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Abstract

Previous studies of flexible flaps attached to the aft part of a cylinder have demonstrated a favourable
effect on the drag and lift force fluctuation. This observation is thought to be linked to the excitation
of travelling waves along the flaps and as a consequence of that, periodic shedding of the von Kármán
vortices is altered in phase. A more general case of such interaction is studied herein for a limited row of
flaps in an oscillating flow; representative of the cylinder case since the transversal flow in the wake-region
shows oscillating character. This reference case is chosen to qualify recently developed numerical methods
for the simulation of fluid-structure interaction in the context of the EU funded ‘PELskin’ project. The
simulation of the two-way coupled dynamics of the flexible elements is achieved via a structure model
for the flap motion, which was implemented and coupled to two different fluid solvers via the immersed
boundary method. The results show the waving behaviour observed at the tips of the flexible elements in
interaction with the fluid flow and the formation of vortices in the gaps between the flaps. In addition,
formation of vortices upstream of the leading and downstream of the trailing flap is seen, which interact
with the formation of the shear-layer on top of the row. This leads to a phase shift in the wave-type
motion along the row that resembles the observation in the cylinder case. 1

1 Introduction

The wave behaviour of arrays of flexible structures (hairs, flaps, filaments) induced by a cross flow is an
active area of research interest for a range of disciplines, and has been described in many studies[Finnigan
and Mulhearn, 1978b; Nepf, 2012; Nezu and Okamoto, 2010; Py et al, 2005, 2006]. This waving motion is
most commonly referred to as Honami in the case of terrestrial canopies and Monami for aquatic canopies.
Of particular interest to flow control, a wave-type motion along rows of flexible structures has been observed
in the wake of bluff bodies, where such flexible structures are attached to the aft part. The hairs interact with
the unsteady wake flow and show the emergence of travelling wave-like motion patterns [Favier et al, 2009].
Experimental studies of flow past cylinders with attached hairs proved the potential for these structures
to modify the shedding cycle [Kunze and Bruecker, 2012]. The study showed a characteristic jump in the
shedding frequency at a critical Reynolds number of Rec ≈ 14,000 when comparing to the classical behaviour
of a plain cylinder wake flow. The analysis of the motions of the hairy-flaps showed that for Re = Rec

the amplitude of the flap motion is considerably increased and a characteristic travelling wave-like motion
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Marseille, France. Julien.Favier@univ-amu.fr
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pattern could be observed along the row of flaps. As a consequence, the presence of the hairy flaps alter the
phase within the vortex shedding cycle such that the transverse dislocation - i.e. the transverse distance from
the centerline - of the shed vortices is reduced [Kunze and Bruecker, 2012]. Accordingly, the vortices are not
arranged in a classical zig-zag pattern of the Kármán vortex-street, but rather they are shed in a row along
the centerline (y = 0). These observations provided the motivations for the recent EU funded ‘PELskin’
project 2, wherein a small consortium of partners3 focussed on investigating the potential amelioration of
aerodynamic performance via a Porous and ELastic (PEL) coating. The objective being to elucidate the
potential for passive structures to reconfigure/adapt to the separated flow, thereby directly changing the
near-wall flow and the subsequent vortex shedding, which can lead to reduced form drag by decreasing the
intensity and the size of the recirculation region.

A further investigation of the physical mechanisms involved in the fluid structure interaction within the
rows of flaps requires a more general setup, so as to enable a detailed analysis of the flap behaviour under
clearly defined conditions. This facilitates the parametric study of the interaction as a function of the eigen-
frequency, spacing and stiffness of the flaps. Such a case is proposed herein in form of an oscillating channel
flow, where a limited row of flexible flaps is implemented. The selected configuration is simple enough to
capture the essential characteristics of the coupled problem, and may also be considered to be quasi two-
dimensional.

Experiments were carried out in a flow channel of square cross-section where fluid is driven by an oscillat-
ing piston along a row of 10 flexible flaps at a peak Reynolds-number of approximately 120. The numerical
framework is based on the Immersed Boundary method coupled to a flow solver, to treat the moving bound-
aries on a fixed Cartesian grid. Two fundamentally different fluid solvers were used to compare their quality
in comparison to the experimental data and judge the proper choice for further investigations of such coupled
problems. The first is a finite difference code based on Navier-Stokes equations and the second one is a
code employing the lattice Boltzmann method. The dynamics of the flexible elements is modelled using the
Euler-Bernoulli equations, as it is done in Huang et al [2007] and Favier et al [2015]. Conclusions to this
work will be drawn in section 6.

