

www.cea.fr

Effects Of Braid Angle On Damage Mechanisms In SiC/SiC Composite Tubes Characterized By X-ray Computed Tomography

- Y. Chen CEA/SRMA/LC2M Gif-sur-Yvette,France
- L. Gélébart CEA/SRMA/LC2M Gif-sur-Yvette, France
- M. Bornert Laboratoire Navier, ENPC, Marne-la-Vallée, France
- C. Chateau Laboratoire Navier, ENPC, Marne-la-Vallée, France
- C. Sauder CEA/SRMA/LTMEX Gif-sur-Yvette, France
- A. King PSICHE, Synchroton SOLEIL, France

41th International Conference and Expo on Advanced Ceramics and Composites Daytona Beach – 24/01/2017

- Context and material
- Experimental method
- Qualitative observations of cracks
 - Braid angle effects
- Crack quantification method
- Conclusions and future work

CONTEXT AND MATERIAL

Industrial context

2D braided

0.6 mm

CONTEXT AND MATERIAL

- Fiber-matrix interface
- Porosity fraction
- Braid pattern
- <u>Braid angle</u>

EXPERIMENT

- Monotonic tensile test
- Synchrotron beam
- Voxel size: 2.6~2.8 μm

For comparison: fiber diameter ~15 µm

XRCT
$$\longrightarrow$$
 Raw data: 3D digital images

- Qualitative analyses (visualization) → braid angle effects
- Quantitative analyses → geometry parameters of cracks (to be completed)

DVC based image subtraction Ref. Nguyen TT et al. JMPS 2016

Remaining image artifacts:

- Over-contrasted pore-solid interfaces
- Ring artifacts
- Radial fluctuation of brightness

DE LA RECHERCHE À L'INDUSTRI

CRACK OBSERVATION 45°

- TWO families of cracks: Circumferential (red) & In-plane (blue)

 $\perp \sigma_{zz}$

 $\parallel \sigma_{zz}$ || wall thickness

PAGE 15

CRACK OBSERVATION 45°

A typical crack observed within 45° tube

DE LA RECHERCHE À L'INDUSTRI

CRACK OBSERVATION 30°

- Crack deviation (in-plane cracks):
 - Few initiation
 - Able to propagate far away

DE LA RECHERCHE À L'INDUSTRIE

CRACK OBSERVATION 60°

- Crack deviation (in-plane cracks):
 - Lots of initiation
 - Limited propagation
- The circ. cracks have more undulations (follow the braid undulation ?)

PAGE 18

DE LA RECHERCHE À L'INDUSTRI

PROJECTION ALONG RADIAL DIRECTION

Radial direction

PROJECTION ALONG RADIAL DIRECTION

PROJECTION ALONG RADIAL DIRECTION

Cracking within the 60° braided tube:

- Circumferential cracks:
 - Initiation at the "tips" of tows (?)
 - Orientation strongly influenced by fiber direction (inter-tow propagation)

 σ_{zz}

PAGE 22

Cracking within the 60° braided tube:

- Circumferential cracks:
 - Initiation at the "tips" of tows (?)
 - Orientation strongly influenced by fiber direction (inter-tow propagation)

 σ_{zz}

PAGE 23

Cracking within the 60° braided tube:

- Circumferential cracks:
 - Initiation at the "tips" of tows (?)
 - Orientation strongly influenced by fiber direction (inter-tow propagation)

 σ_{zz}

Cracking within the 60° braided tube:

- Circumferential cracks:
 - Initiation at the "tips" of tows (?)
 - Orientation strongly influenced by fiber direction (inter-tow propagation)

 σ_{zz}

PAGE 25

Cracking within the 60° braided tube:

- Circumferential cracks:
 - Initiation at the "tips" of tows (?)
 - Orientation strongly influenced by fiber direction (inter-tow propagation)

 σ_{zz}

PAGE 26

Cracking within the 60° braided tube:

- Circumferential cracks:
 - Initiation at the "tips" of tows (?)
 - Orientation strongly influenced by fiber direction (inter-tow propagation)

 σ_{zz}

 σ_{zz}

Cracking within the 60° braided tube:

- Circumferential cracks:
 - Initiation at the "tips" of tows (?)
 - Orientation strongly influenced by fiber direction (inter-tow propagation)

 σ_{zz}

CRACK AND BRAID 45°

Cracking within the 45° braided tube:

- Circumferential cracks:
 - Initiation at the "tips" of tows (?)
 - Orientation slightly influenced by fiber direction (near the "tips")

| PAGE 30

CRACK AND BRAID 45°

Cracking within the 45° braided tube:

- Circumferential cracks:
 - Initiation at the "tips" of tows (?)
 - Orientation slightly influenced by fiber direction (near the "tips")

| PAGE 31

CRACK AND BRAID 45°

Cracking within the 45° braided tube:

- Circumferential cracks:
 - Initiation at the "tips" of tows (?)
 - Orientation slightly influenced by fiber direction (near the "tips")

PAGE 32

CRACK AND BRAID 45°

- Circumferential cracks:
 - Initiation at the "tips" of tows (?)
 - Orientation slightly influenced by fiber direction (near the "tips")

