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For audio source separation applications, it is common to apply a Wiener-like filtering to a time-frequency (TF) representation of the data, such as the short-time Fourier transform (STFT). This approach, in which the phase of the original mixture is assigned to each component, is limited when sources overlap in the TF domain. In this paper, we propose to improve this technique by accounting for two properties of the phase. First, we model the sources by anisotropic Gaussian variables: this model accounts for the nonuniformity of the phase, and permits us to incorporate some prior information about the phase that originates from a sinusoidal model. Second, we exploit the STFT consistency, which is the relationship between STFT coefficients that is due to the redundancy of the STFT. We derive a conjugate gradient algorithm for estimating the corresponding filter, which we refer to as the consistent anisotropic Wiener filter. Experiments conducted on music pieces show that the proposed approach yields results similar to or better than the state-of-the-art with a dramatic reduction of the computation time.

INTRODUCTION

Audio source separation consists in extracting underlying components called sources that add up to form an observable audio signal called mixture. Many separation techniques act on a time-frequency (TF) representation of the data, such as the short-term Fourier transform (STFT), because the structure of sound is more prominent in that domain. Most methods, whether based on graphical models [START_REF] Roweis | One microphone source separation[END_REF], non-negative matrix factorization [START_REF] Smaragdis | Supervised and semi-supervised separation of sounds from single-channel mixtures[END_REF], or deep neural networks [START_REF] Xu | An experimental study on speech enhancement based on deep neural networks[END_REF][START_REF] Weninger | Speech enhancement with LSTM recurrent neural networks and its application to noise-robust ASR[END_REF], only process some function of the STFT modulus (e.g., magnitude, power, or log-magnitude spectrogram), discarding the phase information. However, when it comes to resynthesizing time-domain signals, an estimate for the phase of the corresponding complex-valued STFT is necessary [START_REF] Gerkmann | Phase Processing for Single-Channel Speech Enhancement: History and recent advances[END_REF][START_REF] Mowlaee | Advances in phaseaware signal processing in speech communication[END_REF].

In the single-channel source separation framework, a common practice consists in applying a Wiener-like filtering [START_REF] Févotte | Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis[END_REF], which assigns the phase of the mixture to each extracted component. Such a filter, which is optimal in a minimum mean square error (MMSE) sense under a Gaussian [START_REF] Févotte | Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis[END_REF] or stable [START_REF] Liutkus | Generalized Wiener filtering with fractional power spectrograms[END_REF] assumption, originates from the observation that the phase appears as uniformly distributed [START_REF] Parry | Incorporating Phase Information for Source Separation via Spectrogram Factorization[END_REF]. However, even if this filter leads to quite satisfactory results in practice [START_REF] Virtanen | Monaural Sound Source Separation by Nonnegative Matrix Factorization With Temporal Continuity and Sparseness Criteria[END_REF][START_REF] Févotte | Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis[END_REF], it has been pointed out [START_REF] Magron | Phase recovery in NMF for audio source separation: an insightful benchmark[END_REF] that when sources overlap in the TF domain, it is responsible for residual interference and artifacts in the separated signals.

One approach to obtaining better phase estimates is to promote consistency [START_REF] Le Roux | Explicit consistency constraints for STFT spectrograms and their application to phase reconstruction[END_REF]: indeed, a complex-valued matrix (for instance the output of a Wiener filter) may in general not be consistent, that is, it may not correspond to the STFT of an actual time-domain signal. Such methods [START_REF] Griffin | Signal estimation from modified short-time Fourier transform[END_REF][START_REF] Le Roux | Explicit consistency constraints for STFT spectrograms and their application to phase reconstruction[END_REF] iteratively compute a complex-valued matrix in order to maximize its consistency. Some recent works [START_REF] Gunawan | Iterative Phase Estimation for the Synthesis of Separated Sources From Single-Channel Mixtures[END_REF][START_REF] Sturmel | Informed Source Separation Using Iterative Reconstruction[END_REF][START_REF] Roux | Consistent Wiener Filtering for Audio Source Separation[END_REF] attempted to combine Wiener filtering and consistency-based techniques in a unified framework for audio source separation. Consistent Wiener filtering [START_REF] Roux | Consistent Wiener Filtering for Audio Source Separation[END_REF] has so far been shown to be the most promising candidate for this task.