2 Experimental set-up and methods

Figure 1 : Schematic view of the experimental working section.

The oscillating channel flow is generated in a long tube of squared cross-section with diameter L = 6cm
(cross-section 6 cm x 6 cm, or 3H x 3H, in terms of the flap length H) which is filled with liquid and is

2http://www.transport-research.info/project/pel-skin-novel-kind-surface-coatings-aeronautics
3Aix Marseille Université, City University London, Wolfdynamics SRL, Technische Universität Bergademie Freiberg, The

University of Manchester
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connected at the upstream end to a piston drive unit and at the downstream end to a basin. As working
fluid we use a mixture of water and glycerin to adjust the viscosity of the flow. This allows us to vary the
characteristic numbers of the flow such as the Reynolds- and Wormersley-number across a wider range. The
piston is able to run at maximum flow amplitudes of 16 cm of bulk fluid at oscillations frequencies of 1 Hz.
All parts of the tube are made of transparent perspex to ensure optical access to the flow. The following
results were obtained with a glycerine-water mixture of volume-ratio 80/20 resulting in a kinematic viscosity
of ν = 100× 10−6m2s−1 at room temperature and a density of ρf = 1.2gcm−3.

In the centre of the tube is an insert, which contains a row of 10 flexible flaps (d = 1 mm thick, length
H = 2 cm, span B = 5 cm) that protrude into the flow. The interspacing between the flaps is set to 1 cm
as the reference case. The flaps are made of silicone rubber (Elastosil RT 601, Wacker Chemie, Germany,
Youngs modulus E = 1.2 MPa, density ρs = 1.2g/cm3) so that they are easily deflected by the flow. The
flexural rigidity of the flaps k is calculated with k = E × I = 5× 10−6 Nm2 (I is the second moment of area
along the thin axis of the flap I = Bd3/12). The density of the flaps ρs is equal to the density of the fluid ρf
so that gravity is not contributing to the motion of the flaps in the experiments.

For characterization of the flap response, a step test was carried out in the liquid environment. The flap
was deflected to a certain extend and was then released while recording the tip motion with a high-speed
camera. The tip motion is shown in Fig 2a). For comparison, the response curve in air is added, too. The
latter shows the natural frequency of the flap at fn = 15Hz while for the damped case in liquid the damped
frequency is fD = 3Hz, see Fig 2b). Therefore the damping coefficient D of the flap in the liquid is calculated
from the relation fD = fn

√
(1−D2) and results to D = 0.98.
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Figure 2 Step response of the flexible flap (a): motion in air (dashed line) and in the liquid (solid line). (b):
frequency response curve.

The piston is controlled via a linear traverse (Moog Series) and performs a harmonic motion. To ensure
an undisturbed flow within the centre of the flow channel from both sides we placed a honeycomb at the
entrance and exit of the tube as well as a smoothed transition insert from circular to squared cross-section.
In the absence of flaps in the first instance, velocity profiles in the centre of the measurement chamber were
measured with Particle Image Velocimetry. A high-speed camera (Phantom V12.1-8 G-M, Vision Research)
recorded the flow evolution from the side while the centre plane was illuminated with a vertical light-sheet
from below with a continuous laser (Ray Power 2000, Dantec). In addition to the PIV measurements, we used
a special designed Schlieren setup with two larger lenses (f = 400 mm) and illumination with a LED from the
back in form of a point source for recordings of flap motion and shear-layer evolution. A special preparation
of the flaps was required to achieve a good Schlieren image by means of differences in the refractive index
of working liquid. This was intentionally generated by coating the flaps in the empty channel prior to the
experiments with a thin water lining (refracting index of water nw = 1.33). Then the channel was slowly
filled with the working liquid, which has a higher refractive index than water (nl = 1.45). When starting the
oscillating flow, the water layer along the flaps is shed from the flaps along the shear-layers within the cavity
between the flaps and in the shear layer formed along the top of the flap row. This allows us to visualize the
shear-layer in a very illustrative way (see later discussion and Fig 7).
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3 Numerical method

