Effects Of Braid Angle On Damage
 Mechanisms In SiC/SiC Composite Tubes Characterized By X-ray Computed Tomography

CEA/SRMA/LC2M Gif-sur-Yvette,France
CEA/SRMA/LC2M Gif-sur-Yvette, France Laboratoire Navier, ENPC, Marne-la-Vallée, France Laboratoire Navier, ENPC, Marne-la-Vallée, France CEA/SRMA/LTMEX Gif-sur-Yvette,France PSICHE, Synchroton SOLEIL, France

- Context and material
- Experimental method
- Qualitative observations of cracks
- Braid angle effects
- Crack quantification method
- Conclusions and future work

CONTEXT AND MATERIAL

- Industrial context

Fuel cladding tube
in Gas-cooled Fast
Reactors (GFRs)

- Studied material

Fibrous preform (SiC fibers)

2D braided

Pyrocarbon, SiC Matrix

Chemical Vapor
Infiltration (CVI)
$\mathrm{SiC} / \mathrm{SiC}$

) composite tubes

SiC/SiC layers
$\sim 10 \mathrm{~mm}$

CQZ cONTEXT AND MATERIAL

Macroscopic behavior
\ddagger
Micro-cracking

- Fiber-matrix interface
- Porosity fraction
- Braid pattern
- Braid angle

Studied materials:

- Braid angle: $\mathbf{3 0 ^ { \circ }}, \mathbf{4 5}^{\circ}, 60^{\circ}$
- 2 layers of braided composites
- $\sim 5 \mathrm{~mm}$ diameters
- Porosity: 15\% ~ 20\%
- Braid pattern: 2-2 cross-over

EXPERIMENT

- Monotonic tensile test
- Synchrotron beam
- Voxel size: $\quad 2.6 \sim 2.8 \mu \mathrm{~m}$

For comparison:
fiber diameter $\sim 15 \mu \mathrm{~m}$

In situ experimental setup at Synchrotron SOLEIL, France

cea
 EXPERIMENT

XRCT \longrightarrow Raw data: 3D digital images
\downarrow

- Qualitative analyses (visualization) $\boldsymbol{\rightarrow}$ braid angle effects
- Quantitative analyses $\boldsymbol{\rightarrow}$ geometry parameters of cracks (to be completed)

CeZ CRACK DETECTION

Cea crack DETECTION

DVC based image subtraction Ref. Nguyen TT et al. JMPS 2016

CR2 CRACK DETECTION

Remaining image artifacts:

- Over-contrasted pore-solid interfaces
- Ring artifacts
- Radial fluctuation of brightness

Ce2 CRACK OBSERVATION 45°

- TWO families of cracks: Circumferential (red) \& In-plane (blue)

CRACK OBSERVATION 45º

A typical crack observed within 45° tube

Ce2 CRACK OBSERVATION 30°

- Crack deviation (in-plane cracks):
- Few initiation
- Able to propagate far away

Ce2 CRACK OBSERVATION 60°

- Crack deviation (in-plane cracks):
- Lots of initiation
- Limited propagation
- The circ. cracks have more undulations (follow the braid undulation?)

CQ2 PROJECTION ALONG RADIAL DIRECTION

Cea PROJECTION ALONG RADIAL DIRECTION

Cea PROJECTION ALONG RADIAL DIRECTION

Radial direction
Effects on:

- circumferential cracks

Ce2 CRACK AND BRAID 60°

Cracking within the 60° braided tube:

- Circumferential cracks:
- Initiation at the "tips" of tows (?)

- Orientation strongly influenced by fiber direction (inter-tow propagation)

$$
\Uparrow \sigma_{z z}
$$

$\sqrt{ } \sigma_{Z Z}$

PAGE 22

CR2 CRACK AND BRAID 60°

Cracking within the 60° braided tube:

- Circumferential cracks:
- Initiation at the "tips" of tows (?)

- Orientation strongly influenced by fiber direction (inter-tow propagation)

$$
\Uparrow \sigma_{z z}
$$

$\downarrow \sigma_{Z Z}$

PAGE 23

Ce2 CRACK AND BRAID 60°

Cracking within the 60° braided tube:

- Circumferential cracks:
- Initiation at the "tips" of tows (?)

- Orientation strongly influenced by fiber direction (inter-tow propagation)

$$
\Uparrow \sigma_{z z}
$$

PAGE 24

Ce2 CRACK AND BRAID 60°

Cracking within the 60° braided tube:

- Circumferential cracks:
- Initiation at the "tips" of tows (?)