Alternatively, phase recovery can be performed by using phase models based on signal analysis. For instance, the widely used model of mixtures of sinusoids [START_REF] Mcauley | Speech analysis/synthesis based on a sinusoidal representation[END_REF][START_REF] Serra | Musical Sound Modeling with Sinusoids plus Noise[END_REF] leads to explicit constraints for phase reconstruction that are based on the relationships between adjacent TF bins [START_REF] Magron | Phase reconstruction of spectrograms with linear unwrapping: application to audio signal restoration[END_REF]. Such an approach has been exploited for time-stretching in the phase vocoder algorithm [START_REF] Laroche | Improved phase vocoder timescale modification of audio[END_REF], as well as for speech enhancement [START_REF] Mowlaee | Harmonic phase estimation in single-channel speech enhancement using phase decomposition and SNR information[END_REF][START_REF] Gerkmann | MMSE-optimal enhancement of complex speech coefficients with uncertain prior knowledge of the clean speech phase[END_REF], audio restoration [START_REF] Magron | Phase reconstruction of spectrograms with linear unwrapping: application to audio signal restoration[END_REF], and source separation [START_REF] Magron | Complex NMF under phase constraints based on signal modeling: application to audio source separation[END_REF]. In [START_REF]Phase-dependent anisotropic Gaussian model for audio source separation[END_REF], we introduced an anisotropic Gaussian (AG) model in which the phase is no longer uniform, which allows us to incorporate some prior information about the phase that arises from a sinusoidal model. We derived an MMSE estimator which generalizes Wiener filtering to AG variables.

In this paper, we propose to combine these two approaches by exploiting both a consistency constraint and some phase information based on a signal model. We propose to address this issue by extending the consistent Wiener filtering to the AG case. Our approach consists in minimizing an objective cost function which penalizes the reconstruction error in the AG model, to which is added a regularization term which promotes consistency. This function is minimized by means of the preconditioned conjugate gradient algorithm. Experiments conducted on realistic music signals for a vocals/accompaniment separation task show that exploiting those two phase constraints within a unified framework outperforms both approaches taken separately.

This paper is organized as follows. Section 2 presents the generalized anisotropic Wiener filtering and details the estimation of the sources under a consistency constraint. Section 3 experimentally validates the potential of this method for an audio source separation task. Finally, Section 4 draws some concluding remarks.

CONSISTENT ANISOTROPIC WIENER FILTERING

Anisotropic Gaussian model

Let X ∈ C F ×T be the STFT of a single-channel audio signal. X is the linear and instantaneous mixture of J sources Sj, such that for all TF bin f t, X f t = j S jf t . Since all TF bins are treated similarly, we remove the indices f t when appropriate for more clarity. We assume that each source Sj follows a complex normal distri-bution: Sj ∼ N (mj, γj, cj), where mj, γj and cj are the mean, variance and relation term of Sj. The covariance matrix is:

Γj = γj cj cj γj , (1) 
where z denotes the complex conjugate of z. Many previous studies [START_REF] Févotte | Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis[END_REF][START_REF] Roux | Consistent Wiener Filtering for Audio Source Separation[END_REF][START_REF] Liutkus | Informed source separation through spectrogram coding and data embedding[END_REF] model the sources as circular-symmetric (or isotropic) variables [START_REF] Févotte | Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis[END_REF] (i.e., such that mj = cj = 0), which is equivalent to assuming that the phase of each source is uniformly distributed.

In this paper, we adopt a different standpoint, originally developed in [START_REF]Phase-dependent anisotropic Gaussian model for audio source separation[END_REF]: we model the source signals by mixtures of sinusoids, which leads to explicit relationships between the phases of adjacent TF bins [START_REF] Magron | Phase reconstruction of spectrograms with linear unwrapping: application to audio signal restoration[END_REF] and therefore to some prior phase estimate φj. Assuming there is at most one sinusoid per frequency channel, it can be shown [START_REF] Magron | Phase reconstruction of spectrograms with linear unwrapping: application to audio signal restoration[END_REF] that the phase follows the unwrapping equation:

φ jf t = φ jf t-1 + 2πlν f j , ( 2 
)
where l is the hop size (in samples) of the STFT and ν f k is the normalized frequency in channel f . We then consider that the phases should be distributed around the values φj with a concentration parameter κ ∈ [0, +∞[. Thus, we propose to structure the moments of the distribution as follows 1 :

mj = λ √ vje iφ j , γj = (1 -λ 2 )vj, and cj = ρvje i2φ j , (3) 
where λ and ρ are defined as in [START_REF]Phase-dependent anisotropic Gaussian model for audio source separation[END_REF], and vj is an estimate of the source power |Sj|2 . The relation terms cj are non-zero in general, which conveys the property of anisotropy of the distribution, hence the name of anisotropic Gaussian (AG) model. Finally, X ∼ N (mX , γX , cX ) = N ( j mj, j γj, j cj), and ΓX = j Γj.

MMSE estimation without constraint

We seek to obtain an estimator of the sources for performing the separation task. We consider the posterior distribution of the sources given the mixture. Due to the mixing constraint, this conditional distribution lies on a subspace of dimension J = J -1, so we focus on a subset of free variables. Without loss of generality, we consider the first J sources as free variables given the mixture and denote them as S = [S1, ..., S J ] T in each TF bin f t, where T denotes the transpose. It can be shown [START_REF] Picinbono | Second-order complex random vectors and normal distributions[END_REF] that S|X follows a multivariate complex normal distribution with mean vector µ = [µ1, ..., µ J ] T such that:

µ j = m j + ΓjΓ -1 X (X -m X ), (4) 
where x = x x T . The posterior covariance matrix is:

Ξ =    Γ1 0 0 0 . . . 0 0 0 Γ J    -    Γ1 . . . Γ J    Γ -1 X    Γ1 . . . Γ J    T . (5) 
In particular, the posterior covariance matrix of each source is

Γ j = Γj -ΓjΓ -1 X Γj.
Using the Woodbury identity, we obtain the 1 The mathematical derivation of the moments can be obtained in [START_REF]Phase-dependent anisotropic Gaussian model for audio source separation[END_REF].

precision matrix Λ defined as the inverse of the covariance matrix:

Λ = Ξ -1 =    Γ -1 1 0 0 0 . . . 0 0 0 Γ -1 J    +    Γ -1 J . . . Γ -1 J . . . . . . . . . Γ -1 J . . . Γ -1 J    . (6)
Therefore, the negative log-likelihood of the posterior distribution -log p(S|X) is equal, up to an additive constant and to a positive scaling factor, to the following quadratic loss function:

Ψ(S) = f t (S f t -µ f t ) H Λ f t (S f t -µ f t ), (7) 
where S = [S1, S1, ..., S J , SJ ] T (and similarly for µ) and H denotes the conjugate transpose. We focus on the case J = 2 (i.e., J = 1). This corresponds to many source separation applications where only 2 sources interact, such as speech/noise or singing voice/musical accompaniment. Moreover, the general case can be reduced to this special case by considering in turn each source against all others. Since in this case S f t reduces to S 1f t , we shall remove the index j = 1 for clarity. The cost function [START_REF] Févotte | Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis[END_REF] then rewrites:

Ψ(S) = f,t (S f t -µ f t ) H Λ f t (S f t -µ f t ), (8) 
where

Λ f t = Γ -1 1f t + Γ -1 2f t = Γ -1 f t .
Setting the gradient of Ψ in (8) w.r.t. S f t to 0 leads to the MMSE solution: S f t = µ f t , ∀f, t.

Consistency constraint

When the STFT is computed using overlapping analysis windows (which is usual in practice), it is a redundant TF representation which implies that certain relationships must hold between its TF coefficients. This results in the fact that not all matrices in C F ×T are the STFT of a time-domain signal. We will then say that a matrix S is consistent [START_REF] Le Roux | Explicit consistency constraints for STFT spectrograms and their application to phase reconstruction[END_REF] if it is equal to the STFT of its inverse STFT, or, equivalently, if F(S) = 0, where:

∀S ∈ C F ×T , F(S) = S -STFT • iSTFT(S). (9) 
The Wiener filter output does not generally satisfy this constraint, so that STFT • iSTFT(µ) no longer minimizes the loss function [START_REF] Févotte | Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis[END_REF].

