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SUMMARY

A novel implicit immersed boundary method of high accuracy and efficiency is presented for the simulation

of incompressible viscous flow over complex stationary or moving solid boundaries. A boundary force is

often introduced in many immersed boundary methods to mimic the presence of solid boundary, such that

the overall simulation can be performed on a simple Cartesian grid. The current method inherits this idea and

considers the boundary force as a Lagrange multiplier to enforce the no-slip constraint at the solid boundary,

instead of applying constitutional relations for rigid bodies. Hence excessive constraint on the time step is

circumvented and the time step only depends on the discretization of fluid Navier-Stokes equations, like the

CFL condition in present work. To determine the boundary force an additional moving force equation is

derived. The dimension of this derived system is proportional to the number of Lagrangian points describing

the solid boundaries, which makes the method very suitable for moving boundary problems since the time

for matrix update and system solving is not significant. The force coefficient matrix is made symmetric

and positive definite so that the conjugate gradient method can solve the system quickly. The proposed

immersed boundary method is incorporated into the fluid solver with a second order accurate projection

method as a plug-in. The overall scheme is handled under an efficient fractional step framework, namely

prediction, forcing and projection. Various simulations are performed to validate current method and the

results compare well with previous experimental and numerical studies.

Copyright c⃝ John Wiley & Sons, Ltd.
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1. INTRODUCTION

The immersed boundary method (IBM) has emerged in recent years as an alternative to traditional

body-conforming mesh method for simulating fluid flows over complex and moving objects.

Through adopting an appropriate boundary force in fluid equations for the presence of immersed
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solid boundaries, the simulations can be performed on a very simple Cartesian mesh. This

significantly eases complicated mesh generations and eliminates moving boundary related issues,

such as mesh distortions and mesh interpolation errors due to deforming-mesh and re-meshing.

Since first introduced by Peskin [1] for modeling blood flow through a beating heart, IBM has

been extended to various applications in scientific and engineering fields. In the original method, the

immersed elastic membrane is represented by a series of massless Lagrangian markers where the

boundary force is evaluated by using constitutive laws. Discretized delta functions are employed as

kernel functions for the data exchange between the two independent meshes of fluid and solid. The

immersed finite element method (IFEM) [2, 3, 4] was later developed in finite element formulations

for general structures that occupy finite volumes within the fluid domain.

Previous methods are well suited for deformable solids owing to their physical basis, but the

constitutive laws are generally not well posed when solids reach the rigid limit. Beyer and LeVeque

[5] provided a solution by using a spring to attach the solids to an equilibrium location with a

restoring force. Goldstein et al. [6] and Saiki and Biringen [7] also proposed a feedback forcing

strategy to control the velocity near the objects, which behaves as a system of springs and dampers.

Nevertheless, artificial constants are introduced, which are ad hoc and should be chosen large

enough in order to accurately impose the no-slip boundary condition. However large value makes

the system very stiff and results in instabilities. The time step is severely limited, leading to a

CFL number several magnitude smaller than the usual one [6, 8]. Mohd-Yosuf [9] and Fadlun

et al. [8] proposed the direct forcing immersed boundary method to avoid the use of artificial

constants via modifying the discrete momentum equation. No additional constraints are introduced

to the time step. Instead of using the discrete delta function for velocity interpolation and force

distribution, local velocity reconstruction approaches were employed to enforce the boundary

condition. However Uhlmann [10] observed strong oscillations towards the boundary force. He

attributed this problem to insufficient smoothing and re-used the discrete delta function in his direct

forcing immersed boundary method. Although other strategies have also been proposed to enhance

the local velocity reconstruction, special treatment should be taken for the phase change of cells

near the moving boundaries [11, 12, 13].

In fact the boundary force is an unknown that is strongly coupled to the fluid velocity field.

In the work of Uhlmann [10], the boundary force is calculated explicitly by a tentative fluid

velocity. The no-slip boundary condition can never be satisfied and large errors occur near the

immersed boundaries. Kempe and Fröhlich [14] reduced the error by adding a forcing loop within

a few iterations. Further improvement of the boundary condition imposition, however, requires

numerous iterations for convergence as the multidirect forcing immersed boundary method [15, 16].

Taira and Colonius [17] proposed the implicit immersed boundary projection method (IBPM) by

formulating the boundary force and the pressure into a modified Poisson equation and solving

them simultaneously in an enlarged system with sophisticated solvers. Despite the mathematical

completeness and rigour, IBPM may have convergence problems when an immersed boundary point

is very close to a fluid grid point, as the singular property of the interpolation and distribution

functions deteriorates significantly the condition number of the coefficient matrix of the original

well-defined pressure Poisson equation (PPE) [18].

In this paper we propose the moving immersed boundary method (MIBM) to optimally maintain

the accuracy of the implicit IBPM and the efficiency of the explicit direct forcing IBM. The

Copyright c⃝ John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids ()
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projection method is served as the basic fluid solver where the proposed MIBM is integrated as a

plug-in. Analogous to the role of the pressure in the projection method to satisfy the divergence-free

condition, the boundary force is regarded as another Lagrange multiplier for the no-slip constraint

in proposed MIBM. The global scheme follows the fractional step fashion and the fluid velocity,

pressure and the boundary force are solved sequentially through the idea of operator splitting

[19, 20, 21]. We follow the derivation of PPE in the projection method and derive an additional

moving force equation for the boundary force. Therefore, the PPE is unchanged and immune from

the convergence problem. Moreover, the force coefficient matrix is formulated to be symmetric and

positive-definite so that generic linear system solvers can be applied directly.

The organization of this paper is as follows. First the fluid Navier-Stokes equations are discretized

and a second order projection method is introduced as our fundamental fluid solver. In the following,

the MIBM is presented in details and compared to other immersed boundary methods. In Section 5 a

couple of numerical simulations are performed to validate the proposed MIBM. Finally, conclusions

are drawn in Section 6.

2. FLUID EQUATIONS AND DISCRETIZATION

Consider the non-dimensionalized Navier-Stokes equations for an incompressible viscous fluid

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂u

∂t
+∇ · (u⊗ u) = −∇p+

1

Re
∇2

u in Ω× [0, T ],

∇ · u = 0 in Ω× [0, T ],

u|Γ = w in [0, T ],

u|t=0 = u0 in Ω,

(1)

where u, p are the fluid velocity vector and the pressure. Re = UL/ν designates the Reynolds

number, based on the reference velocity U , the reference length L and the kinematic viscosity ν.

