

1
a
2

3
t1t

2

2
t11 +

1

4
a
2

1
a
2

3
t5t11 .

Consider all possible bilinear equations of degree 4:

(α1D
4
1 + α2D

2
2)(τ, τ) = 0,

Requiring τ1 satisfies this ansatz we find that there is only one possible choice:

(D4
1 + 3D2

2)(τ, τ) = 0.

Similarly, requiring that τ1 and τ2 to both satisfy the ansatz of bilinear equation of degree 6, we
find that there are only two linearly independent bilinear equations of degree 6:

(D6
1 + 45D2

1D
2
2 + 90D2D4 − 216D1D5)(τ, τ) = 0,

(D6
1 + 15D2

1D
2
2 + 60D2D4 − 96D1D5)(τ, τ) = 0,

which are well known to belong to the hierarchy of A2-type (i.e. the Boussinesq hierarchy).
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4.2.3 The B2 case

We chose the matrix realization of the B2 simple Lie algebra as in [14]. We consider two explicit
examples given respectively by the following matrices3

X1 =
1

λ




0 0 0 0 0
a2 0 0 0 0
a3 a5 0 0 0
a4 0 a5 0 0
0 a4 −a3 a2 0




, X2 =
1

λ




0 0 a3 a4 0
0 0 0 0 a4
0 0 0 0 −a3
0 0 0 0 0
0 0 0 0 0




.

The associated tau functions will be denoted by τ1 and τ2. They have the expressions

