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Abstract This paper presents a solution of a well-known 
problem in electrical energy distribution: the detection of partial 

discharges in a distribution system also used for communication 
(such as power control signals). We show the inconveniences of 
the classical approach (energy thresholding) and we present the 

results of a new approach, based on the projection of the signals 
in a multidimensional phase space, followed by a Hough 
transform-based analysis. 

Index Terms — electrical fault, partial discharge, Hough 
transform, phase diagram, phase space trajectory. 

I. INTRODUCTION 

The topic of fault detection in electrical system is of great 

interest in the present day, and one of the most common faults 

is represented by partial discharges (PDs). More than 30% 

percent of breakdowns in power systems are caused by 

isolation defects [1], which can occur in any phase of the 

production-transport-distribution chain. 

From o signal signature point of view, PDs are very short, 

impulse-like transient signals, while also presenting a wide 

band frequency characteristic. From a physical point of view, 

the phenomenon is also associated with electromagnetic, 

ultrasonic and acoustic emissions. Based on these features 

there exist several procedures for PD detection and/or 

localization [2]: 

• Electrical measurement-based detection/localization; 

• Electromagnetic sensing; 

• Acoustic/ultrasound sensing; 

In the context of electrical-based detection, the classical 

approach is to use current sensors (Rogowski or current 

transformers) with a wide bandwidth and inspecting the High 

Frequency domain of the current (10 kHz and upwards to tens 

of MHz). This approach, coupled with energy thresholding, is 

very robust in a non-noisy environment. But in real-life 

applications, there are noise sources in the system, which can 

interfere with proper detection. Loads also generate high 

frequency content, but not at the same levels as PDs and of a 

different temporal pattern.  

The most difficult problem to overcome for detecting the 

temporal signature of the high frequency emissions of the PDs 

is identifying their presence in a network used for 

communications purposes, such as power control signals. 

These types of systems normally generate a high frequency 

content of levels greater than the PD and is difficult to 

distinguish between the two phenomena.  

The method proposed in this paper attempt firstly to represent 

the two phenomena, the PD and communications, in the phase 

diagram domain that shows up good discrimination capability 

for the both signal types. The, the Hough transform is applied 

in order to measure this discrimination and to allow the 

accurate identification.  

This paper presents the detection problem in more detail in 

section 2; in section 3 a new approach based on phase space 

embedding is explored, followed by experimental results and 

the concluding remarks.  

II. PRACTICAL PROBLEM FORMULATION: PDS VS COMMS 

As stated in the previous section, one of the most 

employed PD detection principles is electrical-based sensing, 

with the use of high frequency current measurements. The 

energy levels of the high frequency current are compared to 

a threshold and a decision is taken [3]. 

This approach fares well in a noise-free electrical system, 

seeing as (depending on the analyzed bandwidth) loads 

generate traditionally lower levels of high frequency energy.  

But one of the most important high frequency noise 

sources are communication systems, that employ carrier 

frequencies spread over a wide band spectrum and 

thoroughly mask the PD phenomenon.  

 

 
Figure 1. Partial discharge (blue) & envelope (red). 

 

An example of a recorded partial discharge is shown in 

figure 1, which is clearly visible in a noise-less environment. 

 Note that the signal, as all the other signals, are normalized 

between 0 and 1.  

Figure 2 presents the case where a PD happens during the 

communication of the same previous message as before, and 

the transient signal of interest has become a lot more difficult 

to recognize (green rectangle). 



 

 
Figure 2. PD+COMM signals (blue) & envelope (red). 

 

Figure 3 shows the power spectral density (Welch’s 

method) for the signal in figure 2, showing the amplitude 

masking of the PD phenomenon. This type of 

communication uses all the classical modulation techniques: 

amplitude, frequency and phase modulation. 

 

 
Figure 3. Power Spectral Density: PD+COMM. 

 

A different approach than a simple energy detector is 

required aimed to identify the presence of the partial discharge 

in this signal window (and others similar). 

III. PHASE SPACE-BASED ANALYSIS 

Seeing as energy detectors or matched filter-like 

approaches are limited in this context, we propose an 

approach based on the embedding in the phase space. 

A measured signal can be considered as a time series s of 

length N samples, as expressed in equation (1). 

 

𝑠 = {𝑠[1], … , 𝑠[𝑁]}      (1) 

 

The time series is embedded in an m-dimensional phase 

space, as described by Takens  & Abarbanel in [6], [7]. In 

this new representation the time series becomes a succession 

of m-dimensional vectors of the form: 

 

𝑣[𝑖]⃗⃗ ⃗⃗  ⃗ = ∑ 𝑠[𝑖 + (𝑘 − 1)𝜏] ∙𝑚
𝑘=1 𝑒𝑘⃗⃗⃗⃗ , 𝑖 = 1,𝑀̅̅ ̅̅ ̅̅     (2) 

 

where  𝑣[𝑖]⃗⃗ ⃗⃗  ⃗ are the vectors, m is the embedding dimension, τ 

is the lag (delay) taken between samples, M=N-(m-1) and 𝑒𝑘⃗⃗⃗⃗  
are the vectors of the unit axis. By computing the phase space 

trajectory, we can completely unfold the dynamics of the 

phenomena under inspection.  