Directly solving above equations is very difficult. First the equations are non-linear due to the

convective terms; Secondly there is no equation to compute the pressure directly; Moreover the

pressure and the velocity are coupled through the continuity (incompressibility or divergence-free)

condition, and the pressure is often regarded as a Lagrange multiplier to satisfy this constraint;

Besides the solution of the pressure is not unique and is determined up to an additive constant.

Numerical solutions will be discussed in this paper for overcoming these difficulties.

The above equations are discretized in space on a staggered mesh in order to prevent the so-

called even/odd decoupling or checkerboard effect, as shown in Figure 1. The spatial derivatives are

approximated by second-order central differences.

To discretize the equations in time, fully implicit scheme is superior to explicit one in terms

of stability, which in turn requires non-linear iterations. This could be expensive in computation

and the convergence is not always ensured. Non-linear iterations can be avoided by linearizing the

convective terms, resulting in a non-symmetric coefficient matrix for the velocity. The matrix needs

to be re-computed at each time step, which becomes very costly when the grid number increases.

Fully explicit formulation seems to be very efficient as no iterations are needed. But the time step

Copyright c⃝ John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids ()
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u

v
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Figure 1. Staggered mesh arrangement for the pressure and the velocity.

should be kept small enough to maintain stability. In two dimensions the constraints on the time step

are the diffusive stability condition

∆t !
Re

2

(

1

∆x2
min

+
1

∆y2min

)−1

, (2)

and the convective stability condition of the usual CFL (Courant–Friedrichs–Lewy) type

∆t ! min

{

∆xmin

umax
,
∆ymin

vmax

}

. (3)

It is easy to see that the diffusive constraint is more severe. Reducing the mesh size by half requires

a four times smaller time step and it becomes more severe as the dimension increases. At low

Reynolds number regime, the time constraint due to (2) dominates (3). It might be thought that

for moderate to high Reynolds number flows, the diffusive stability condition is less restrictive.

However in practice, the grid spacing is usually kept small under these circumstances for capturing

small turbulence and the time step constraint of (2) is proportional to the square of the minimal

mesh size.

In the present work, a semi-implicit time discretization scheme is employed, namely the

convective terms are treated explicitly for avoiding the nonlinearity while the diffusive terms are

treated implicitly for circumventing the severe diffusive time constraint. As a result, the entire

system is linear and stable under the standard CFL condition. The velocity coefficient matrix

remains symmetric and constant. To obtain a second order accurate system, we employ the second

order Adams-Bashforth (AB2) scheme for the non-linear terms and the Crank-Nicolson (CN)

scheme for the linear terms. The system now can be written as

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

un+1 − un

∆t
+

[

3

2
N (un)− 1

2
N (un−1)

]

= −Gpn+1 +
1

2Re
L(un+1 + u

n),

Du
n+1 = 0,

u
n+1|Γ = w

n+1,

(4)

where L, N , G, D, are the discretized linear, non-linear, gradient, divergence operators, respectively.

The superscript n+ 1 and n represent the current time level and the past time level. The initial

condition is hereafter omitted for convenience.
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3. PROJECTION METHOD

The projection method, also refereed to fractional step method or time-splitting method, emerged

in late 1960s as an effective tool to solve the pressure-velocity coupling problem, by splitting the

system into a serial decoupled elliptic equations. The projection method is rooted in the Helmholtz-

Hodge decomposition, which states that any smooth vector field v could be decomposed into the

sum of a divergence-free part and a gradient of a potential field

v = vd + Gφ, (5)

where φ is often related to the pressure in the projection method. By taking the divergence of (5)

and applying Dvd = 0, φ is the solution of the following Poisson equation

Lφ = Dv. (6)

Once φ is calculated, the solenoidal velocity can be recovered by

vd = v − Gφ. (7)

3.1. Previous projection methods

The original projection method proposed by Chorin [22] and Témam [23] decouples the dynamic

momentum equation from the kinematic incompressibility constraint by first estimating a tentative

velocity û regardless of the pressure term, and then using the pressure to project the predicted

velocity û into its solenoidal part un+1. The two sub-steps of prediction and projection are

performed as
⎧

⎪

⎨

⎪

⎩

û− un

∆t
+

[

3

2
N (un)− 1

2
N (un−1)

]

=
1

2Re
L(û+ u

n),

û|Γ = w
n+1,

(8)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

un+1 − û

∆t
= −Gφn+1,

Du
n+1 = 0,

u
n+1 · n|Γ = w

n+1 · n.

(9)

By taking divergence of the first equation of (9) along with the incompressibility constraint, the

actual realization of the projection step follows

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Lφn+1 =
1

∆t
Dû,

∂φn+1

∂n
|Γ = 0,

u
n+1 = û−∆tGφn+1,

(10)

which is the same as (6) and (7) when ∆t is absorbed to φn+1. In the projection method of Chorin

[22] and Témam [23], the final pressure is set to pn+1 = φn+1.
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In spite of its efficiency, the original projection method suffers an irreducible splitting error of

O(∆t), which deteriorates the original second order time discretization and prevents its extension

to a higher-order method [24, 25, 26]. The error term can be found by adding the two sub-steps (8)

and (9), and then comparing to (4)

1

2Re
L(û− u

n+1) =
∆t

2Re
LGpn+1, (11)

which is due to the time splitting scheme with the implicit treatment of the diffusive terms. Explicit

treatment, however, would result in a severe limitation on the time step. It is rather natural to apply

the physical boundary condition to the intermediate velocity û in the prediction step (8). As a

result, an artificial Neumann boundary condition ∂pn+1/∂n|Γ = 0 is enforced on the pressure. This

artificial homogeneous Neumann boundary condition introduces a numerical boundary layer to the

solution, which prevents the method to be fully first-order [25, 27, 26].

