DE LA RECHERCHE A L'INDUSTRIE

Effects Of Braid Angle On Damage
Mechanisms In SiC/SiC Composite
Tubes Characterized By X-ray
Computed Tomography

Y. Chen CEA/SRMA/LC2M Gif-sur-Yvette,France

L. Gélébart CEA/SRMA/LC2M Gif-sur-Yvette, France

M. Bornert Laboratoire Navier, ENPC, Marne-la-Vallée, France
C. Chateau Laboratoire Navier, ENPC, Marne-la-Vallée, France
C. Sauder CEA/SRMA/LTMEX Gif-sur-Yvette,France

A. King PSICHE, Synchroton SOLEIL, France

41th International Conference and Expo on Advanced Ceramics and Composites
Daytona Beach - 24/01/2017
www.cea.fr




OUTLINE

Context and material
Experimental method

Qualitative observations of cracks
- Braid angle effects

Crack quantification method

Conclusions and future work



C2A CONTEXT AND MATERIAL

= |ndustrial context
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= Studied material Metallic Liner
Pyrocarbon, SiC Matrix

Fibrous preform » Chemical Vapor » SIC/SIC o 10 mm
(SIC fibers) Infiltration (CVI) composite tubes
Outer m
braid
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C2A CONTEXT AND MATERIAL

Macroscopic behavior » Fiber-matrix interface
! » Porosity fraction

vicro-cracking —————__* Braid pattem

 Braid angle

400 gt Studied materials:
3000 | - Braid angle: 30°, 45°, 60°
% : 2 - 2 layers of braided composites
= w ] - ~5 mm diameters
1000\ “— - Porosity: 15% ~ 20%
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S0 s 10 15

HE | PAGE 4



EXPERIMENT

SULEIL

SYNCHROTRON

= Monotonic tensile test
= Synchrotron beam

= Voxel size: 2.6~2.8 um

Imaging system l

For comparison:
fiber diameter ~15 um

In situ experimental setup
at Synchrotron SOLEIL, France | PAGE 5



EXPERIMENT

XRCT —— Raw data: 3D digital images

|

Qualitative analyses (visualization) =» braid angle effects
Quantitative analyses = geometry parameters of cracks (to be completed)

45°

ﬁa
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DE LA RECHERCHE A LINDUSTRIE

CRACK DETECTION
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CRACK DETECTION
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CRACK DETECTION
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Remaining image artifacts:

= Qver-contrasted pore-solid interfaces
» Ring artifacts

» Radial fluctuation of brightness
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45°

- TWO families of cracks: Circumferential (red) & In-plane (blue)
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CRACK OBSERVATION 45°

A typical crack observed within 45° tube

109 MPa 129 MPa 900

- In-plane cracks
& Deviations of circ. cracks

- In-plane cracks seem to be guided by fiber
direction, arrested within single undulating
one | PAGE 16




- Crack deviation (in-plane cracks):
- Few initiation
- Able to propagate far away

angle
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30°
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Crack deviation (in-plane cracks):
- Lots of initiation
- Limited propagation
The circ. cracks have more undulations (follow the braid undulation ?)

60°
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- circumferential cracks
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CRACK AND BRAID 60°

Cracking within the 60° braided tube:
- Circumferential cracks:

- Initiation at the “tips” of tows (?)

tips
- Orientation strongly influenced by fiber direction (inter-tow propagation)
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CRACK AND BRAID 60°

Cracking within the 60° braided tube:
- Circumferential cracks:

- Initiation at the “tips” of tows (?)
- Orientation strongly influenced by fiber direction (inter-tow propagation)

T

tips

| PAGE 28




DE LA RECHERCHE A LINDUSTRIE

Cea

| PAGE 29



CRACK AND BRAID 45°

Cracking within the 45° braided tube:

- Circumferential cracks:
- Initiation at the “tips” of tows (?) tips
- Orientation slightly influenced by fiber direction (near the “tips”)

o
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CRACK AND BRAID 30°

Cracking within the 30° braided tube:
- Circumferential cracks :
- Initiation at the “tips” of tows (?)
- Orientation not influenced by fiber direction

o

tips
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CRACK AND BRAID 30°

Cracking within the 30° braided tube:
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CRACK AND BRAID 30°
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CRACK AND BRAID 30°