The Immersed Boundary Method (IBM) is used to simulate the moving geometries of the flaps immersed in
the unsteady fluid flow. Following this approach, the fluid equations are solved on a fixed Cartesian grid,
which do not conform to the body geometry, and the solid wall boundary conditions are satisfied on the body
surface by using appropriate volume forces [Peskin, 1972, 2002; Pinelli et al, 2010]. In the context of the
EU PELskin project, the fluid is solved using two different approaches, partly as a function of the project
planning and partly for the purpose of demonstrating the flexibility of the method.

3.1 Flow solver 1: Lattice Boltzmann

In the first instance, the lattice Boltzmann method is used to simulate the fluid flow, which is based on
microscopic models and mesoscopic kinetic equations; in contrast to Navier-Stokes which is in terms of
macro-scale variables. The Boltzmann equation for the distribution function f = f(x, e, t) is given as follows:

∂f

∂t
+ e · ∇xf + F · ∇ef = Ω12, (1)

where x are the spatial coordinates, e is the particle velocity and F accounts any external force; in the
present work this force is the body force fib applied to the fluid. Clearly this last term is very important
as it will be used to convey the information between the fluid and the structure. The collision operator Ω12

is simplified using the Bhatnagar, Gross, and Krook (BGK) approach [Bhatnagar et al, 1954], where it is
assumed that local particle distributions relax to an equilibrium state f (eq) in a single relaxation time τ :

Ω12 =
1

τ

(
f (eq) − f

)
. (2)

This equation is discretised and solved on the lattice, a Cartesian and uniform mesh in our case. At each
point on the lattice, each particle is assigned one of a finite number of discrete velocity values. In our case we
use the D2Q9 model, which refers to two-dimensional and nine discrete velocities, referred to by subscript i.
The equilibrium function f (eq) (x, t) can be obtained by Taylor series expansion of the Maxwell-Boltzmann
equilibrium distribution [Qian et al, 1992].

Concerning the discrete force distribution needed to keep into account the body force fib, here we use the
formulation proposed by Guo et al [2002], as follows, where c is the lattice speed, cs = 1/

√
3 is the speed of

sound and ωi are the weight coefficients, which take standard values. For further details the reader is referred
to Favier et al [2013].

Fi =

(
1− 1

2τ

)
ωi

[
ei − u

c2s
+

ei · u
c4s

ei

]
· fib (3)

3.2 Flow solver 2: Navier Stokes

In this work we also use an incompressible Navier-Stokes solver with a staggered grid discretization [Harlow
and Welch, 1965]. In this case, both convective and diffusive fluxes are approximated by second-order central
differences. The fractional time-step method is used for the time-advancement [Chorin, 1968; Kim and
Moin, 1985], in the form of a second-order semi-implicit pressure correction procedure [van Kan, 1986]. The
alternating direction implicit method (ADI) is used for the temporal discretization of the diffusive terms,
allowing to transform three-dimensional problem into three one-dimensional ones by an operator-splitting
technique, while retaining the formal order of the scheme. The code parallelization relies upon the Message-
Passing Interface (MPI) library and the domain-decomposition technique.

The numerical strategy used to impose the desired zero velocity boundary condition at the solid surface
(which is a solid and rigid wing) is the following. The predicted velocity u∗, if first obtained explicitly,
without the presence of the embedded boundary:

u∗ = un −∆t

[
Nl(un,un−1)− Gφn−1 +

1

Re
L(un)

]
, (4)
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where un is the divergence-free velocity field at time-step n, ∆t is the time step, Nl is the discrete non-
linear operator, G and D are, respectively, the discrete gradient and divergence operators, L is the discrete
Laplacian, φ is a projection variable (related to the pressure field). The operators include coefficients that
are specific to the time scheme used in this study, a three-steps low-storage Runge Kutta.