Improvements to the original projection method have been proposed in [28, 29, 30] to achieve a

higher order time accuracy by using an incremental scheme, which can be summarized as

⎧

⎪

⎨

⎪

⎩

û− un

∆t
+

[

3

2
N (un)− 1

2
N (un−1)

]

=
1

2Re
L(û+ u

n)− Gpn,

û|Γ = w
n+1,

(12)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

un+1 − û

∆t
= −Gφn+1,

Du
n+1 = 0,

u
n+1 · n|Γ = w

n+1 · n,

(13)

where an old value of pressure is retained in the prediction step, and φn+1 here represents the pseudo

pressure. The second sub-step is often performed as

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Lφn+1 =
1

∆t
Dû,

∂φn+1

∂n
|Γ = 0,

u
n+1 = û−∆tGφn+1,

(14)

and the final pressure is updated by

pn+1 = pn + φn+1. (15)

To study the spitting error, we sum up (12) and (13) and compare to (4). Considering that the

pseudo pressure is the approximation of φn+1 = pn+1 − pn = ∆tpt, the splitting error is found to

be of second order [24, 31]

1

2Re
L(û− u

n+1) =
∆t

2Re
LGφn+1 =

∆t2

2Re
LGpt. (16)

Note that the physical boundary condition is still assigned to the intermediate velocity in the

prediction step (12). The resulting homogeneous Neumann boundary condition of φn+1 implies
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Prepared using fldauth.cls DOI: 10.1002/fld

Page 6 of 44

http://mc.manuscriptcentral.com/fluids

International Journal for Numerical Methods in Fluids

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review Only

MOVING IMMERSED BOUNDARY METHOD 7

that
∂pn+1

∂n
|Γ =

∂pn

∂n
|Γ = · · · = ∂p0

∂n
|Γ, (17)

is enforced on the final pressure. This pressure boundary condition is not physical, thus it introduces

a numerical boundary layer and prevents the scheme to be fully second order [26]. This error is

irreducible, hence using a higher order time stepping scheme will not improve the overall accuracy.

3.2. Rotational incremental pressure-correction projection method

To obtain a solution of second order accuracy with consistent boundary conditions, we propose

to use the rotational incremental pressure-correction projection method of [32, 26]. The essential

idea of this method is to absorb the splitting error into the pressure so that the sum of the sub-

steps is consistent with the original discretized momentum equation (4). By considering the identity

∇2u = ∇(∇ · u)−∇×∇× u, the error term (16) can be rewritten as

1

2Re
L(û− u

n+1) =
1

2Re
G(Dû), (18)

where ∇×∇× û = ∇×∇× un+1 is used, which can be verified by the Helmholtz-Hodge

decomposition. Now the error term in this form can be absorbed into the pressure

pn+1 = pn + φn+1 − 1

2Re
Dû. (19)

Most importantly, the pressure boundary condition is consistent with the original system. Therefore,

no numerical boundary layer will be generated with this scheme. Higher than second order accuracy

can be achieved if a higher-order time-stepping scheme is used. In the present work, the second order

accuracy is found to be sufficient with the AB2 scheme and the CN scheme. The overall rotational

incremental pressure-correction projection method can be summarized as follows

⎧

⎪

⎨

⎪

⎩

û− un

∆t
+

[

3

2
N (un)− 1

2
N (un−1)

]

=
1

2Re
L(û+ u

n)− Gpn,

û|Γ = w
n+1,

(20)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

Lφn+1 =
1

∆t
Dû,

∂φn+1

∂n
|Γ = 0,

u
n+1 = û−∆tGφn+1,

(21)

pn+1 = pn + φn+1 − 1

2Re
Dû. (22)

3.3. Pressure Poisson equation solver and Parallel computing

The aforementioned discretized equations lead to a set of linear systems to be solved. Among them

the pressure Poisson equation is the most time-consuming part due to its high condition number,

which is generally solved iteratively to save computational time and storage. The multi-grid (MG)

method and the Krylov solvers like the conjugate gradient (CG), bi-conjugate gradient stabilized
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(Bi-CGSTAB), generalized minimum residual (GMRES), etc., are very efficient for this problem.

In addition, more efficiency can be achieved if pre-conditioning is applied, such as the incomplete

Cholesky (IC) factorization, the incomplete lower-upper (ILU) decomposition and the approximate

inverse (AINV) [33]. The MG method is found to be more efficient when used as a pre-conditioner

in conjunction with Krylov solvers instead of a pure solver.

To further improve this work, the code is extended to allow parallel computing. First we integrate

our method into the PETSc library [34], which employs the MPI for communications between the

CPU cores. In the second mode, we parallelize the code through using the CUDA CUSP library on

GPU [35]. In fact the CPU consists of a few cores optimized for sequential serial task, while the

GPU may have massive smaller cores at the same price which is extremely efficient for handling

multiple tasks simultaneously. Therefore, we send the parallelable and computationally intensive

parts of the application to the GPU and run the remainders on the CPU. From the practical point of

view, the second mode runs significantly fast.

Methods of parallelization Cores
CG CG+MG

Time (s) Speed-up Time (s) Speed-up

CPU 1 63.00 1.0 25.25 1.0
2 30.68 2.05 10.59 2.38
4 15.26 4.13 4.56 5.23
8 7.79 8.09 2.13 11.84
16 4.20 15.00 1.10 22.92
20 8.88 7.09 1.11 22.71

GPU 240 10.36 6.08 0.63 40.08

Table I. Time consummation and speed-up of the CPU and GPU parallelization for solving the pressure
Poisson equation on a 400× 400 grid. The tolerance is set to 1× 10−10.

Preconditioner Construction time (s) Application time (s) Speed-up Total time (s) Speed-up

None 0 10.36 1.0 10.36 1.0
AINV 1.26 6.52 1.59 7.78 1.33
MG 0.51 0.12 86.33 0.63 16.44

Table II. Comparison of different preconditioners in GPU parallelization with the CUSP library, where the
CG solver is used for solving the PPE on a 400× 400 grid. The tolerance is set to 1× 10−10.

Table I illustrates the performances of the two parallelization modes. The test is performed by

solving the PPE on a 400× 400 grid with the Neumann boundary condition applied at all the

boundaries. As a matter of fact, this system does not possess a unique solution (up to an additional

constant). We pin a fixed value to one cell to remove the zero eigenvalue, as suggested in [17, 36].

The calculation is done on the platform PILCAM2 with the CPU Intel Xeon X7542 and the GPU

Quadroplex 2200 S4. The process time decreases approximately by half when we double the cores

of CPU from 1 to 16 in the test with CG solver. About 1.5-2.8 times’ acceleration has been achieved

when the MG method is applied as a preconditioner for the CPU parallelization. The parallelization

of GPU greatly accelerates the calculation up to 40 times in the test with MG preconditioner.

Different preconditioners like the AINV and the MG are compared in Table II. Actually since the
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which however is not smooth in the support domain. Peskin [42] constructed a smoothed 4-point-

width function as follows

φ4(r) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1

8

(

3− 2|r|+
√

1 + 4|r|− 4r2
)

, |r| < 1,

1

8

(

5− 2|r|−
√

−7 + 12|r|− 4r2
)

, 1 ! |r| < 2,

0, otherwise,

(30)

which is widely used in the literature. Roma et al. [43] also designed a 3-point-width function

specially for the staggered mesh

φ3(r) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1

3

(

1 +
√

−3r2 + 1
)

, |r| < 0.5,

1

6

(

5− 3|r|−
√

−3(1− |r|)2 + 1
)

, 0.5 ! |r| < 1.5,

0, otherwise.