- Orientation strongly influenced by fiber direction (inter-tow propagation)

$$
\Uparrow \sigma_{z z}
$$

$\sqrt{\square} \sigma_{Z Z}$

Ce2 CRACK AND BRAID 60°

Cracking within the 60° braided tube:

- Circumferential cracks:
- Initiation at the "tips" of tows (?)

- Orientation strongly influenced by fiber direction (inter-tow propagation)

$$
\Uparrow \sigma_{z z}
$$

$\sqrt{\square} \sigma_{Z Z}$

Ce2 CRACK AND BRAID 60°

Cracking within the 60° braided tube:

- Circumferential cracks:
- Initiation at the "tips" of tows (?)

- Orientation strongly influenced by fiber direction (inter-tow propagation)

$$
\Uparrow^{\sigma_{z z}}
$$

Ce2 CRACK AND BRAID 60°

Cracking within the 60° braided tube:

- Circumferential cracks:
- Initiation at the "tips" of tows (?)

- Orientation strongly influenced by fiber direction (inter-tow propagation)

$$
\Uparrow^{\sigma_{z z}}
$$

Ce2 CRACK AND BRAID 45°

Cracking within the 45° braided tube:

- Circumferential cracks:
- Initiation at the "tips" of tows (?)

- Orientation slightly influenced by fiber direction (near the "tips")

CR2 CRACK AND BRAID 45°

Cracking within the 45° braided tube:

- Circumferential cracks:
- Initiation at the "tips" of tows (?)

- Orientation slightly influenced by fiber direction (near the "tips")

CeZ CRACK AND BRAID 45°

Cracking within the 45° braided tube:

- Circumferential cracks:
- Initiation at the "tips" of tows (?)

- Orientation slightly influenced by fiber direction (near the "tips")

$$
\Uparrow \sigma_{z Z}
$$

$\sqrt{\square} \sigma_{Z Z}$

CeZ CRACK AND BRAID 45°

Cracking within the 45° braided tube:

- Circumferential cracks:
- Initiation at the "tips" of tows (?)
- Orientation slightly influenced by fiber direction (near the "tips")

$\uparrow \sigma_{z z}$

$\sqrt{\square} \sigma_{Z Z}$

CeZ CRACK AND BRAID 45°

Cracking within the 45° braided tube:

- Circumferential cracks:
- Initiation at the "tips" of tows (?)

- Orientation slightly influenced by fiber direction (near the "tips")
$\uparrow \sigma_{z Z}$

Ce2 CRACK AND BRAID 30°

Cracking within the 30° braided tube:

- Circumferential cracks :
- Initiation at the "tips" of tows (?)
- Orientation not influenced by fiber direction

Ce2 CRACK AND BRAID 30°

Cracking within the 30° braided tube:

- Circumferential cracks :
- Initiation at the "tips" of tows (?)
- Orientation not influenced by fiber direction

Ce2 CRACK AND BRAID 30°

Cracking within the 30° braided tube:

- Circumferential cracks :
- Initiation at the "tips" of tows (?)
- Orientation not influenced by fiber direction

Ce2 CRACK AND BRAID 30°

Cracking within the 30° braided tube:

- Circumferential cracks :
- Initiation at the "tips" of tows (?)
- Orientation not influenced by fiber direction

Ce2 CRACK AND BRAID 30°

Cracking within the 30° braided tube:

- Circumferential cracks :
- Initiation at the "tips" of tows (?)
- Orientation not influenced by fiber direction

Ce2 CRACK AND BRAID 30°

Cracking within the 30° braided tube:

- Circumferential cracks :
- Initiation at the "tips" of tows (?)
- Orientation not influenced by fiber direction

SUMMARY OF QUALITATIVE ANALYSES

Common points:

- Circumferential cracks initiate at the "tips" of tows
- Circumferential cracks deviate to become in-plane cracks
- Propagation of in-plane cracks is guided by fiber direction

Uncommon points (braid angle effects):

- Circumferential cracks :
- θ increases \rightarrow crack orientation is more and more influenced by fiber direction $\rightarrow \theta>\theta_{c}\left(60^{\circ}\right)$, inter-tow propagation
- In-plane cracks :
- θ increases \rightarrow number of initiation becomes greater
\rightarrow propagation distance becomes smaller

CRACK QUANTIFICATION

- Quantitative measurement (opening, surface area) - method

1- Evaluate a local damage level for each voxel
\Leftrightarrow according to its gray level (in the subtracted image)

2- Project the voxelized damage information onto the median surface \Leftrightarrow by local orientation

- Average opening $\bar{\Lambda}$
- Surface area S \rightarrow surface density $\rho=S / V$

Projected positions

Ce2 CRACK QUANTIFICATION 45°

- Quantitative measurement (opening, surface area) - result

- Circ. \neq In-plane
- No saturation until fracture

CONCLUSIONS AND FUTURE WORK

- Effects of braid angle on damage mechanisms:
- circumferential cracks (initiation \& orientation)
- In-plane cracks (initiation and propagation distance)
- Method for quantifying geometry parameters (opening, surface area) of cracks
- Crack quantification for 30° and 60°
- Numerical simulation of real microstructures

V

Why the in-plane cracks open under tension load? What is the origin of such effects ?

