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Time-Delay Estimation using Ground Penetrating
Radar with a Support Vector Regression based

Linear Prediction Method
Jingjing Pan, Cédric Le Bastard, Yide Wang, Member, IEEE, and Meng Sun

Abstract—Ground penetrating radar (GPR) is widely used
in media parameters estimation and targets localization. This
paper focuses on time-delay estimation (TDE) using GPR signal,
which contains important information about the probed media
structure. But TDE tends to be a challenging task in GPR
applications, in the scenarios of overlapping, coherent signals and
limited snapshots. Forward-backward linear prediction (FBLP)
is a high time resolution method, which is able to directly deal
with coherent signals. Support vector regression (SVR) is robust
with small samples. Therefore, we propose to combine the theory
of FBLP and SVR together to enhance the robustness of TDE
in the case of coherent, overlapping signals as well as limited
snapshots. The proposed method is tested both with numerical
and experimental data. Both of the results demonstrate the
effectiveness of the proposed method.

Index Terms—Ground Penetrating Radar (GPR), Support
Vector Regression (SVR), Forward-Backward Linear Prediction
(FBLP), Time-Delay Estimation (TDE), low snapshots.

I. INTRODUCTION

GROUND penetrating radar (GPR) is a common tool
for subsurface sensing in the field of civil engineering,

defense, agriculture and environment [1]–[3]. It allows non-
destructive probing and therefore gains much interest both in
media parameters estimation and in buried targets localization
[4]–[6].

In civil engineering, GPR is used to survey horizontally
stratified media, for example, roadways. The information of
the vertical structure of the stratified media can be extracted
from radar profiles by means of echo detection and amplitude
estimation. Echo detection provides the time-delay estimation
(TDE) associated with each interface, whereas amplitude es-
timation is used to retrieve the wave speed within each layer.
However, TDE has several signal processing challenges in
practical GPR applications. Problem arises when the backs-
cattered echoes are too close to each other, which requires
the use of signal processing algorithms with high temporal
resolution. Subspace methods and linear prediction (LP) are
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more appropriate than the conventional FFT-based methods for
estimating time-delays of overlapping echoes [2]. Furthermore,
the performance of signal processing algorithms degrades
when the number of available snapshots used for covariance
matrix estimation is limited [7]–[9]. In addition, the backscat-
tered echoes obtained from GPR are usually highly correlated
(even coherent) with each other, which significantly adds up to
the difficulties in TDE. Decorrelation techniques [5], [10], [11]
are attractive, especially with subspace methods, like multiple
signal classification (MUSIC) [12] and estimation of signal
parameters via rational invariance technique (ESPRIT) [13].

It is worth noting that LP methods have a high temporal
resolution. They are able to perform spatial smoothing impli-
citly [10], which is of great importance with coherent signals.
In GPR applications, there has been a considerable number of
research making use of LP in the detection of buried objects
[8], [14]–[16]. LP is used to predict the next GPR signal
from the previous observations. An object appears when the
measured signal is different from the prediction. There are also
applications about autoregressive model (AR, one-side LP)
in the estimation of parameters of subsurface materials, for
example, the estimation of time-delay [2] and soil permittivity
[17]. Nevertheless, the performance of LP is limited when the
observation records are short [8].

In essence, LP methods are about the estimation of a weight
vector. A promising solution to the estimation problem due to
the short observation records is the support vector regression
(SVR) [18]. SVR is the regression form of support vector
machine (SVM). Based on the principle of structural risk
minimization, SVR has fantastic generalization ability. It is
originally used only in the real domain and later extended into
complex form [7], [19], [20]. In the literature, SVR has been
integrated with several linear signal processing algorithms. A
support vector autoregressive method (AR-SVR) is proposed
for frequency estimation problems [21], [22]. The authors in
[23] combines autoregressive moving average (ARMA) with
SVR for system identification applications. The theory of
AR is closely related to the forward linear prediction (FLP)
[24]. However, forward-backward linear prediction (FBLP)
performs better than one-side prediction methods (FLP and
backward linear prediction, BLP) [25]. Therefore, we propose
to combine the theory of SVR with FBLP together in TDE.
The objective function can be transformed from complex to
real domain like in [7]. In this paper, the function is directly
formulated in complex domain with Wirtinger’s calculus [20],
[26].
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The remainder of the paper is organized as follows. Section
II presents the signal model. Section III introduces the theory
of FBLP and the proposed SVR based FBLP method. Section
IV presents some simulation results. Section V shows the
performance of the proposed method with experimental data.
The conclusion is drawn in Section VI.