As in [START_REF] Roux | Consistent Wiener Filtering for Audio Source Separation[END_REF], we propose to promote consistency in the form of a soft penalty added to the cost [START_REF] Liutkus | Generalized Wiener filtering with fractional power spectrograms[END_REF], which results in:

Ψ δ (S) = Ψ(S) + 2δ||F(S)|| 2 , ( 10 
)
where ||.|| denotes the Frobenius norm for matrices. The greater δ, the more consistent the resulting source estimate will be.

We can find the complex spectrogram 2 S minimizing Ψ δ by setting the gradient of Ψ δ (S) to 0 and then solving. The consistency term is identical to that in [START_REF] Roux | Consistent Wiener Filtering for Audio Source Separation[END_REF], but the gradient of Ψ(S) is here slightly more involved. To make its derivation easier to understand, it helps to consider the whole complex spectrogram S as the equivalent vector S obtained by concatenating the real and imaginary parts of all the frames of S. The gradient of Ψ(S) can be derived with respect to the elements of S, leading to an R-linear operator on S -µ, which can be reformulated as an R-linear operator on S -µ. We eventually obtain the gradient of Ψ(S) w.r.t. S f t as:

∇S f t Ψ(S) = 4Ω f t (S f t -µ f t ), (11) 
where

Ω f t (y) = 1 |Γ f t | (γ f t y -c f t ȳ), ∀y ∈ C, (12) 
and

|Γ f t | = γ 2 f t -|c f t | 2 .
Altogether, setting the gradient of Ψ δ (S) to 0 leads to

(Ω + δF * • F )S = Ωµ, (13) 
where * denotes the Hermitian adjoint and Ω is defined as the Rlinear operator that consists in independently applying Ω f t to each TF bin Y f t of a complex spectrogram Y :

(ΩY ) f t = Ω f t (Y f t ), ∀Y ∈ C F ×T .
Since F is a projector, then F •F = F. Furthermore, if the analysis and synthesis windows are equal up to a scaling factor (which is generally the case in practice), then it can be shown [START_REF] Roux | Consistent Wiener Filtering for Audio Source Separation[END_REF] that F is Hermitian, i.e., F * = F. Therefore, F * • F = F, and the global minimum verifies:

(Ω + δF)S = Ωµ. (14) 
Drawing on [START_REF] Roux | Consistent Wiener Filtering for Audio Source Separation[END_REF], we propose to solve [START_REF] Gunawan | Iterative Phase Estimation for the Synthesis of Separated Sources From Single-Channel Mixtures[END_REF] with the preconditioned conjugate gradient method [START_REF] Shewchuk | An introduction to the conjugate gradient method without the agonizing pain[END_REF], since the operator Ω + δF is illconditioned. The preconditioner M is derived similarly to [START_REF] Roux | Consistent Wiener Filtering for Audio Source Separation[END_REF], leading here at each TF bin to

(M Y ) f t = Ω f t (Y f t ) + δ F T -L F T Y f t , (15) 
where L is the time-signal length. Inverting M is slightly more involved than in [START_REF] Roux | Consistent Wiener Filtering for Audio Source Separation[END_REF], where it amounted to a simple scalar multiplication, because Ω f t (Y f t ) here involves both Y f t and Ȳft as can be seen in Eq. [START_REF] Le Roux | Explicit consistency constraints for STFT spectrograms and their application to phase reconstruction[END_REF]. A short calculation leads to

(M -1 (Y )) f t = 1 η f t γ f t |Γ f t | + δ F T -L F T Y f t + c f t |Γ f t | Ȳft , (16) 
where

η f t = γ f t |Γ f t | + δ F T -L F T 2 - |c f t | 2 |Γ f t | 2 .
The full procedure is summarized in Algorithm 1, and a MAT-LAB implementation is available at [28].