Thank you for your attention

DVC \& STRAIN MEASUREMENT

- Digital Volume Correlation (DVC)
- Correlation grid adapted to the tube geometry
- Correlation marker: pores
- Strain measurement

- Average over each radial position
- Method: kinematic optimization between a simulated displacement field and the DVC-measured one

Ce2 POROSITY DISTRIBUTION

Periodic in e_{θ} and e_{z}

Porosity evolution in e_{r}

cea
 X-RAY TOMOGRAPHS

Information extracted from such images:

- Porosity distribution (undamaged tubes)
- Strain measurement (DVC)
- Crack characterization
(geometry, orientation,etc)

Cea PROCESSING OF X-RAY TOMOGRAPHS

Cea PROcESSING OF X-RAY TOMOGRAPHS

Cea PROcESSING OF X-RAY TOMOGRAPHS

Cea PROcESSING OF X-RAY TOMOGRAPHS

Cea PROcESSING OF X-RAY TOMOGRAPHS

CQZ PROCESSING OF X-RAY TOMOGRAPHS

\rightarrow Porosity distribution (undamaged tube)

Strain measurement
(Digital Volume Correlation)

Cea PROcESSING OF X-RAY TOMOGRAPHS

Strain measurement
(Digital Volume Correlation)

Cea PROcESSING OF X-RAY TOMOGRAPHS

Crack characterization

CRZ CRACK DETECTION

- Subtracted image:
- Contrast in the vicinity of 128
- Artifacts remain

CQ2 CRACK DETECTION

- Artifact processing

1) Radial fluctuation of brightness
\checkmark For each circumference,
subtract the average gray level :
$\mathrm{V}_{\mathrm{red}}(r, \theta)=\frac{1}{2}\left[\mathrm{~V}_{0}(\mathrm{r}, \theta)-\mathrm{V}_{\mathrm{av}}(\mathrm{r})+255\right]$
with $\quad \mathrm{V}_{\mathrm{av}}(r)=\frac{1}{N} \sum_{i}^{N} \mathrm{~V}_{0}\left(\mathrm{r}, \theta^{i}\right)$

Fig. Avant \& après la soustraction de luminosité
2) Image segmentation via a global threshold

DÉTECTION DE FISSURES

- Artifact processing (continue)

3) Over amplitude pore/solid interface
\checkmark Identified in the reference image
\Leftrightarrow Image gradient (Sobel operator)
4) Ring
\checkmark Centered to image center
\checkmark Continuous in the circumferential direction

Identified interfaces by Sobel operator

Interface reduction

Ring reduction

cea CRACK QUANTIFICATION

- Quantitative measurement (opening, surface area)

1- Compute the "voxelized" local damage level $d\left(X_{c}\right)$
The gray level of one detected crack voxel:

$$
g\left(\Phi\left(\underline{X}_{c}\right)\right)=\left[1-\psi\left(\underline{X}_{c}\right)\right] \cdot f\left(\underline{X}_{c}\right)+\psi\left(\underline{X}_{c}\right) \cdot \mathrm{v}_{\text {air }}
$$

Volume fraction of air in the voxel

Gray level of an air-voxel

$$
r(\underline{X})=\frac{1}{2}[g(\Phi(\underline{X}))-f(\underline{X})+255]
$$

"Voxelized" damage level:

$$
d\left(\underline{X}_{c}\right):=\psi\left(\underline{X}_{c}\right)=\frac{255-2 \cdot r\left(\underline{X}_{c}\right)}{f\left(\underline{X}_{c}\right)-\mathrm{v}_{\text {air }}} \quad d\left(\underline{X}_{c}\right) \in[0,1]
$$

CRACK QUANTIFICATION

- Quantitative measurement (opening, surface area) - continue

Cea crack QUANTIFICATION

- Quantitative measurement (opening, surface area) - results

Surface density : $\rho=S / V$

cea
 ANALYSES DES FISSURES DÉTECTÉES

- Quantitative measurement (opening, surface area) - results

Average opening $\bar{\Lambda}$