τ1 = 1 +
1

2
a4t1 +

1

4
a3t

2

1
+

1

12
a2t

3

1
−

1

12
a5t

3

1
−

1

192
a
2

3
t
4

1
+

1

96
a2a4t

4

1
+

1

192
a3a5t

5

1
+

a2a5t
6

1

1920
−

1

720
a
2

5
t
6

1
−

a2a4a5t
7

1

11520
−

a2a3a5t
8

1

53760
−

a2

2
a5t

9

1

483840

+
a2a

2

5
t9
1

1088640
+

a2a4a
2

5
t10
1

3110400
+

11a2a3a
2

5
t11
1

87091200
+

43a2

2
a2

5
t12
1

2090188800
−

79a2a
3

5
t12
1

2874009600
−

37a2

2
a3

5
t15
1

1931334451200
+

a2

2
a4

5
t18
1

115880067072000
+

1

2
a2t3 + a5t3 −

1

8
a
2

3
t1t3

+
1

4
a2a4t1t3 +

1

8
a3a5t

2

1
t3 +

1

16
a2a5t

3

1
t3 −

1

24
a
2

5
t
3

1
t3 +

1

192
a2a4a5t

4

1
t3 +

1

640
a2a3a5t

5

1
t3 +

a2

2
a5t

6

1
t3

3840
−

a2a
2

5
t6
1
t3

1080
−

a2a4a
2

5
t7
1
t3

34560
−

a2a3a
2

5
t8
1
t3

193536

−
31a2

2
a2

5
t9
1
t3

17418240
+

11a2a
3

5
t9
1
t3

8709120
+

101a2

2
a3

5
t12
1

t3

22992076800
−

29a2

2
a4

5
t15
1

t3

6437781504000
+

3

4
a2a5t

2

3
+

1

4
a
2

5
t
2

3
+

1

16
a2a4a5t1t

2

3
+

5

288
a2a

2

5
t
3

1
t
2

3
+

a2a4a
2

5
t4
1
t2
3

1152
+

7a2a3a
2

5
t5
1
t2
3

23040

+
a2

2
a2

5
t6
1
t2
3

138240
−

17a2a
3

5
t6
1
t2
3

69120
−

13a2

2
a3

5
t9
1
t2
3

34836480
+

a2

2
a4

5
t12
1

t2
3

2043740160
+

1

16
a
2

2
a5t

3

3
+

11

36
a2a

2

5
t
3

3
+

1

144
a2a4a

2

5
t1t

3

3
−

1

576
a2a3a

2

5
t
2

1
t
3

3
+

a2

2
a2

5
t3
1
t3
3

3456
+

7a2a
3

5
t3
1
t3
3

1728

−
11a2

2
a3

5
t6
1
t3
3

414720
−

a2

2
a4

5
t9
1
t3
3

34836480
+

25

576
a
2

2
a
2

5
t
4

3
+

5

144
a2a

3

5
t
4

3
+

a2

2
a3

5
t3
1
t4
3

3456
−

a2

2
a4

5
t6
1
t4
3

552960
+

5

576
a
2

2
a
3

5
t
5

3
+

a2

2
a4

5
t6
3

2304
−

1

4
a2a5t1t5 +

1

4
a
2

5
t1t5 −

1

16
a2a4a5t

2

1
t5

−
1

48
a2a3a5t

3

1
t5 −

1

192
a
2

2
a5t

4

1
t5 +

1

72
a2a

2

5
t
4

1
t5 +

a2a4a
2

5
t5
1
t5

5760
−

11a2a3a
2

5
t6
1
t5

69120
+

a2

2
a2

5
t7
1
t5

483840
+

41a2a
3

5
t7
1
t5

483840
−

a2

2
a3

5
t10
1

t5

17418240
+

a2

2
a4

5
t13
1

t5

4379443200

−
1

8
a2a3a5t3t5 −

1

8
a
2

2
a5t1t3t5 −

1

24
a2a

2

5
t1t3t5 −

1

48
a2a4a

2

5
t
2

1
t3t5 −

5

576
a2a3a

2

5
t
3

1
t3t5 −

a2

2
a2

5
t4
1
t3t5

1152
+

7a2a
3

5
t4
1
t3t5

1152
+

29a2

2
a3

5
t7
1
t3t5

967680

−
a2

2
a4

5
t10
1

t3t5

116121600
−

1

24
a2a3a

2

5
t
2

3
t5 −

7

96
a
2

2
a
2

5
t1t

2

3
t5 −

1

48
a2a

3

5
t1t

2

3
t5 +

a2

2
a3

5
t4
1
t2
3
t5

1152
+

a2

2
a4

5
t7
1
t2
3
t5

258048
−

11

576
a
2

2
a
3

5
t1t

3

3
t5 +

a2

2
a4

5
t4
1
t3
3
t5

9216
−

1
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a
2

2
a
4

5
t1t

4

3
t5

−
1

24
a2a4a

2

5
t
2

5
−

1
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a2a3a

2

5
t1t
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+

1
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2

2
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2
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t
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1
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−

1
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a2a

3
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1
t
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−
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t5
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t2
5
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−
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5
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+

1
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1
t3t
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−
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5
t5
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5
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+
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5
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−

1

192
a
2

2
a
4

5
t3t
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1
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a
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2
a5t

2

1
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1

8
a2a

2

5
t
2

1
t7 +

1
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a2a3a

2

5
t
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1
t7 +

a2

2
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5
t5
1
t7

1440
−

1
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a2a

3

5
t
5

1
t7 −

a2

2
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5
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1
t7
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−
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87091200
+

1
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+
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1
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t
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1
t3t7 −
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1
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−
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+

1
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1
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2
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2
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5
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1
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3
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+
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2
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5
t2
1
t3
3
t7

1152
+
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2
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2

5
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+
1
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a
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2
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5
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1
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5
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138240
+
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+
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−
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−
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5
t1t3t
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τ2 = 1 +
1

288
a3t

6
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−

a4t
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1
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−
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3
t12
1

11612160
−

1

12
a3t

3

1
t3 +

1

48
a4t

4

1
t3 −

a2

3
t9
1
t3

69120
+

1

2
a3t

2

3
−

1

2
a4t1t

2

3
−

a2

3
t6
1
t2
3

1920

−
1

48
a
2

3
t
3

1
t
3

3
+

1

16
a
2

3
t
4

3
+

a2

3
t7
1
t5

4032
−

1

96
a
2

3
t
4

1
t3t5 +

1

4
a
2

3
t1t

2

3
t5 + a4t7 +

1

160
a
2

3
t
5

1
t7 −

1

2
a
2

3
t5t7.

Consider all bilinear equations up to degree 4

(α0 + α1D
2
1 + α2D

4
1 + α3D1D3)(τ, τ) = 0

where α0, . . . , α3 are constants. Requiring that τ1 satisfies this ansatz of bilinear equations we
find that there is no solution. Similarly, up to degree 8, we find that there are only two possible
homogeneous equations (one is of degree 6 and the other is of degree 8). We arrive at

3X2 is not the most general upper triangular element of homogeneous degree −1, as in this case the tau
function is too big to be written.
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Proposition 4.1. The following dimension estimates hold true

dimC H
[deg≤4]
B2

= 0, dimC H
[deg≤6]
B2

≤ 1, dimC H
[deg≤8]
B2

≤ 2.

Moreover, the only possible elements in H
[deg≤8]
B2

are linear combinations of

(D6
1 − 5D3

1D3 − 5D2
3 + 9D1D5)(τ,τ) = 0,

and
(D8

1 + 7D5
1D3 − 35D2

1D
2
3 − 21D3

1D5 − 42D3D5 + 90D1D7)(τ, τ) = 0.

Remark 4.2. As far as we know, explicit bilinear equations for the DS hierarchy of B2-type
are not pointed out in the literature, except that there is a super-variable version given in [28].
However, the relationship between the super bilinear equations of Kac–Wakimoto [28] and the DS
hierarchy of B2-type is not known. Finding explicit generating series of bilinear equations for the
DS hierarchy of B2-type remains an open question. It is also interesting to remark that the very
same equations are contained in [13], as the first two equations of the BKP hierarchy.