(31)

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

Figure 4. Comparison of the one-dimensional function φ(r). · · · ·, the 2-point-width hat function [5]; - - - -,
the 3-point-width function of Roma et al. [43]; ——, the 4-point-width function of Peskin [42].

The functions are plotted and compared in Figure 4. The one-dimensional function of Roma

et al. [43] has a relative smaller support than the four-point version of Peskin [42], providing a

sharper interface and a better numerical efficiency while maintaining good smoothing properties.

The discrete delta functions used in the present work have the following properties:

• δh has a narrow support to reduce the computational cost and to obtain a better resolution of

the immersed boundary.

• δh is second order accurate for smooth fields.

• δh satisfies certain moment conditions to meet the translation invariant interpolation rule,

namely the total force and torque are equivalent between the Lagrangian and Eulerian

locations.
∑

x∈gh

δh(x−X)h2 = 1 (zeroth moment condition), (32)
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(5) Correct the fluid velocity with the boundary force to account for the immersed objects

ũ = u
∗ +∆tfn+1. (38)

(6) Implicit treatment of the viscous term

1

∆t
û− 1

2Re
Lû =

1

∆t
ũ. (39)

(7) Project the fluid velocity into the divergence-free field and update the pressure

Lφn+1 =
1

∆t
Dû, (40)

u
n+1 = û−∆tGφn+1, (41)

pn+1 = pn + φn+1 − 1

2Re
Dû. (42)

Here u∗, ũ, û, un+1 represent the fluid velocity at each stage of the fractional step method, i.e., the

prediction step of explicit terms, the immersed boundary forcing step, the viscous prediction step,

and the projection step. Ub(Xl) is the solid velocity of the lth element at the immersed boundary.

The method of Uhlmann [10] is favored in the literature as it is computational inexpensive due to

its explicit treatment of the boundary force. However, numerical simulations have shown that it fails

to impose the velocity boundary condition exactly on the immersed boundary [14]. A forcing error

is introduced which is irreducible and depends on the time step and Reynolds number Re. This error

comes from the fact that the tentative fluid velocity u∗ is used for the boundary force evaluation. The

ideal velocity should be the final fluid velocity un+1 while it is unknown at the immersed boundary

forcing step. Otherwise we need to iterate the whole system to achieve un+1 implicitly, which could

be too cumbersome to perform. But this implies one way of reducing the forcing error by choosing

the closest value to the final velocity.

Kempe and Fröhlich [14] suggested to perform the viscous prediction step first and then use the

intermediate velocity û to compute the boundary force. To further improve the accuracy, a forcing

loop is added in the immersed boundary forcing step. This additional loop is performed within few

iterations without convergence. The method of Kempe and Fröhlich [14] can be expressed as

(1) Prediction of the explicit terms

u
∗ = u

n +∆t

{

−
[

3

2
N (un)− 1

2
N (un−1)

]

− Gpn +
1

2Re
Lun

}

. (43)

(2) Viscous prediction step
1

∆t
û− 1

2Re
Lû =

1

∆t
u
∗. (44)

(3) Immersed boundary forcing loop

Loop for k = 1 to 3 with û(0) = û

Û
(k)(Xl) =

nx
∑

i=1

ny
∑

j=1

û
(k−1)δh(xi,j −Xl)h

2, (45)
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F
(k)(Xl) =

U
n+1
b (Xl)− Û(k)(Xl)

∆t
, (46)

f
(k)(xi,j) =

nb
∑

l=1

F
(k)(Xl)δh(xi,j −Xl)∆Vl, (47)

ũ
(k) = û

(k) +∆tf (k), (48)

û
(k) = ũ

(k). (49)

End loop

(4) Projection step and update of the final fields

Lφn+1 =
1

∆t
Dũ, (50)

u
n+1 = ũ−∆tGφn+1, (51)

pn+1 = pn + φn+1 − 1

2Re
Dû. (52)

If full convergence of the forcing loop is required more iterations are needed, such as the multidirect

forcing scheme of [15, 16]. However, the convergence rate of this iteration becomes very slow

after several iterations. The computational cost increases hugely when more Lagrangian points are

involved in the additional forcing loop. Therefore the number of iteration is usually kept low for the

computational efficiency. Even though the error is reduced, the method of Kempe and Fröhlich [14]

is still explicit. The exact no-slip boundary condition can never be satisfied.

To impose the no-slip boundary condition exactly, Taira and Colonius [17] proposed the implicit

immersed boundary projection method (IBPM) by combining the boundary force and the pressure

into a modified Poisson equation and solving them simultaneously in one single projection step.

However convergence problem may occur as one boundary point is very close to a fluid grid point

[18], because the singular property of the interpolation and distribution functions undermines the

coefficient matrix condition number of the PPE. Ji et al. [18] proposed to iterate each part to get rid

of the convergence problem, which is inevitable computational expensive.

4.4. Novel implicit immersed boundary method

In this subsection we present a novel implicit but efficient IBM variant, termed as the moving

immersed boundary method (MIBM) in this paper. The objective of MIBM to maintain the

efficiency of the explicit direct forcing IBM but with an improved accuracy like the multidirect

forcing IBM and the IBPM.

To this end, we first take the immersed boundary forcing part from the explicit IBM of Kempe

and Fröhlich [14] for consideration, i.e., (45), (46), (47) and (48). By dropping the superscripts for

convenience, the immersed boundary forcing part is written as

Û = T û, (53)

F =
Ub − Û

∆t
, (54)
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f = SF, (55)

ũ = û+∆tf . (56)

We require that the interpolated velocity satisfies the no-slip wall boundary condition on the

immersed interface after the immersed boundary forcing, namely T ũ = Ub, then

T (û+∆tf) = Ub. (57)

Substituting (55) into (57) gives

T (û+∆tSF) = Ub, (58)

which can be rearranged in order to separate the boundary force

(T S)F =
Ub − T û

∆t
. (59)

We donate M = T S the moving force coefficient matrix. M is a function of the solid position,

which changes its value as the boundary moves. Thus the force is redistributed just like the boundary

force moves. The moving force equation can be rewritten in a more concise form

MF = F
e, (60)

where Fe = (Ub − T û)/∆t is exactly the explicit forcing value used in [14].