The parameters m and τ (dimensions of the phase space 

and delay/lag between samples, respectively) can be deduced 

in a wide variety of ways, as described in [4],[5],[6]. For this 

work, we have used the False Nearest Neighbors method for 

deducing m and the mutual information criterion for the 

choice of τ.  

The deduced parameters are presented in table 1. 

TABLE I 

EMBEDDING PARAMETERS 
 PD COMM PD+COMM 

m 8 8 8 

τ 30 10 30 

 

After properly embedding the signals in the corresponding 

phase space that completely unfolds their dynamics, we must 

use a tool that allows data visualization. Seeing as we are 

working in an 8-dimensional space, visual representation of 

the trajectories becomes impossible in a straightforward 

matter. 

A powerful tool that is used in situations of this type is the 

“cosine distance” between vectors u and v, expressed in 

equation (3): 

𝐶𝐷𝑢𝑣 = 1 − cos 𝜃   (3) 

 

, where 

cos 𝜃 =
𝑢∙𝑣

‖𝑢‖∙‖𝑣‖
      (4) 

 

, where ‖∙‖ is the Euclidean norm operator and u•v is the 

Euclidean dot product. 

So, for an M×m trajectory matrix, the distance matrix will 

contain M×M points, which consist of the pair-wise cosine 

distance between the said pair of points. 

 

The general advantages of using the cosine distance are: 

 Bounded output: between 0 and 1; 

 Commonly used in high-dimensional spaces; 

 Also commonly used in information retrieval and 

text mining; 

 Widely used measure of cohesion within clusters 

for data mining; 

 Relatively simple to compute; 

 Intuitive measure of distance/dissimilarity. 

 

After computing the cosine distance matrices, we have 

normalized (0-to-1 scale) and threshold them (empirically 

chosen at 0.5, in order to keep only the points that are further 

apart), thus obtaining binary matrices. 

 

Figures 4-to-6 present the distance matrices of the partial 

discharge (PD), the communication signal (COMM) and of 

the COMM overlapping the PD, respectively.  



 

 
Figure 4. Cosine distance matrix for Partial Discharge. 

 
Figure 5. Cosine distance matrix for COMM signal. 

 
Figure 6. Cosine distance matrix for PD+COMM signal. 

 

We can see in the above images, as in other measurements 

we have carried out, that in the case of the mixed partial 

discharge and COMM signal, the binary image that resulted 

from the thresholding of the cosine distance matrix, presents 

a great number of diagonal shapes, parallel to the principal 

diagonal of the matrix. To confirm this, we have used the 

Hough Transform, in order to investigate the presence of 

lines in the images and what are the orientations of these 

lines. 

Lines can be represented in a 2D image (with coordinates 

XY), in the following manner: 

 

𝑦 = 𝑎𝑥 + 𝑏      (5) 

where xy are the coordinates of a pixel and a and b are 

parameters of that particular line. 

 

However, the form expressed in equation (5) is not 

capable of representing vertical lines. Thus, a more proper 

form, used in the Hough Transform, is given in equation (6): 

𝑟 = 𝑥 ∙ cos𝜃 + 𝑦 ∙ sin𝜃     (6) 

 

which can be rewritten in the form: 

𝑦 = −
cos𝜃

sin𝜃
∙ 𝑥 +

𝑟

sin𝜃
     (7) 

where r and θ are the distance from the line to the origin and 

the angle of line, respectively. 

All lines can be represented in this form, as θ goes from 0 

to 180 degrees and r varies in R+.  

Thus, the Hough space has two dimensions, r and θ, and 

a line is represented by a single point, corresponding to a 

unique set of parameters (ru and θu). The line-to-point 

mapping is illustrated in figure 7 and the mapping of a point 

to the Hough space is depicted in figure 8. 

 

 
Figure 7. Line to point mapping to the Hough space. 

 

 
Figure 8. Point to line mapping to the Hough space. 

 

Figure 8 shows how a point is mapped to all lines that can 

pass through that point, which results in a sine-line line in the 

Hough space. 

Having established the suitability of the Hough Transform 

for line inspection, we have carried out this type of analysis 

for each of the three cases presented previously: partial 

discharge, COMM and mixed signal. Figures 9, 10 and 11 

illustrate the results. 

 



 

 
Figure 9. Hough transform of the partial discharge. 

 

 
Figure 10. Hough transform of the COMM signal. 

 

 
Figure 11. Hough transform of the PD+COMM signal. 

 

The large concentration of lines for the PD+COMM 

signal, around the π/4 = 0.7854 (45°) θ point indicates a high 

number of lines parallel to the diagonal in figure 6.  

Hough-based diagonal line detection is depicted in figure 

12. In our application, we focus directly on the largest 45°- 

line found in the binarized distance matrix. 

 
Figure 12. Hough-based Longest Diagonal Detection. 

IV. RESULTS & CONCLUSION 

We have carried out this analysis for 16 acquired partial 

discharge signals that occurred during the several hours of 

functioning of a resistive load, in a DC network, which also 

included a COMM-based communication system. There is 

clear separation between the two classes (COMM and 

PD+COMM signals). 

 
Figure 12. Results for 16 PD/PD+COMM pairs of signals: 

maximal diagonal length. 

The results are very promising and we intend to extend this 

study to a larger database of signals, as it enables the tackling 

of issues that are very difficult to solve in the temporal domain. 
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