CRACK AND BRAID 45°

- Circumferential cracks:
 - Initiation at the "tips" of tows (?)
 - Orientation slightly influenced by fiber direction (near the "tips")

- Circumferential cracks :
 - Initiation at the "tips" of tows (?)
 - Orientation not influenced by fiber direction

- Circumferential cracks :
 - Initiation at the "tips" of tows (?)
 - Orientation not influenced by fiber direction

- Circumferential cracks :
 - Initiation at the "tips" of tows (?)
 - Orientation not influenced by fiber direction

- Circumferential cracks :
 - Initiation at the "tips" of tows (?)
 - Orientation not influenced by fiber direction

- Circumferential cracks :
 - Initiation at the "tips" of tows (?)
 - Orientation not influenced by fiber direction

- Circumferential cracks :
 - Initiation at the "tips" of tows (?)
 - Orientation not influenced by fiber direction

SUMMARY OF QUALITATIVE ANALYSES

Common points:

- *Circumferential* cracks initiate at the "tips" of tows (?)
- Circumferential cracks deviate to become in-plane cracks
- Propagation of *in-plane* cracks is guided by fiber direction

Uncommon points (braid angle effects):

- <u>Circumferential</u> cracks :
 - θ increases \rightarrow crack orientation is more and more influenced by fiber direction
 - → $\theta > \theta_c$ (60°), inter-tow propagation

<u>In-plane</u> cracks :

- θ increases \rightarrow number of initiation becomes greater
 - ➔ propagation distance becomes smaller

CRACK QUANTIFICATION

Quantitative measurement (opening, surface area) - method

Quantitative measurement (opening, surface area) - result

- Circ. \neq In-plane
- No saturation until fracture

- Effects of braid angle on damage mechanisms:
 - circumferential cracks (initiation & orientation)
 - In-plane cracks (initiation and propagation distance)
- Method for quantifying geometry parameters (opening, surface area) of cracks

- Crack quantification for 30° and 60°
- Numerical simulation of real microstructures

饣

Why the in-plane cracks open under tension load ? What is the origin of such effects ?

Thank you for your attention

DVC & STRAIN MEASUREMENT

- Digital Volume Correlation (DVC)
 - Correlation grid adapted to the tube geometry
 - Correlation marker: pores

- Strain measurement
 - Average over each radial position
 - Method: kinematic optimization between a simulated displacement field and the DVC-measured one

POROSITY DISTRIBUTION


```
DE LA RECHERCHE À L'INDUSTRI
```

Cea

X-RAY TOMOGRAPHS

Information extracted from such images:

- Porosity distribution (undamaged tubes)
- Strain measurement (DVC)
- Crack characterization (geometry, orientation,etc)

```
DE LA RECHERCHE À L'INDUSTRI
```


PROCESSING OF X-RAY TOMOGRAPHS

Porosity distribution (undamaged tube)

```
DE LA RECHERCHE À L'INDUSTRIE
```



```
DE LA RECHERCHE À L'INDUSTRI
```


PROCESSING OF X-RAY TOMOGRAPHS

Porosity distribution (undamaged tube)


```
DE LA RECHERCHE À L'INDUSTRIE
```


Cea


```
DE LA RECHERCHE À L'INDUSTRI
```



```
DE LA RECHERCHE À L'INDUSTRIE
```


- Subtracted image:
 - Contrast in the vicinity of 128
 - o Artifacts remain

Artifact processing

- Artifact processing
- 1) Radial fluctuation of brightness
- ✓ For each circumference, subtract the average gray level :

 $V_{red}(r,\theta) = \frac{1}{2} [V_0(r,\theta) - V_{av}(r) + 255]$

with $V_{av}(r) = \frac{1}{N} \sum_{i}^{N} V_0(r, \theta^i)$

Fig. Avant & après la soustraction de luminosité

- Pore-solid interface Ring
- 2) Image segmentation via a global threshold

DÉTECTION DE FISSURES

- Artifact processing (continue)
- 3) Over amplitude pore/solid interface
 - ✓ Identified in the reference image
 ⇔ Image gradient (Sobel operator)

Identified interfaces by Sobel operator

4) <u>Ring</u>

- ✓ Centered to image center
- ✓ Continuous in the circumferential direction

Interface reduction

Ring reduction

- Quantitative measurement (opening, surface area)
- <u>1- Compute the "voxelized" local damage level $d(X_c)$ </u>

"Voxelized" damage level:

$$d(\underline{X}_{c}) := \psi(\underline{X}_{c}) = \frac{255 - 2 \cdot r(\underline{X}_{c})}{f(\underline{X}_{c}) - v_{air}}$$

 $d(\underline{X}_c) \in [0,1]$

CRACK QUANTIFICATION

• Quantitative measurement (opening, surface area) - continue

CRACK QUANTIFICATION

• Quantitative measurement (opening, surface area) - results

Surface density : $\rho = S/V$

ANALYSES DES FISSURES DÉTECTÉES

Quantitative measurement (opening, surface area) - results

Average opening $\overline{\Lambda}$