Compared to the modified Poisson equation in the IBPM of [17], the moving force equation

(60) is much smaller in size and easier to work with. At each dimension (x or y), the size of the

force coefficient matrix is nb × nb since T ∈ Rnb×nxny and S ∈ Rnxny×nb . Therefore, for moving

boundaries, its update is computational less expensive than the modified Poisson equation.

Note that S = (∆Vl/h2)T T if the same function is used for interpolation and spreading, where

∆Vl/h2 ≈ 1 is the volume ratio between the fluid and the solid cell. As a result, the moving force

coefficient matrix M = (∆Vl/h2)T T T is symmetric. It is also found that M is positive-definite

irrespective of the time step and the approximation order as in the IBPM [17]. Moreover, the moving

force equation is well conditioned, which converges quickly by using the conjugate gradient method.

Now we incorporate this moving force equation into the rotational incremental pressure-

correction projection method. For the sake of simplicity, we rewrite the governing equations (25)

as
un+1 − un

∆t
= H+ P + F , (61)

Du
n+1 = 0, (62)

T u
n+1 = U

n+1
b , (63)

where H, P and F are the operators defined as

H := −
[

3

2
N (un)− 1

2
N (un−1)

]

+
1

2Re
L(un+1 + u

n)− Gpn, (64)

P := −Gφn+1, (65)
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F := SFn+1. (66)

To decouple the momentum equation (61) from the divergence free condition (62) and the no-slip

wall condition on the interface (63), we perform the following operator splitting algorithm:

(1) Prediction step by ignoring the immersed objects

û− un

∆t
= H(û). (67)

(2) Immersed boundary forcing step for satisfying the no-slip wall condition on the interface

ũ− û

∆t
= F , (68)

T ũ = U
n+1
b . (69)

Applying (69) to (68) gives the moving force equation that we have defined previously

MF
n+1 =

U
n+1
b − T û

∆t
. (70)

Once the boundary force is determined, we correct the fluid velocity with

ũ = û+∆tSFn+1. (71)

(3) Projection step for obtaining the divergence free velocity un+1 and the final pressure pn+1

un+1 − ũ

∆t
= P, (72)

Du
n+1 = 0. (73)

Applying the divergence operator to (72) and using the divergence free condition (73) gives

Lφn+1 =
1

∆t
Dũ, (74)

u
n+1 = ũ−∆tGφn+1. (75)

The final pressure is advanced by

pn+1 = pn + φn+1 − 1

2Re
Dû. (76)

Figure 6 shows the global structure of MIBM. The overall scheme follows the regular fractional

step method so that the velocity, the pressure and the force are decoupled. Even though the interface

velocity condition is enforced before the projection step, we have found that the velocity on the

immersed boundary is essentially unchanged after the projection step. The same observation has

also been made by Kempe and Fröhlich [14] and Fadlun et al. [8]. It is worth noting that the present

MIBM recovers to the explicit method of Kempe and Fröhlich [14] with one iteration in the forcing

loop, if M is set to the identity matrix. However it is not the case, hence our method is implicit.
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Initialization at t = tn

Prediction for û

Moving immersed boundary forcing for ũ

Projection for un+1 and pn+1

Arrive at final time ?

Next time step n = n+ 1

End

Yes

No

Figure 6. Global structure of the moving immersed boundary method.

4.5. Comparison of performance

To demonstrate the accuracy and efficiency of present moving immersed boundary method, we

perform the following test

Given u0(x, y) = excos y − 2, 0 ! x, y ! 1,

Find F such that u(x, y) = u0(x, y) +∆tSF = Ub on Γs,

where Γs is described with a circle of a radius of 0.2 at (0.52, 0.54) and Ub = 0. The domain is

covered by 64× 64 nodes with around 81 Lagrangian points on the circle surface. ∆t is set to 1.

In this test, the fluid equations are not solved and only the immersed boundary forcing part is

considered. The initial field u0(x, y) can be seen as a predicted fluid velocity component in one

direction. This test is to examine different forcing strategies for imposing the desired velocity Ub at

the interface Γs via a boundary force F . To facilitate the accuracy study, we define the velocity error

norms of L2 and L∞ as follows

||eu||2 =

[

1

nxny

nx
∑

i=1

ny
∑

j=1

(ui,j − uref
i,j )

2

]1/2

, (77)

||eu||∞ = max|ui,j − uref
i,j |, (78)
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for i = 1, . . . , nx, j = 1, . . . , ny where uref represents the reference value. It is worth noticing that

the L2-norm is a good measure of the global error while the L∞-norm provides a good indicator for

the local error.

Figure 7a displays the result of the explicit direct forcing IBM of Uhlmann [10], where u is far

away from zero over the immersed boundary compared to Figure 7c. The accuracy is improved after

3 iterations with the method of Kempe and Fröhlich [14], as shown in Figure 7b. Figure 7d reveals

that the results are nearly the same for present MIBM with the iterative multidirect forcing IBM of

Luo et al. [15] and Breugem [16].
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Figure 7. Contour of the scalar field after the boundary forcing: (a) The explicit direct forcing IBM of
Uhlmann [10]; (b) The improved explicit direct forcing IBM of Kempe and Fröhlich [14]; (c) The multidirect

forcing IBM of Luo et al. [15] and Breugem [16]; (d) Present MIBM.

Table III compares the computational time and velocity error on the interface of these immersed

boundary methods. The error is measured in L2-norm and the tolerance is 1× 10−15. The method of

Uhlmann [10] is the quickest due to its explicit nature, but it suffers a large error of 3.01× 10−1 on

the immersed interface. The forcing loop of Kempe and Fröhlich [14] reduces the error by a factor

of 4 with 3 iterations. However, the error of 7.41× 10−2 is still considered large.

The iterative multiforcing IBM of Luo et al. [15] and Breugem [16] is required to converge

towards the machine precision, but it takes approximately 606 times more additional computational

effort than the explicit method of Uhlmann [10]. Actually, the convergence rate in the multiforcing

IBM decreases dramatically after about 10 iterations, as shown in Figure 8. In order to reduce the

error to 1× 10−6 around 1000 iterations are needed and 4443 iterations for the machine precision.
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The present MIBM converges to the same machine precision only with 60 iterations by using

the conjugate gradient solver. The iteration can be further reduced if preconditioning is taken, but

we find that the conjugate gradient solver is sufficient for fast convergence. The computation is not

increased considerably compared to the explicit method of Uhlmann [10], as we can see that the

present method only takes twice the amount of computational time of the direct forcing IBM of

Uhlmann [10]. It also worth noticing that present MIBM is almost as efficient as the method of

Kempe and Fröhlich [14].