3.3 Immersed boundary method to couple flow solver to structure model

The presence of the solid geometry is imposed by using the IBM, via a process of interpolation and spreading
[Uhlmann, 2005]: u∗ is interpolated onto the embedded geometry of the obstacle, Γ, which is discretized
through a number of Lagrangian marker points with coordinates Xk:

U∗(Xk, t
n) = I(u∗) (5)

At this stage, knowing the velocity U∗(Xk, t
n) at location of the Lagrangian markers, a distribution of

singular forces that restore the desired velocity Ud(Xk, t
n) on Γ is determined as:

F∗(Xk, t
n) =

Ud(Xk, t
n)−U∗(Xk, t

n)

∆t
. (6)

The singular surface force field given over Γ is then transformed by a spreading operator S into a volume
force-field defined on the Cartesian mesh points xi,j,k surrounding Γ:

f∗(xi,j , t
n) = S [F∗(Xk, t

n)] . (7)

At this stage, in the case of the lattice Boltzmann method, the force f∗(xi,j , t
n) is used directly as fib in

eqn 3 and the algorithm is completed. For the Navier Stokes solver, some final steps are required as follows.
First, the predicted velocity is re-calculated, using an implicit scheme for the viscous operator, adding the
forces that accounts for the presence of the solid body:

u∗ − un

∆t
= −Nl(un,un−1)− Gφn−1 +

1

Re
L(u∗,un) + f∗ (8)

Finally, the algorithm completes the time step with the usual solution of the pressure Poisson equation and
the consequent projection step:

Lφ =
1

∆t
Du∗ (9)

un+1 = u∗ −∆tGφn. (10)

The key elements of the present IBM are the transformations between the Eulerian the Lagrangian meshes,
which are carried out through the interpolation and spreading operators, I and S. These two operators are
built using a method presented in Favier et al [2013]; Pinelli et al [2010], which ensures that the interpolation
and spreading are reciprocal operations, implying that the integral of the force is the same when computed in
the Lagrangian or Eulerian frames. Important properties of the algorithm are the preservation of the global
accuracy of the underlying differencing scheme, and the sharpness with which the interface is resolved. For
further details the reader is referred to Pinelli et al [2010] and Favier et al [2013].

3.4 Model of flexible flap

Coming back to equation 6 defined on each Lagrangian marker, the term Udn+1
(Xk) denotes the velocity

value at the location Xk we wish to obtain at time step completion. Those values are determined for each
flap integrating in time the respective Euler-Bernoulli equation in non-dimensional form:

dUdn+1

dt
=

∂

∂s
(T
∂Xk

∂s
)−KB

∂4Xk

∂s4
+Ri

g

g
− Fib (11)
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Figure 3 Motion of the hanging flexible flap under gravity (without fluid) without bending term and with an
initial angle of θo = 2o. (a): Initial position of the flexible flap. (b): Time evolution of the tip position ∆x,
with respect to the position in x of its equilibrium position. Present solution: —, analytical solution: x.

Here, T is the non-dimensional tension of the flap and KB is the non-dimensional flexural rigidity k/KBref .
The reference quantities used for non dimensionalising the equations are: a reference tension Tref = ∆ρU2

0 ,

the reference bending rigidity KBref = ∆ρU2
0L

2 and the reference Lagrangian forcing Fref = ∆ρ
Lερf

U2
0 . U0

is the characteristic velocity of the fluid flow, ∆ρ is the difference in density per unit area of filament cross
section between the filament ρs and the fluid ρf . Gravity effects are introduced via the Richardson number,
Ri = gL/U2

0 , though in the following, gravity effects are only included for the validation case of the flap
model without fluid. The closure of equation 11 is provided by the inextensibility condition that reads:

∂Xk

∂s
· ∂Xk

∂s
= 1 (12)

This condition ensures that the flap length remains constant, and is satisfied using the tension values, which

effectively act as Lagrange multipliers. The boundary conditions for the system (11-12) are X = X0, ∂
2Xk

∂s2 = 0

for the fixed end, and T = 0, ∂2Xk

∂s2 = 0 for the free end. The resulting set of equations are discretised using
a staggered arrangement and solved using a Newton method, by a direct evaluation of the exact Jacobian
matrix, which incorporates the given boundary values. More details can be found in Favier et al [2013].