In the following, (.)T , (.)∗, and (.)H denote transpose,
conjugate, and complex conjugate transpose operations, re-
spectively. R and C denote real and complex sets, respectively.
Re(z) and Im(z) denote the real and imaginary parts of z, re-
spectively. Vectors and matrices appear in boldface lowercase
letters and boldface capital letters, respectively.

II. SIGNAL MODEL

The signal model used in [2], [11], [27] with stratified media
is adopted in this paper. Thus, the backscattered echoes are the
time-shifted and attenuated replicas of the transmitted signal.
The observation is performed with M discrete frequencies.
The frequency fm is defined as fm = f1 + (m− 1)∆f , with
f1 the beginning of the bandwidth and ∆f the frequency shift,
m = 1, . . . ,M . The received signal at frequency fm can be
expressed in frequency domain as

g(fm) =

K∑
k=1

e(fm)ske
−j2πfmτk + n(fm) (1)

where K is the number of backscattered echoes, which can
be primary and multiple reflection echoes. sk denotes the
amplitude of the kth backscattered echo. τk is the kth time-
delay corresponding to the kth echo. At frequency fm, e(fm)
represents the radar pulse in frequency domain while n(fm) is
an additive white Gaussian noise with zero mean and variance
σ2.

In order to use the principle of LP methods, a whitening
procedure [2], [5] is applied. In the following, each echo is
divided by the radar pulse. Thus, (1) becomes:

rm =
g(fm)

e(fm)
=

K∑
k=1

ske
−j2πfmτk +

n(fm)

e(fm)
. (2)

With L independent snapshots, the data sample at frequency
fm can be written as

rm = [rm(1), rm(2), . . . , rm(L)]T . (3)

III. METHODOLOGY

A. Forward-backward linear prediction

In theory, LP estimates the unknown samples with a linear
combination of the known observations by minimizing the
mean square prediction error. FBLP uses the observations from
both forward and backward observation sequences. If the order
of the prediction filter equals P , the prediction equation can
be modeled as [28], [29]:



rP rP−1 . . . r1
...

...
...

rM−1 rM−2 . . . rM−P
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

r∗2 r∗3 . . . r∗P+1
...

...
...

r∗M−P+1 r∗M−P+2 . . . r∗M



ω1

...
ωP

 =



rP+1

...
rM
. . . . . .
r∗1
...

r∗M−P


.

(4)
The other LP methods, FLP or BLP, can be expressed with
the first or second half (above or below dotted line) of (4),
respectively. In a more compact way, (4) can be written as

Xω = y (5)

where y ∈ CNT×1, X ∈ CNT×P and ω ∈ CP×1, NT =
2(M − P )L.

The weight coefficient vector ω can be estimated by [28]:

ω = R−1r (6)

where R = XHX/L and r = XHy/L. The inversion of
R requires the inequality constraint: NT > P . Therefore,
we have the constraint on the number of snapshots L, L ≥
P/[2(M − P )].

The order of the prediction filter P should satisfy: K 6
P 6M −K/2 [29].

The time-delay of each echo can be estimated by searching
the peak positions in the power spectrum density (PSD) of
FBLP. With the weight vector ω, the PSD is defined as

P (t) =
1∣∣∣∣∣aH(t)

[
1
−ω

] ∣∣∣∣∣
2 (7)

with a(t) = [e−2jπf1t, e−2jπf2t, . . . , e−2jπfP+1t]T , the mode
vector.

B. Proposed method: FBLP-SVR

The key issue in LP methods is to estimate the weight
vector ω. However, in scenarios where the number of available
snapshots is insufficient, the performance of LP methods
suffers great deterioration. The principle of SVR works not
only with limited number of samples but also with complex
data. Therefore, we propose to combine SVR with FBLP in
this paper, which is called FBLP-SVR in the following.