Process time (s)

Interpolation Forcing Distribution Total Iter. Error

Uhlmann [10] 2.77× 10−3 1.00× 10−6 3.23× 10−3 6.02× 10−3 1 3.01× 10−1

Kempe and Fröhlich [14] 8.15× 10−3 1.00× 10−6 8.92× 10−3 1.71× 10−2 3 7.41× 10−2

Luo et al. [15] and Breugem [16] 1.16× 101 1.17× 10−3 1.31× 101 3.65× 101 4443 9.96× 10−16

Present 4.32× 10−4 1.19× 10−4 4.41× 10−4 1.33× 10−2 60 8.29× 10−16

Table III. Comparison of the computational time and the velocity error. The iteration number is fixed for the
explicit methods of Uhlmann [10] and Kempe and Fröhlich [14], while others are solved until convergence

under a tolerance of 1× 10−15.

100 200 300 400 500 600 700 800 900 1000
10−15

10−12

10−9

10−6

10−3

100

Iteration

V
el

o
ci

ty
E

rr
o

r

Figure 8. Comparison of convergence between present MIBM (——) and the multidirect forcing IBM of
Luo et al. [15] and Breugem [16] (- - - -).

5. RESULTS

5.1. Taylor-Green vortices

We first consider the two-dimensional unsteady case of an array of decaying vortices to assess the

accuracy of the fluid solver. The analytical solution of the Taylor-Green vortices is given by

u(x, y, t) = −cos(πx)sin(πy)e−2π2t/Re,

v(x, y, t) = sin(πx)cos(πy)e−2π2t/Re,

p(x, y, t) = −1

4
(cos(2πx) + sin(2πy))e−4π2t/Re.

(79)
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This simulation is performed on a square domain Ω = [−1.5, 1.5]× [−1.5, 1.5] and the Reynolds

number Re is prescribed to 10. The initial and boundary conditions are provided by the exact

solution. We advance the equations for 0 ! t ! 0.2.

To study the temporal accuracy, we compare the results at t = 0.2 to a reference solution obtained

by a very fine time step ∆t = 1× 10−4 with the spatial resolution of ∆x = ∆y = 9.375× 10−3.

The errors on the velocity component u are computed by subtracting the reference solution from

other numerical solutions (∆t ∈ [0.00125, 0.01]), to cancel out the error due to spatial discretization.

The L2, L∞ error norms are then displayed in Figure 9a on a log-log plot. A second order

temporal accuracy is observed, which confirms previous error estimation analysis for the rotational

incremental pressure-correction projection method.

We also expect a second order spatial accuracy since the second order central differencing scheme

is used for all the derivatives in this case. We use a small time step ∆t = 1× 10−4 to ensure

that the temporal discretization error is negligible compared to the spatial one, and then vary the

computational grids (nx × ny = 20× 20, 40× 40, 80× 80, and 160× 160). The error is obtained

by comparing the results to the analytical solution. Figure 9b shows the spatial discretization error,

indicating a second order spatial accuracy.
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Figure 9. Temporal (a) and spatial (b) convergence analysis of current fluid solver and moving immersed
boundary method for the decaying vortices problem.

It is well known that the discrete delta function undermines the space accuracy of the original fluid

solver. Now we embed a circular cylinder of a unit radius in the center of the computational domain

to study the accuracy of our MIBM. The time dependant no-slip boundary condition at the immersed

cylinder surfaces is enforced by current MIBM. Figure 9b shows the variation of the velocity error

as a function of the mesh size. It is evident that current MIBM introduces errors the original fluid

solver but it still retains the second order accuracy, which corresponds to the interpolation properties

of the discrete delta function for smooth fields.

5.2. Lid-driven cavity flow with an embedded cylinder

In this test, we compare current immersed boundary method with the traditional body-conforming

mesh method. The domain configuration and the boundary conditions are taken the same as in the
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classical lid-driven cavity flow case, namely the top wall is moving with a constant velocity u∞ = 1

while the others are stationary walls, except that we place a cylinder in the domain center. In order

to compare with Vanella and Balaras [38], the diameter of the cylinder is set to D = 0.4L with L

being the cavity length. The Reynolds number is 1000 in this study based on the cavity length. A

uniform mesh of 200× 200 is employed in the immersed boundary method, and the same mesh size

is used for the body-conforming mesh method for comparison.

(a) Vorticity

(b) Streamlines

Figure 10. Vorticity contours and streamlines of the lid-driven cavity flow with a cylinder at Re = 1000,
where the vorticity contour value is varied from -3 (blue) to 3 (red) with an increment of 0.4. Results of

present MIBM are listed on the left; Results of the body-conforming mesh method are on the right.

(x1, y1) (x2, y2) (x3, y3)

Present (0.6942, 0.6881) (0.0789, 0.0720) (0.8852, 0.1063)
Body-conforming mesh method (0.6906, 0.6872) (0.0791, 0.0721) (0.8849, 0.1063)

Table IV. Comparison of vortices center positions for the proposed immersed boundary method and the
body-conforming mesh method, where (x1, y1), (x2, y2), (x3, y3) are the vortices centers at the upper right

to the cylinder, at the lower left corner and at the lower right corner respectively.

The flow reaches a final steady state as the time advances. Figure 10 shows the vorticity contours

and streamlines for the flow at Re = 1000, which are similar to the results of [38]. As we can see,
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Figure 11. Comparison of velocity profiles of the lid-driven cavity flow with a cylinder at Re = 1000: (a)
Distribution of velocity component u along x = 0.5; (b) Distribution of velocity component v along y = 0.5.

Solid lines represent current method and dashed lines are the traditional body-conforming mesh method.
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Figure 12. L2 error norm of the horizontal velocity component (u) as a function of grid spacing for the
lid-driven cavity flow with an embedded cylinder.

three vortices emerge in the flow. One at the upper right position of the cylinder and two near the

bottom at each corners. It is noteworthy that the upper vortex is generated by the presence of the

cylinder. The flow fields outside the cylinder are essentially the same for current MIBM and the

body-conforming mesh method. The only difference is that there is a flow inside the cylinder in the

immersed boundary method, which however is the key idea of the immersed boundary method to

replace the solid domain with fluid. The velocity component u at the vertical midline x = 0.5 and

the velocity component v at the horizontal midline y = 0.5 are plotted in Figure 11. The velocity

profiles of both methods match pretty well. The location of the three vortices centers are also listed

in Table IV. Very close results have been obtained.