4 Validation of fluid structure interaction

The validation is first performed for the model of flexible flap alone (pure solid), and subsequently the fluid
solver is validated alone (pure fluid), by comparing with the experiments . The flow unsteadiness allows one
to identify and characterize the time dependent dynamics of the oscillating flexible flaps.

4.1 Flap model without fluid

To check the consistency of the structure model, the motion of a hanging flap without ambient fluid and
under a gravitational force is considered, as shown in Figure 3a. The non-dimensional flexural rigidity is set
to KB = 0, so that a flexible flap (a pendulum) with an initial angle θo = 2o is examined. The time evolution
of the coordinate of the free extremity in the x-direction (∆x) is monitored by setting the gravity to a value
equivalent to Ri = 10. Figure 3b shows that the time evolution of the free extremity position of the flap
using the present model is in good agreement with the analytical solution which can be obtained under the
small angles assumption [Favier et al, 2013].

4.2 Fluid simulation without flap

A fluid simulation without flap is then conducted in a computational domain which is set to 22H × 3H (H
is the height of flexible flap), in streamwise (x) and vertical (y) direction respectively corresponding to the
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Figure 4 : Womersley velocity profiles at inlet position at different in-
stants through one flow oscillation cycle (IBM: present work using Immersed
Boundary Method).

2D case of the centerplane in the experimental flow channel. Periodic boundary conditions are imposed in x-
direction, and no-slip conditions are applied on the upper and lower walls. The flow is driven by an oscillating
flow, by sinusoidally varying the pressure gradient at a given flow frequency f = 1.0Hz as following:

∂p

∂x
= A sin(2πft) (13)

The present simulation follows a Womersley velocity profile, in the same way as the analytical expression
derived by Chandrasekaran et al [2005] for a squared channel flow in the center-plane. Figure 4 indeed
shows a good agreement between simulation, experiment and the analytical solution of Chandrasekaran et al
[2005] at the inlet through one flow oscillation cycle. The Reynolds number of the present simulation is
Re = UmaxH/ν = 120, based on the characteristic streamwise velocity Umax and the flexible flap height H.
The Womersley number defined with the channel diameter L is α = L

√
2πf/ν = 15.

4.3 Fluid structure interaction

A two-way fluid structure interaction configuration is considered at the same dimensions and same boundary
conditions as in section 4.2. The flexible flaps are mounted on the bottom wall of the channel. Figure 1 shows
the experimental setup, where the same ratio 3.0 of channel height over flap length, the same flow velocity
profile and flow frequency, as the simulation case, are adopted. In the first instance a refinement study was
undertaken as shown in Figure 5. The metric L refers to the number of Lagrangian markers along each flap,
and it is obvious that even for low resolutions the accuracy is good. A value of 35 Lagrangian points per
cilia is taken for subsequent computations. Also shown in Figure 5, is the L2 norm of the convergence, with
respect to the prediction from the finest level of refinement (L = 40). It is clear that the numerical method
is of 2nd order accuracy during these computations.

Figure 6 provides a comparison of tip positions of flaps in x direction obtained from both flow solvers, the
experimental results are also plotted for comparison. The initial observation is that both flow solvers return
almost identical results for this case, providing grounds for cross-validation of the two implementations. Minor
differences are likely to be due to differences in numerical settings, as well as the impact of the significantly
different nature of the two methodologies; for example the LBM is effectively a compressible solver, while the
current N-S method is incompressible. The second observation is with respect to the experimental results,
and again, the agreement is strong. The main amplitude is well captured, although a small ‘kick’ in the
profile of the first flap (F1) is missed by both solvers. This could be due to differences in the approximation
of the structural parameters of the model, which slightly differ from experiments to numerics. Also, the 2D
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Figure 5 Refinement study of coupled FSI solver (using LBM), showing
tip displacement (x coordinate) of flap in centre of array for increasing flap
resolution. Also shown are zoom view (top right) and L2 convergence (red
line order 2, blue order 3)

approximation made in the numerical solvers may play a role on this phenomenon. However, towards the
more centrally located flaps, the agreement improves, with finer detail of the tip motion at the oscillating
extremities agreeing notably well with the experimental data.