We can see that (5) is a typical form of SVR in complex
domain. In this paper, SVR is directly formulated in complex
domain to deal with complex data in a natural way [19],
[20]. The research in [20] deals with complex-valued nonlinear
regression problems by exploiting the widely linear estimation
method in complex domain, which is very instructive in finding
the solution of (5). In regression problems, the main objective
of SVR is to find a hyper plane to fit the data within a deviation
less than a given value ε. The ε-insensitive loss function is
used here [30]. The primal objective function is to minimize
the prediction error both structurally and empirically. Since the
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empirical errors are complex-valued, the residuals should be
minimized both in their real and imaginary parts. Therefore,
the optimization task can be expressed as [19], [20], [30]:

min
ω,ξr,ξ̂r,ξi,ξ̂i

(
1

2
‖ω‖2 + C

NT∑
n=1

(ξrn + ξ̂rn + ξin + ξ̂in)) (8)

s. t.



Re(yn − xHn ω) 6 ε+ ξrn, n = 1, . . . , NT

Re(−yn + xHn ω) 6 ε+ ξ̂rn, n = 1, . . . , NT

Im(yn − xHn ω) 6 ε+ ξin, n = 1, . . . , NT

Im(−yn + xHn ω) 6 ε+ ξ̂in, n = 1, . . . , NT

ξrn, ξ̂
r
n, ξ

i
n, ξ̂

i
n > 0, n = 1, . . . , NT

where xn is the nth column of XH and yn = y(n), n =
1, . . . , NT . ξrn and ξ̂rn stand for positive and negative errors in
the real part of yn while ξin and ξ̂in are for the corresponding
imaginary part. The value C controls the trade-off between
the structural and empirical errors.

The method of Lagrangian multipliers is employed to find
the solutions of (8) by introducing a dual set variables.
Therefore, we have the primal-dual objective function:

Lpd(ω) = 1
2‖ω‖

2 + C

NT∑
n=1

(ξrn + ξ̂rn + ξin + ξ̂in)

+

NT∑
n=1

an(Re(yn − xHn ω)− ε− ξrn)

+

NT∑
n=1

ân(Re(−yn + xHn ω)− ε− ξ̂rn)

+

NT∑
n=1

bn(Im(yn − xHn ω)− ε− ξin)

+

NT∑
n=1

b̂n(Im(−yn + xHn ω)− ε− ξ̂in)

−
NT∑
n=1

ηnξ
r
n −

NT∑
n=1

η̂nξ̂
r
n −

NT∑
n=1

λnξ
i
n −

NT∑
n=1

λ̂nξ̂
i
n

(9)

where an, ân, bn, b̂n, ηn, η̂n, λn, and λ̂n are Lagrangian
multipliers.

(8) and (9) are real-valued functions defined on complex va-
riables. The constructed Lagrange function has a saddle point
which minimizes over the primal variables and maximizes
over the dual variables. In order to exploit the Karush-Kuhn-
Tucker (KKT) theorem, the Wirtinger’s calculus [20], [26] is
carried out for the complex variable ω. Besides, the gradients
of real variables are computed in the traditional way. Then,

we deduce:

∂Lpd

∂ω∗ = 1
2ω −

1
2

∑NT

n=1((an − ân) + i(bn − b̂n))xn = 0
∂Lpd

∂ξrn
= C − an − ηn = 0, n = 1, . . . , NT

∂Lpd

∂ξ̂rn
= C − ân − η̂n = 0, n = 1, . . . , NT

∂Lpd

∂ξin
= C − bn − λn = 0, n = 1, . . . , NT

∂Lpd

∂ξ̂in
= C − b̂n − λ̂n = 0, n = 1, . . . , NT .

(10)
Substituting (10) into (9), we have the following maximi-

zation task:

max
a,â,b,b̂

− 1

2

[
a− â

b− b̂

]T [
Re(XXH)− Im(XXH)
Im(XXH) Re(XXH)

] [
a− â

b− b̂

]
− ε1T (a + â + b + b̂)

+Re(yT )(a− â) + Im(yT )(b− b̂)

s. t. 0 6 an, α̂n, bn, b̂n 6 C, n = 1, . . . , NT
(11)

where 1 is a all-one column vector with NT elements, a =
[a1, . . . , aNT

]T , â = [â1, . . . , âNT
]T , b = [b1, . . . , bNT

]T , and
b̂ = [b̂1, . . . , b̂NT

]T .
In (11), the quadratic optimization function will reach its

maximum with respect to the Lagrange coefficient vectors
a, â, b, b̂, which can be computed using quadratic program-
ming solvers. Then, the weight ω can be obtained according to
(10), ω =

∑NT

n=1((an−ân)+i(bn−b̂n))xn. In the calculation,
a small identity term γI is added in the cost function in
case of ill-conditional inaccuracies [30]. Compared with the
standard FBLP, the combined FBLP-SVR needs extra compu-
tation. However, the number of snapshots in the considered
situations being small, the increase of computational burden
is insignificant. Qualitative evaluations will be shown in the
simulation part.