Cracking within the 30° braided tube:
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SUMMARY OF QUALITATIVE ANALYSES

Common points:

- Circumferential cracks initiate at the “tips” of tows (?)
- Circumferential cracks deviate to become in-plane cracks
- Propagation of in-plane cracks is guided by fiber direction

Uncommon points (braid angle effects):

- Circumferential cracks :
- 68 increases = crack orientation is more and more influenced by fiber direction
= 6 > 6, (60°), inter-tow propagation

- In-plane cracks :
- 6 increases = number of initiation becomes greater

=» propagation distance becomes smaller
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CRACK QUANTIFICATION

1- Evaluate a local damage level for
each voxel

< according to its gray level (in the
subtracted image)

l\\\

2- Project the voxelized damage
information onto the median surface
< by local orientation

100
Map of local damage level

= Average opening A
» Surface area S
=» surface density p = S/V

1 50 100 140
Projected positions | PAGE 44



CRACK QUANTIFICATION 45°

= Quantitative measurement (opening, surface area) - result

10" Surface density v.s. og,, Average opening Vv.S. g,
5 e R e .
- Circ. crack | | ]
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- No saturation until fracture
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CONCLUSIONS AND FUTURE WORK

» Effects of braid angle on damage mechanisms:
- circumferential cracks (initiation & orientation)

- In-plane cracks (initiation and propagation distance)

» Method for quantifying geometry parameters (opening, surface area) of cracks

= Crack gquantification for 30° and 60°

=  Numerical simulation of real microstructures

I

Why the in-plane cracks open under tension load ?
What is the origin of such effects ?
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C2A DVC & STRAIN MEASUREMENT

= Digital Volume Correlation (DVC)
o Correlation grid adapted to the tube geometry
o Correlation marker: pores

= Strain measurement X
o Average over each radial position
o Method: kinematic optimization between a simulated displacement field
and the DVC-measured one
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POROSITY DISTRIBUTION
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Information extracted from such images:

- Porosity distribution (undamaged tubes)
- Strain measurement (DVC)

- Crack characterization
(geometry, orientation,etc)
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P Porosity distribution (undamaged tube)
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P Porosity distribution (undamaged tube)
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P Porosity distribution (undamaged tube)
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P Porosity distribution (undamaged tube)
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P Porosity distribution (undamaged tube)
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P Porosity distribution (undamaged tube)
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P Porosity distribution (undamaged tube)
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P Porosity distribution (undamaged tube)
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» Subtracted image:
o Contrast in the vicinity of 128
o Artifacts remain

=

Artifact processing
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C2A9 CRACK DETECTION

= Artifact processing

1) Radial fluctuation of brightness

v" For each circumference,
subtract the average gray level :

Vied(r,0) = = [Vo(1,0) — Vay (r) + 255]

N

with  Vay (r) = £ 28 V(1,69

Fig. Avant & apres la soustraction de luminosité

2) Image segmentation via a
global threshold

Pore-solid
interface

Ring
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DETECTION DE FISSURES

= Artifact processing (continue) e o A

3) Over amplitude pore/solid interface AR A

v ldentified in the reference image
<~ Image gradient (Sobel operator)

e
4) Ring Identified interfaces by

i Sobel t
v' Centered to image center obel operator

v" Continuous in the circumferential direction

. l\v

t‘- . . | PAGE 61
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CZ2A  CRACK QUANTIFICATION

= Quantitative measurement (opening, surface area)

1- Compute the “voxelized” local damage level d(X..)

The gray level of one detected crack voxel:

9(PA) = [1-v(X)] - FE) + Y& - Vair
/" /
Volume fraction of air Gray level of an
in the voxel air-voxel

Nlb—\

r(X) =5 [g (®(X)) - f(x) +255]

“Voxelized” damage level:

255 — 2 - (X,
L) = wlke) = f(&)—ziir)

d(X.) € [0,1]
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CRACK QUANTIFICATION

= Quantitative measurement (opening, surface area) - continue

2- Project voxelized information onto median surface d(X.)
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CZ2A  CRACK QUANTIFICATION

= Quantitative measurement (opening, surface area) - results

Surface density : p = S/V
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DE LA RECHERCHE A LINDUSTRIE

ANALYSES DES FISSURES DETECTEES

= Quantitative measurement (opening, surface area) - results

Average opening A
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