Further validation can be obtained from analysis of instantaneous flow velocity vector (u, v) are as provided
in Figure 7 (a-d) for the numerical results and Figure 7 (e-h) for the corresponding experimental results.
Again the indication is for an accurate prediction of tip location, and where streaklines are observable in the
experimental results, numerically predicted contours of velocity are in good agreement also. The roll-up of
shears layer can be seen due to the relative motion of the forward mean flow and the backward motion of the
flap tips and vice versa. This will be investigated in more detail in the following section

5 Numerical results

We start by investigating and elucidating the principle flow mechanisms identified in this case, and focus on
two key aspects; the identified phase lag of the flaps, and the cyclic generation of coherent structures.

5.1 Phase lag

Forced by the driving motion of the fluid, the flaps individually move at the same frequency as the flow.
However, there is a clear phase lag between adjacent flaps as seen in the normalized flap tip position, see
Figure 8. The displacements of each flap tip levels off differently in time and they reach different maximum
and minimum values of ∆x/H. ∆t1 and ∆t2 are defined as the time differences between two successive time
instants when the flap tip reaches the position of its fixed extremity in x-direction (∆x = 0). Due to the
phase lag of flap response, which is different depending on the flap location on x-direction, the values of ∆t1
and ∆t2 are different for each flap.

This phase lag between adjacent elements has already been observed in several research works on waving
motions of flexible plants, and plays an important role in the emergence of the coherent waving motion of
plants. It is known as Honami in the case of resonant waving of wheat stalks for instance [Finnigan and
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Figure 6 : Tip positions of flap in x-direction within three flow cycles.
: numerical results from LBM : : numerical results from N-S

solver, ◦ ◦ : experiment. The letters Fi indicate the flexible flap number i.

Mulhearn, 1978a], or Monami in the case of aquatic waving plants [Nezu and Okamoto, 2010]. Despite numer-
ous literature work associated with Honami/Monami, little qualitative information [Finnigan and Mulhearn,
1978a] and no quantitative data are available regarding the phase lag of these structures. On the other hand,
a similar wave-type motion pattern was observed in the case of flexible flaps attached to the aft part of
cylinder and it was found that this motion pattern plays an important role in the modification of the wake
[Kunze and Bruecker, 2012]. More recent work focussing on an infinite array of flaps demonstrated that a
Reynolds dependence of the phase lag was associated with the size of the recirculating flow between succes-
sive flaps, but the study was limited to infinite periodic arrays of flaps [O’Connor et al, 2016]. Therefore the
present results in the oscillating channel flow can make a significant contribution to the understanding of this
phenomenon.

5.2 Detection of coherent eddies

To investigate the flap dynamics and the phase lag evolution between adjacent flaps, snapshots of instanta-
neous velocity field (u, v) through one flow cycle (T = 1.0s) are provided in Figure 9. Results reveal that
flap 1 begins to deflect from its vertical position at t = 0.26 s in Figure 9 (a), and finally recovers this initial
position at t = 1.26 s in Figure 9 (j).

Just afterward the start of the cycle, at t = 0.5 s of Figure 9 (b), the bulk flow velocity becomes positive
(left to right) and a vortex is formed at the right side of flap layer, as shown at x ≈ 14.25 in Figure 9 (c).
Although initially small this vortex quickly grows, as shown in Figures 9 (d-e). Consequently a region of
negative streamwise velocity is formed near the lower wall downstream of the flaps, and very quickly induces
a large deflection of the flexible flaps near to the right side of the array. The largest deflection is experienced
by flap 10, while deflections are reduced progressively towards the channel centre, i.e. for flaps 9 to 6.

During the same period, the impinging cross flow induces a large deflection of flap 1, which is initially
notably greater than flaps 2-5. As the flow evolves this deflection is transmitted through flaps 2 and 3, as
shown in Figure 9 (c-d). This wave-like motion results in a smoothly varying phase lag, as also indicated on
Figure 8 (a) for the approximate range 0.45 < t < 0.65.

From Figure 9 (f) onwards, the bulk flow velocity becomes negative (right to left), and the reverse
mechanism is observed.