IV. SIMULATION RESULTS

A. Simulation Settings
In order to evaluate the performance of the proposed FBLP-

SVR method, three simulations are carried out in this section.
The frequency range of the step frequency radar is 1.0− 4.0
GHz, with M = 21 frequency samples. The underground
structure is assumed to have three layers, as shown in Fig.
1. The medium is composed of three layers, Layer 1, Layer
2, and Layer 3. The relative permittivities and thicknesses of
the layers are listed in Table I. In the simulation, four echoes
(S0, S1, SM1, and S2) are considered. S0, S1, and S2 are the
primary echoes, with the corresponding time-delays [τ0, τ1, τ2]
= [6.67, 6.95, 7.89] ns. SM1 is the multiple echo within the
first layer with time-delay τM1 = 7.24 ns. The time resolution
is determined by B∆τ , where B is the bandwidth and ∆τ
the time shift between two echoes [2]. If the product B∆τ is
greater than 1, the echoes are distinguishable by conventional
FFT based methods. In this simulation, the first three echoes
(the first and second primary echo, the multiple echo) are
overlapped. The third primary echo is not overlapped with
the others. The four echoes are coherent. SNR is defined as
the ratio between the power of the last primary echo and the
noise variance.
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Layer 1

Layer 2

Layer 3

0r

1r

2r

3r

1 ( 1)S  1 ( M1)MS  2 ( 2)S 

Layer 0 (Air)

0 ( 0)S 

1 H

2 H

Fig. 1. Stratified layers from a simulated setup. Hi and εri are the thickness
and relative permittivity of Layer i (i ∈ [0, 1, 2, 3]), respectively. Si and τi
are the reflected echo and time-delay from interface i, respectively. SM1 and
τM1 are for the multiple echo within the first layer.

The work in [28] indicates that the smaller the order of
prediction filter P is, the worse the estimation performance
of LP will be. Therefore, the order P in this section is set
to 19. In this situation, there should be at least 5 snapshots
when using the standard FBLP so that the covariance matrix
is reversible. In contrast, SVR based method does not require
such constraint.

In all simulations, the SVR-related parameters are set as
ε = 0, C = 1, and γ = 10−6. In our extensive simulation ex-
periences, the value C and γ are insensitive parameters while ε
should be small values. There may be other analytic parameter
selection methods or other pairs of parameter settings, but the
proposed FBLP-SVR shows its robustness with ε = 0, C = 1
and γ = 10−6 at different scenarios, as in [19].

TABLE I
VALUES OF RELATIVE PERMITTIVITY AND THICKNESS IN THE

HORIZONTAL STRATIFIED MEDIUM

{εr0, εr1, εr2, εr3} {1, 3, 8, 9}
{H1, H2} mm {25, 50}

B. Power Spectrum Density

In the first simulation, the normalized PSD of the pro-
posed FBLP-SVR is compared with the standard FBLP and
MUSIC. We assume that the top four highest peak locations
in the spectrum allow estimating the four time-delays. The
simulation is conducted with 5 and 100 snapshots to show
the influence of the number of snapshots on the estimation
performance. SNR = 20 dB. The results are depicted in Fig. 2.
The vertical dashed lines are located at the true values of time-
delays. In the scenario with 5 snapshots, the proposed FBLP-
SVR can detect the three primary echoes, but the amplitude
of PSD of the multiple echo is very weak. The PSD of the
standard FBLP has false peaks and it can not correctly detect
the multiple echo. When there are 100 snapshots, FBLP and

6 6.5 7 7.5 8 8.5 9
-15

-10

-5

0

Time (ns)

N
o

rm
a
li

z
e
d

 P
S

D
 (

d
B

)

FBLP-SVR

MUSIC

FBLP

True values

(a)

6 6.5 7 7.5 8 8.5 9
-15

-10

-5

0

Time (ns)

N
o

rm
a
li

z
e
d

 P
S

D
 (

d
B

)

 

FBLP-SVR

MUSIC

FBLP

True values

(b)

Fig. 2. PSD of FBLP-SVR, FBLP and MUSIC in the estimation of time-
delays with (a) 5 snapshots and (b) 100 snapshots.