EXPERIMENTAL EVALUATION

Dataset and protocol

We propose to experimentally assess the potential of the consistent anisotropic Wiener filtering procedure described in Algorithm 1. We consider 100 music songs from the Demixing Secrets Database (DSD100), a remastered version of the database used for the SiSEC 2015 campaign [START_REF] Ono | The 2015 signal separation evaluation campaign[END_REF]. The database is split into two sets of 50 songs, a training set and a test set. Each song is made up of J = 2 sources: the vocal track and the musical accompaniment track (which may contain various instruments such as guitar, bass, drums, piano...). The signals are sampled at Fs = 44100 Hz and the STFT is computed with a 46 ms long Hann window and 75 % overlap.

Two scenarios are considered. First, an Oracle scenario, in which the powers v are assumed to be known (i.e., equal to the ground truth). Second, an Informed scenario, as in an informed source separation framework [START_REF] Liutkus | Informed source separation through spectrogram coding and data embedding[END_REF]: an NMF with Kullback-Leibler divergence [START_REF] Virtanen | Monaural Sound Source Separation by Nonnegative Matrix Factorization With Temporal Continuity and Sparseness Criteria[END_REF] is applied to the spectrogram of each isolated Algorithm 1 Consistent anisotropic Wiener filtering. Note: matrix operations are element-wise.

Inputs:

Posterior expectation µ ∈ C F ×T , Anisotropy and consistency parameters κ ≥ 0 and δ ≥ 0,

Prior power v ∈ R 2×F ×T + and phase φ ∈ [0, 2π[ 2×F ×T , Stopping criterion > 0. Posterior moments γ1 = (1 -λ 2 )v1, γ2 = (1 -λ 2 )v2, γX = γ1 + γ2. c1 = ρv1e i2φ 1 , c2 = ρv2e i2φ 2 , cX = c1 + c2. γ = γ1 -γX (γ 2 1 + |c1| 2 ) -2γ1 (c1cX ) /(γ 2 X -|cX | 2 ), c = c1 -2γX γ1c1 -γ 2 1 cX -c 2 1 cX /(γ 2 X -|cX | 2 ), |Γ | = γ 2 -|c | 2 .
Preconditioned conjugate gradient Ω as defined in [START_REF] Le Roux | Explicit consistency constraints for STFT spectrograms and their application to phase reconstruction[END_REF] and M -1 as defined in ( 16),

S0 = µ, R0 = -δF(S0), P0 = M -1 (R0), ξnew = R0, P0 , k = 0. repeat Q k = Ω(P k ) + δF(P k ), α k = ξnew/ P k , Q k , S k+1 = S k + α k P k , R k+1 = R k -α k Q k , Z k+1 = M -1 (R k+1 ), ξold = ξnew, ξnew = R k+1 , Z k+1 , β k = ξnew/ξold, P k+1 = Z k+1 + β k P k , k = k + 1. until α 2 k-1 ||P k-1 || 2 < ||S k || 2 Output: S k ∈ C F ×T .
source, which provides an estimate of the powers v f t . Each NMF uses 100 iterations of multiplicative update rules and a rank of factorization K = 50. This scenario will inform us about the performance of the methods when the power estimates differ from the ground truth, while still remaining of relatively good quality.

The following approaches are compared: first, we consider two non-iterative techniques, namely Wiener filtering [START_REF] Févotte | Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis[END_REF] and anisotropic Wiener (AW) filtering [START_REF]Phase-dependent anisotropic Gaussian model for audio source separation[END_REF], which correspond to applying (4) with κ = 0 and κ = 0, respectively. These estimates are then used to initialize Algorithm 1, respectively leading to the consistent Wiener filtering (CW) [START_REF] Roux | Consistent Wiener Filtering for Audio Source Separation[END_REF] and to the proposed consistent anisotropic Wiener filtering (CAW). As in [START_REF] Roux | Consistent Wiener Filtering for Audio Source Separation[END_REF], the stopping criterion is chosen as = 10 -6 .

Source separation quality is measured with the signal-todistortion, signal-to-interference, and signal-to-artifact ratios (SDR, SIR, and SAR) [START_REF] Vincent | Performance Measurement in Blind Audio Source Separation[END_REF] expressed in dB, where only a rescaling (not a refiltering) of the reference is allowed.

A demonstration on an audio excerpt is available at [28].