Next we study the grid convergence for assessing the accuracy of present method for non-

smoothed field. A series of computations are performed on a hierarchy of grids (70× 70, 90× 90,

126× 126, 210× 210 and 630× 630). The variation of error of the velocity component u along

with the grid spacing is displayed in Figure 12, showing a convergence rate of about 1.13. This

is because the flow becomes not smooth near the immersed surface in this case, and the discrete

Copyright c⃝ John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids ()

Prepared using fldauth.cls DOI: 10.1002/fld

Page 22 of 44

http://mc.manuscriptcentral.com/fluids

International Journal for Numerical Methods in Fluids

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review Only

MOVING IMMERSED BOUNDARY METHOD 23

delta function used in present work can no longer maintain the second order accuracy. Beyer and

LeVeque [5] analysed various discrete delta functions and pointed out that the second order accuracy

can be recovered through using different functions for interpolation and spreading. This results in

non-symmetric coefficient matrix of the boundary force in MIBM, which can be solved with the

GMRES or Bi-CGSTAB methods.

5.3. Flow over a stationary circular cylinder

The flow past a stationary circular cylinder is considered as a canonical test case to validate

current method, since a great amount of experimental and numerical studies at different Reynolds

numbers are available for comparison. The flow characteristics depend on the Reynolds number

Re = u∞D/ν, based on the inflow velocity u∞, the cylinder diameter D = 1 and the fluid kinematic

viscosity ν. The simulation is performed in a rectangular domain, where the fluid flows from the

left to the right (see Figure 13). At left boundary, a uniform velocity of u∞ = 1 is imposed; The

free slip boundary conditions are applied at lateral boundaries; At outlet, the convective boundary

condition ∂u/∂t+ u∞∂u/∂x = 0 is employed for reducing the reflection effects because of the

finite artificially truncated domain. The cylinder is placed at the center of the computational domain.

The fluid domain is covered with a uniform mesh, and the cylinder surface is represented by a set

of uniformly distributed Lagrangian points with δs ≈ h.

For comparison the drag and lift coefficients are defined as

CD =
FD

1
2ρu

2
∞D

, CL =
FL

1
2ρu

2
∞D

, (80)

where FD, FL are the drag and lift forces on the cylinder exerted by the fluid, respectively. The fluid

density ρ is set to 1 here. As a matter of fact, the spreading and interpolation operators constructed

from the regularized delta function conserve the total force, hence FD and FL can be computed

directly by summing up the forces over all the Lagrangian points

(

FD

FL

)

= −
nb
∑

l=1

F(Xl)∆Vl. (81)

D

Inflow u∞ Convective outlet

Free-slip

Free-slip

Figure 13. Sketch of the flow over a stationary circular cylinder.
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Figure 16. Drag and lift coefficients versus time for flow over a stationary cylinder.
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Figure 17. The wall pressure coefficient Cp and the wall vorticity Wz for flow over a stationary cylinder
at Re = 40. ——, results of boundary-fitted grid of Braza et al. [29]; !, present h = 0.04D; △, present

h = 0.029D; +, present h = 0.02D.

free-stream pressure. Numerical results obtained with body-fitted grid of Braza et al. [29] are also

included for comparison. The results with present MIBM are very close to those with body-fitted

grid. The wall vorticity and pressure coefficient with current MIBM converge to the body-fitted

results as the mesh resolution is increased.
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Table VI. Comparison of the drag, lift coefficients and the Strouhal number for the flow around a stationary
cylinder at Re = 100, 200. The experimental results are marked with (⋆).

CD C ′

D C ′

L St

Re = 100 Williamson [48]⋆ - - - 0.164
Uhlmann [10] 1.453 ±0.011 ±0.339 0.169
Ji et al. [18] 1.376 ±0.010 ±0.339 0.169
Braza et al. [29] 1.359 ±0.019 ±0.293 0.16
Liu et al. [49] 1.350 ±0.012 ±0.339 0.165
Mimeau et al. [50] 1.40 ±0.010 ±0.32 0.165
Xu and Wang [51] 1.423 ±0.013 ±0.34 0.171
Present (Ω = 30D × 30D, h = 0.04D) 1.380 ±0.010 ±0.343 0.160
Present (Ω = 30D × 30D, h = 0.029D) 1.377 ±0.010 ±0.337 0.160
Present (Ω = 30D × 30D, h = 0.02D) 1.379 ±0.010 ±0.346 0.160
Present (Ω = 40D × 40D, h = 0.029D) 1.366 ±0.010 ±0.342 0.160
Present (Ω = 60D × 60D, h = 0.029D) 1.353 ±0.010 ±0.335 0.160

Re = 200 Williamson [48]⋆ - - - 0.197
Taira and Colonius [17] 1.35 ±0.048 ±0.68 0.196
Ji et al. [18] 1.354 ±0.044 ±0.682 0.20
Braza et al. [29] 1.386 ±0.040 ±0.766 0.20
Liu et al. [49] 1.31 ±0.049 ±0.69 0.192
Mimeau et al. [50] 1.44 ±0.05 ±0.75 0.200
Xu and Wang [51] 1.42 ±0.04 ±0.66 0.202
Present (Ω = 30D × 30D, h = 0.04D) 1.355 ±0.042 ±0.677 0.200
Present (Ω = 30D × 30D, h = 0.029D) 1.365 ±0.044 ±0.696 0.200
Present (Ω = 30D × 30D, h = 0.02D) 1.374 ±0.046 ±0.705 0.200
Present (Ω = 40D × 40D, h = 0.029D) 1.358 ±0.044 ±0.682 0.200
Present (Ω = 60D × 60D, h = 0.029D) 1.345 ±0.043 ±0.682 0.200
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Figure 21. The wall pressure coefficient Cp and the wall vorticity Wz for flow over a stationary cylinder
at Re = 100. Time-averaged values are used. ——, results of boundary-fitted grid of Braza et al. [29]; !,

present h = 0.04D; △, present h = 0.029D; +, present h = 0.02D.

The time-averaged values of the wall vorticity ωz and the wall pressure coefficient CP are shown

in Figure 21 for Re = 100. Good agreements have been found compared to the results of Braza et

al. [29]. The effects of different discrete delta functions on the results are also tested in Table VII
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Table VII. Effects of different discrete delta functions on the drag, lift coefficients and the Strouhal number
for the flow around a stationary cylinder at Re = 100 and 200.