Under the driving motion of the oscillating flow, the flexible flap motion is thus significantly influenced
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Figure 7 Evolution of the flow over a half-period of the oscillation cycle.
(a-d): Contours of instantaneous flow velocity vectors (u, v) obtained by
numerical simulation; (e-h): Experimental snapshots of Schlieren images
obtained at the same instant as in the numerical simulation.
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Figure 8 : Superimposed normalized tip deflections ∆x of flexible flaps for
(a) F1-F5; (b) F6-F10.

by the presence of the vortex, which periodically appears near to both sides of the coating. Its presence is
confirmed via comparison with experimental observation, as shown in Figure 10.

Also, it appears that the temporal and spatial responses of the flexible flaps are closely related to their
distances from the channel centre position in streamwise direction. As shown in Figure 11, this relationship
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Figure 9 : Instantaneous flow velocity vectors (u, v) represented by arrows
through one flow oscillation cycle. The channel dimension is normalized by
the flap height H. The colormaps correspond to the values of contours of
streamwise velocity u.

(a) (f)

(b) (g)

(c) (h)

(d) (i)

(e) (j)

is linear, i.e. the phase difference ∆t (∆t = ∆t1−∆t2) of each flap tip position, normalized by the oscillating
flow cycle T , is proportional to their distance to the channel centre in x-direction. The lack of symmetry
reflects the initialisation of the flow, wherein the flaps are initially arranged vertically and undergo initial
deflection to the right, via a positive bulk flow velocity.

Figure 12 shows several snapshots of instantaneous velocity field (u, v) and the corresponding instanta-
neous vorticity. The coherent vortex observed in Figure 12 (a-d) is clearly associated to large vorticity regions
in Figure 12 (e-h). From Figure 9, it can be seen that the boundaries of the highlighed zones of uniform
momentum pass through the cores of coherent vortices, which suggests an important link between coherent
vortices and uniform-momentum zones, as it is also observed in the analysis performed in the experimental
results of Adrian et al [2000] and Nezu and Okamoto [2010].
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Figure 10 : (left) Instantaneous flow velocity vectors (u, v) represented by arrows and contours of streamwise
velocity u. (right) Path lines of tracer particles in the corner of the flaps from experiment
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Figure 11 : Phase difference ratio ∆t/T (T is the oscillating flow cycle).
The x-axis indicates the flap positions in x-direction. The vertical blue line
indicates the channel centre position of x-direction.

6 Conclusions

The physical mechanisms involved in the two-way interaction between an incompressible oscillating channel
flow and a coating made of flexible flaps have been investigated in the present work. A Navier Stokes solver
and a Lattice Boltzmann solver have been used, and it is found that both methodologies are in principle
good agreement with the results of experiment at the same conditions, for similar CPU costs. Thus, the
incompressible or compressible nature of the solvers does not play any role in this configuration involving
flexible structures immersed in an unsteady flow.

It is shown that a cyclically generated coherent vortex, occurring alternatively near the entrance and
the exit of the flap row, is the primary cause leading to the smoothly varying phase difference of adjacent
flaps. This coherent vortex generation cycle is expected to hold in general for the case of a finite array size,
since it depends on entrance and exit effects; i.e. flow impingement on the upstream end of the array and
recirculation on the downstream end. Where flap rows are infinite in length, such entrance and exit effects
are expected to vanish, and interaction would be driven solely by incoherence in dynamic response of the
flexible structures either by variation in stiffness or near the resonant excitation where phase relationship is
lost.

The observed effect is comparable to the situation of flaps in the aft part of a cylinder in cross-flow. The
flaps interact with the roll-up of the shear layer which leads to a phase shift in formation of the von Karman
vortices. This roll-up starts along the lateral side-walls of the cylinder and vorticity is then swept along the
row of the flaps in transversal direction towards the inner part of the row, similar as in the case discussed
herein. Therefore the observed travelling wave-type motion of the flaps in the cylinder wake Favier et al
[2009]; Kunze and Bruecker [2012] is a result of the phase-shift between neighbouring flaps as documented
herein.
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Figure 12 : (a-d): Instantaneous flow velocity vectors (u, v) represented by arrows and color contours
of streamwise velocity u; (e-h): Color contours of instantaneous vorticity. The boundaries between
uniform-momentum zones are shown by red lines.
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