Influence of the consistency weight

First, similarly as in [START_REF]Phase-dependent anisotropic Gaussian model for audio source separation[END_REF], we study the impact of the anisotropy parameter κ on the separation quality on the training set: the best We then investigate here the influence of the consistency parameter δ on the separation quality. The results in terms of SDR averaged over the 50 songs composing the training set are presented in Fig. 1 (similar trends are observed for the SIR and SAR). We observe that promoting consistency leads to improving the separation quality over other approaches that do not account for this property (i.e., when δ → 0), whether the magnitude values are known or estimated beforehand. The optimal value of δ is dependent on the data, with a peak in the SDR here at 10 in the Oracle scenario and 1 in the Informed scenario. This corresponds to a trade-off between excessively promoting the consistency and only accounting for the MMSE estimates.

Separation results

We now consider the 50 songs that form the test set, and set δ to its learned optimal value. The results averaged over the dataset are presented in Table . 1.

In the Oracle scenario, the proposed method outperforms all the other approaches. While the AW technique improves the separation quality over the Wiener estimates, it performs slightly worse than the CW filtering. The proposed CAW method overcomes this limit, since it combines the potential of both AW and CW approaches, and improves the criteria by approximately 0.5 dB over the CW technique. In the Informed scenario, the improvement is less important (about 0.2 dB), which suggests that even if the proposed phase retrieval method can improve the separation quality over the other techniques, its full potential is reached when the power estimates are close to the ground truth. Finally, the last column of Table 1 also indicates that CAW converges in less iterations on average than CW. We then show in Fig. 2 the evolution over iterations of the SDR, averaged over the test set in the Oracle scenario. For each excerpt, we run CW and CAW without using the stopping criterion, for 60 iterations (by 60 iterations, the algorithms had converged in all our experiments). We observe that the initial AW filtering approximately leads to the same results as 8 iterations of CW. Furthermore, 60 iterations of CW lead to a result (black solid line on the plot) that is similar to what is obtained with only 14 iterations of CAW. Given that one iteration in both CW and CAW methods is roughly as demanding in terms of computational cost, this shows that the anisotropic model, which accounts for a signal-based phase property, leads to a faster procedure than a phase-unaware source model. Overall, the proposed CAW method reaches results similar to or better than CW with a significantly lower computational cost.

CONCLUSION

The consistent anisotropic Wiener filtering procedure introduced in this paper is a promising approach for recovering the phase of the components in a source separation framework, since it combines a phase property that originates from signal modeling, and a consistency constraint which accounts for the redundancy of the STFT. Future work will focus on extending this procedure to the case of more than two sources and to multichannel mixtures. In addition, such a technique can be implemented in an online fashion through a frame-by-frame processing, similarly as in some real-time implementations of the Griffin and Lim algorithm [START_REF] Zhu | Real-Time Signal Estimation From Modified Short-Time Fourier Transform Magnitude Spectra[END_REF].
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 1 Figure 1: Influence of the consistency parameter δ on the source separation quality in Algorithm 1. The test is conducted in the Oracle (left) and Informed (right) scenarios.

Figure 2 :

 2 Figure 2: Separation quality (SDR in dB) over iterations. The black solid line indicates that the performance of iterations of CW is similar to that of 14 iterations of CAW.

Table 1 :

 1 Average source separation performance for various methods on the DSD100 test dataset.

				Scenario	Method		Accompaniment	Singing voice	Avg. number
							SDR SIR SAR SDR SIR SAR	of iterations
					Wiener [7]		16.7 27.2 17.2 12.1 26.7 12.3	-
				Oracle	CW [16]		18.4 29.5 18.8 13.9 30.3 14.0	30
					AW [24]		17.5 27.9 17.9 13.0 28.0 13.1	-
					CAW (proposed) 18.9 30.0 19.4	14.5 31.2 14.7	26
					Wiener [7]		15.9 26.1 16.4 11.3 25.7 11.5	-
				Informed	CW [16]		16.6 27.0 17.1 12.1 27.5 12.2	17
					AW [24]		16.1 26.3 16.6 11.5 26.2 11.7	-
					CAW (proposed) 16.8 27.1 17.3	12.2 27.8 12.4	16
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For convenience, we call "complex spectrogram" any complex-valued matrix, even if it is not the STFT of an actual signal.
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