FBLP-SVR perform similarly. Both of them are capable of
detecting the three primary echoes and the multiple echo. The
performance of FBLP and FBLP-SVR is enhanced with more
snapshots. Unfortunately, MUSIC fails to detect the echoes
not only with 5 snapshots but also with 100 snapshots, due to
the fact that the echoes are totally correlated.

In Fig. 2, the multiple echo has little impact on the three
primary echoes, even when the first two primary echoes are
overlapped with the multiple echo. Therefore, the estimation
of the multiple echo is excluded in the following.

C. Performance versus the number of snapshots

In the second simulation, we evaluate the accuracy of the
proposed FBLP-SVR as a function of the snapshots number
L, L ∈ [1,. . . ,50]. Since the standard FBLP requires L > 5,
its results are shown only from 5 snapshots. SVR based
FLP (FLP-SVR) is also considered in this part to make a
comparison with FBLP-SVR. Other settings are the same as
the first simulation. For each number of snapshots, the methods
are evaluated with 500 Monte Carlo trials. The performance
is assessed with relative-root-mean-square-error (RRMSE),
which is defined as [5]

RRMSE =

√
1
J

∑J
j=1(ẑj − z)2

z
(12)

where ẑj denotes the estimated time-delay for the jth run; z
is the true value; J is the number of Monte Carlo trials.

The RRMSEs of the three methods versus the number of
snapshots are illustrated in Figs. 3-5. With the increasing of
the number of snapshots, the RRMSEs of FBLP, FBLP-SVR
and FLP-SVR decrease. FBLP-SVR has lower RRMSEs than
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Fig. 3. RRMSEs of TDE versus the number of snapshots, first primary echo.
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Fig. 4. RRMSEs of TDE versus the number of snapshots, second primary
echo.

FLP-SVR at different numbers of snapshots. When the number
of snapshots is large (more than 15 in this case), FBLP and
FBLP-SVR achieve similar results. But when the number of
snapshots is limited, the proposed FBLP-SVR has the best
accuracy and outperforms the one-directional FLP-SVR and
traditional FBLP.

The execution time, by a computer equipped with a proces-
sor unit (CPU) of 2.7 GHz and 16 GB of RAM, is used to get
a rough idea about the computational burden of the proposed
method. In the comparison, three methods (the traditional
FBLP, FLP-SVR, and FBLP-SVR) are evaluated with L = 5
during 500 Monte Carlo trials. The average execution time of
one trial using the traditional FBLP, FLP-SVR, and FBLP-
SVR are 0.0674 s, 0.0816 s, and 0.0899 s, respectively. In
view of the average execution time, these three methods are
not time consuming. The combination of FBLP (or FLP) with
SVR slightly increases the computational complexity. Howe-
ver, the proposed FBLP-SVR greatly improves the estimation

0 10 20 30 40 50
10
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10
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10
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10
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10
1
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M
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E
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)
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Fig. 5. RRMSEs of TDE versus the number of snapshots, third primary echo.
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Fig. 6. RRMSEs of TDE versus SNR, first primary echo.
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Fig. 7. RRMSEs of TDE versus SNR, second primary echo.

performance.

D. Performance versus SNR

In the third simulation, the methods are applied to GPR data
with different SNRs ranging from 0 dB to 30 dB. Only one
snapshot is considered in this simulation. The standard FBLP
can not work with single snapshot hence it is not presented
in the comparison. The performance of FBLP-SVR and FLP-
SVR is tested with a Monte Carlo process, which consists
of 500 independent runs of the methods. Figs. 6-8 show the
RRMSEs of the three primary echoes using FBLP-SVR and
FLP-SVR as a function of SNR. It can be seen that the
RRMSEs of the three primary echoes continuously decrease
as SNR increases. The estimation results of FBLP-SVR have
lower RRMSEs than those of FLP-SVR. The RRMSE of the
methods depends on the echo amplitude, that is, the larger the
echo amplitude is, the smaller RRMSE will be. The RRMSE
difference between FBLP-SVR and FLP-SVR is the smallest
for the third primary echo (in Figs. 5 and 8), which might lie
in the fact that the third echo is not overlapped with the other
echoes.