4.2.4 The D4 case

Take the matrix realization of g as in [14, 5]. Consider the particular point of the Sato Grass-
mannian of D4-type given by

γ = 1 + λEθ.

We put t11 = 0. It follows from Theorem 1.7 that the corresponding tau function is given by

τ =
(
1−

1

2
s(7|6) −

1

2
s(6|7) −

1

4
s(7,6|7,6)

) 1
2

where s(7,6|7,6) = s(7|7)s(6|6) − s(7|6)s(6|7), s(6|6) = s(7|7) = 0, and

s(6|7) = s(7|6) =
t111

1900800
−

1

480
t5t

6
1 +

1

160
t23t

5
1 +

1

120
t23′t

5
1 +

1

80
t3t3′t

5
1

−
1

8
t33t

2
1 −

1

4
t3t

2
3′t

2
1 −

3

8
t23t3′t

2
1 +

1

2
t25t1 +

3

4
t23t5 + t23′t5 +

3

2
t3t3′t5.

(28)

Hence we have

τ = 1−
1

2
s(7|6) =1−

t111
3801600

+
1

960
t5t

6
1 −

1

320
t23t

5
1 −

1

240
t23′t

5
1 −

1

160
t3t3′t

5
1

+
1

16
t33t

2
1 +

1

8
t3t

2
3′t

2
1 +

3

16
t23t3′t

2
1 −

1

4
t25t1 −

3

8
t23t5 −

1

2
t23′t5 −

3

4
t3t3′t5.

Proposition 4.3. The following dimension estimates hold true

dimC H
[deg≤4]
D4

= 0, dimC H
[deg≤6]
D4

≤ 3.

Moreover, the only possible elements in H
[deg≤6]
D4

are linear combinations of

(2D3
1D3′ + 4D3D3′ − 3D2

3′)(τ, τ) = 0, (29)

(D3
1D3 − D3

1D3′ + D3D3′ − D2
3)(τ, τ) = 0, (30)

(D6
1 + 9D1D5 − 10D3

1D3 + 5D3
1D3′ − 5D3D3′)(τ, τ) = 0. (31)
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Our last remark is that under the following linear change of time variables

∂t1 7→ 2−1/6∂T1 ,

∂t3 7→ 21/2∂T3 ,

∂t3′ 7→ 21/2∂T3 + 21/23−1/2∂T3′
,

∂t5 7→ 27/6∂T5

the bilinear equations (29)–(31) in the new time variables T1, T3, T3′ , T5 coincide with those of
Kac and Wakimoto [28]. Essentially speaking such a change of times is simply a renormalization
of flows.

A List of generalized Schur polynomials of (g, π)-type

Take π as in [14, 10]. We list in Table 1 the first several Schur polynomials of (g, π)-type for
simple Lie algebras of low ranks.

g A1 A2 B2 B3 C2 D4

s1 t1 t1 0 0 t1 0

s2
1
2
t21

1
2
t21 + t2

1
2
t1

1
2
t1

1
2
t21

1
2
t1

s12
1
2
t21

1
2
t21 − t2 −1

2
t1 −1

2
t1

1
2
t21 −1

2
t1

s3
1
6
t31 + t3

1
6
t31 + t1t2

1
4
t21

1
4
t21

1
3
t31 + 2t3

1
4
t21

s21
1
3
t31 − t3

1
3
t31 0 0 1

3
t31 − t3 0

s13
1
6
t31 + t3

1
6
t31 − t1t2 −1

4
t21 −1

4
t21

1
3
t31 + 2t3 −1

4
t21

s4
1
24
t41 + t3t1

1
24
t41+

1
2
t2t

2
1+

1
2
t22 + t4

1
12
t31 +

1
2
t3

1
12
t31 +

1
2
t3

1
12
t41 +2t1t3

1
12
t31 +

1
2
t3 + t3′

s31
1
8
t41

1
8
t41 +

1
2
t21t2 −

1
2
t22 − t4

1
12
t31 − t3

1
12
t31 − t3

1
4
t41

1
12
t31 − t3 −
t3′

s22
1
12
t41 − t1t3

1
12
t41 + t22

1
4
t21

1
4
t21

1
12
t41 − t1t3

1
4
t21

s212
1
8
t41

1
8
t41 −

1
2
t21t2 −

1
2
t22 + t4

− 1
12
t31 + t3 − 1

12
t31 + t3

1
4
t41

− 1
12
t31 +

t3 + t3′

s14
1
24
t41 + t3t1

1
24
t41−

1
2
t2t

2
1+

1
2
t22 − t4

− 1
12
t31−

1
2
t3 − 1

12
t31−

1
2
t3

1
12
t41 +2t1t3

− 1
12
t31 −

1
2
t3 − t3′

Table 1: Simple Lie algebras and Schur polynomials of (g, π)-type
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