V. EXPERIMENT

In this section, the proposed method is tested with two
experimental databases.

A. Laboratory experiment

In the first experiment, a PVC slab is probed in labora-
tory by a monostatic step frequency radar within frequency
bandwidth f ∈ [1.6, 3] GHz in far-field, with M = 71
frequency samples. The height of the antenna is 70 cm. The
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Fig. 8. RRMSEs of TDE versus SNR, third primary echo.

PVC slab has a thickness of 4 cm and relative permittivity
εr = 2.97 + 0.015j. In this case, the product B∆τ is about
0.64. Thus, the two backscattered echoes overlap with each
other. The radar pulse is measured with a metal plane [2].
The data are acquired with single snapshot. The measured
GPR data are preprocessed with temporal filtering and data
whitening, like in [2], [5]. After that, the proposed FBLP-
SVR and FBLP are applied to TDE. The order of prediction
filter P is set to 70. Fig. 9 illustrates the obtained results. The
backscattered echoes are overlapped and correlated with each
other and there is only one snapshot. The proposed FBLP-
SVR can still accurately detect the two echoes while FBLP
fails because of the limitation on the number of snapshots
(L > P/[2(M − P )] = 35). The relative error of FBLP-SVR
in Fig. 9(c) is about 2.7%.

B. Field experiment

Secondly, an experiment is conducted to probe a pavement
of IFSTTAR fatigue carousel [31]. The pavement consists of
two layers of asphalt. The relative permittivities of the two
layers are very close. The thickness of the first layer is about
5 cm. The measurement is implemented by a quasi-monostatic
step frequency radar with transmitter (Tx) and receiver (Rx)
close to each other. The distance between Tx and Rx antennas
is constant during the B-scan. The B-scan is composed of
21 traces (A-scans). During the measurement, the far-field
condition is verified. Preprocessing techniques (filtering the
air wave, data whitening) are performed before applying the
proposed algorithm [2], [5]. By the inverse Fourier transform,
we have the B-scan obtained from the experimental data
without air wave with a large frequency band (f ∈ [0.8, 10.8]
GHz), shown in Fig. 10. There are two echoes and the time
shift ∆τ between them is about 1.07 ns. Fig. 11 shows the
B-scan obtained by the proposed FBLP-SVR using only one
snapshot. As expected, the two echoes are well resolved by
FBLP-SVR over 21 A-scans. The frequency band used in
the estimation is f ∈ [3.77, 4.42] GHz with 27 frequency
elements. The prediction order P is set to 25. Thus, the
product B∆τ is about 0.7, which means that the two echoes
are overlapped. The standard FBLP can not work since the
limitation on the number of snapshots is L > 7 and there is
only one snapshot in the experiment. Fig. 12 illustrates the
results obtained by the proposed method and FBLP at the 5th
trace of the B-scan (5th A-scan of Fig. 10). The proposed
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Fig. 9. Processing of GPR measurements. (a) Raw data. (b) Time-filtered
data. (c) PSD of FBLP-SVR and FBLP (B∆τ ≈ 0.64).
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Fig. 10. Raw GPR data, B-scan with a large frequency band (f ∈ [0.8, 10.8]
GHz).

method is able to detect the two echoes as in shown Figs.
11 and 12. But FBLP shows no peak at the position of true
values. In addition, the time-delays between the two echoes
for the 21 A-scan are calculated. The mean and median of the
estimated time shifts are 1.058 ns and 1.110 ns, respectively.
The estimated time-delays are close to the real values.
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Fig. 11. Estimations using FBLP-SVR, B-scan, f ∈ [3.77, 4.42] GHz.
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Fig. 12. PSD of FBLP and FBLP-SVR at the 5th A-scan.

VI. CONCLUSION

In this paper, a SVR based FBLP is proposed. The proposed
method takes advantage of the good properties of FBLP
and SVR. FBLP has high resolution and can decorrelate
coherent signals directly. SVR is robust with small samples.
The performance of the performed method is validated with
numerical and experimental data, in coherent scenarios with
both overlapping and non-overlapping signals and limited
snapshots. The proposed FBLP-SVR outperforms the traditio-
nal FBLP and FLP-SVR methods, especially when the number
of snapshots is low. Furthermore, FBLP-SVR is applicable
with only one snapshot.
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