CD C ′

D C ′

L St

Re = 100 φ2 1.388 ±0.010 ±0.346 0.166
φ3 1.377 ±0.010 ±0.339 0.166
φ4 1.379 ±0.011 ±0.343 0.166

Re = 200 φ2 1.391 ±0.047 ±0.709 0.198
φ3 1.365 ±0.044 ±0.696 0.200
φ4 1.358 ±0.045 ±0.688 0.195
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Figure 22. Distribution of the horizontal velocity error on the 90× 90 grid for the flow over a stationary
circular cylinder.
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Figure 23. L2 error norm of horizontal velocity u versus the computational grid size for the flow over a
stationary circular cylinder.
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for Re = 100, 200, where a domain of Ω = 30D × 30D is used and the mesh resolution is set to

h = 0.029D.

A careful grid convergence study is also performed to examine the order of accuracy in this

case. Since the exact solution does not exist, we use the solution calculated on a highly resolved

grid of 630× 630 as our reference for computing the error. The computation domain is taken as

[−2D, 2D]× [−2D, 2D] with the Reynolds number Re = 100. The equations are advanced until

0.2 and a relative small time step of 5× 10−4 is chosen such that the time discretization error will

not influence the results. Same computations but on different grids are performed and compared the

reference solution, namely 45× 45, 70× 70, 90× 90, 126× 126 and 210× 210. The distribution

of velocity error in the x-direction for the 90× 90 grid is shown in Figure 22. Large magnitudes

of error in velocity are located near the cylinder. Figure 23 displays the L2 norm of this error on a

log-log plot. A convergence rate of around 1.21 is observed.

5.3.3. Re = 1000

We further extend our method to a higher Reynolds number flow Re = 1000. At this regime,

the convection effects become predominant and the boundary layer thickness decreases, which can

be estimated by δ ≈ D/
√
Re = 0.032. To capture the thin boundary layer, a fine grid resolution

of h = 0.01D is taken, as recommended in [52, 53]. Note that the grid resolution is only marginal

for resolving the boundary layer at this Reynolds number. Nevertheless, the results are satisfactory

and the essential features of the flow are well captured. The computational domain is chosen to

be [−20D, 20D]× [−20D, 20D]. The two-point-width hat function φ2 is employed in this case as it

provides a sharp interface. Figure 25 shows the instantaneous vorticity field. The coefficients of drag

and lift are plotted in Figure 24. Note that the flow is inherently three-dimensional at this Reynolds

number. We compare our simulations with other two-dimensional results available in the literature.

The properties of the drag and lift coefficients are summarized in Table VIII. Good agreements have

been found.
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Figure 24. Time evolution of drag and lift coefficients for the flow over a stationary cylinder at Re = 1000.
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Figure 28. Comparison of the velocity profiles u (left) and v (right) at four different cross-sections and three
phase positions: (a) φ = 180◦, (b) φ = 210◦, (c) φ = 330◦. The experimental results of Dütsch et al. [55]
are marked with " at x = −0.6D, " at x = 0D, • at x = 0.6D, at x = 1.2D. The present results are

represented by —— at x = −0.6D, - - - - at x = 0D, · · · · at x = 0.6D, − ·−· at x = 1.2D.
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The computational domain is chosen to be 14D × 14D, as shown in Figure 26. The cylinder

is initially located at the center of the computational domain. The outflow boundary condition

∂u/∂n = 0 is applied at the domain contours. A uniform mesh of 560× 560 is adopted for the

fluid domain and the cylinder is represented by 126 points due to δs ≈ h. The transient no-slip

velocity boundary condition at the cylinder surface is enforced by present MIBM at each time level

u(t) = −2πfA cos(2πft). (83)

The pressure and vorticity contours at four different phases (φ = 2πft = 0◦, 96◦, 192◦, 288◦) are

shown in Figure 27, where two counter-rotating vortices are formulated during the oscillation. The

vortices contours are drawn from -3 to 3 with an increment of 0.4, which display the same structure

as in [55].

Figure 28 shows the profiles of the velocity components u and v at four different stream-

wise locations (x = −0.6D, 0D, 0.6D, 1.2D) for three phase (φ = 2πft = 180◦, 210◦, 330◦). The

experimental results of [55] by LDA measurements are also plotted for comparison. The velocity

profiles outside the cylinder agree well those of [55]. The only discrepancy is the velocity inside the

cylinder. Since the present IBM treats the solid domain as fluid, the velocity is non-zero inside the

cylinder. From Figure 28 we can see that this treatment, however, does not influence the flow field

outside the solid. Various internal treatments of the body have been discussed in the work of [56],

such as applying the force inside the body and thus changing the velocity distribution. Iaccarino

and Verzicco [56] also concluded that for direct forcing IBM, there is essentially no difference.

Therefore, for simple implementation we just leave the interior of the solid free to develop a flow

without imposing anything.
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Figure 29. L2 norm of the horizontal velocity component (u) versus grid spacing for the oscillating cylinder
problem.

Figure 29 shows the results of convergence study on a domain of [−2D, 2D]× [−2D, 2D]. A

time step of 10−4 is selected and the calculation is performed for 2000 time steps. A slightly better

than first order accuracy is found in this case.
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5.5. Flow around a flapping wing

In this example, we investigate the flow induced by a flapping wing, in order to demonstrate

the ability of current method for handling non-circular object in both translational and rotational

motions. The configuration of this problem is shown in Figure 30. The hovering wing is a

geometrical 2D ellipse with major axis c (chord length) and minor axis b. The aspect ratio is defined

as e = c/b. The wing is initially located at the origin with an angle of attack of θ0, then shifts along

a stroke plane inclined at an angle β. The translational and rotational motions of the hovering wing

are described as follows

A(t) =
A0

2

[

cos(
2πt

T
) + 1

]

, (84)

θ(t) = θ0

[

1− sin(
2πt

T
+ φ0)

]

, (85)

where A0 is the translational amplitude, 2θ0 the rotational amplitude, T the flapping period and

φ0 the phase difference. The chord length c and the maximum velocity Umax = πA0/T along the

flapping path are used as the length and the velocity scales, respectively. The Reynolds number is

defined as Re = Umaxc/ν. We employ the same parameters as used in [57, 51, 58]: c = 1, e = 4,

A0 = 2.5c, θ0 = π/4, T = πA0/c, β = π/3, φ0 = 0, Re = 157.

x

y

o

θ0

β
A0

c

b

Figure 30. Configuration for flow over a flapping wing.

As suggested by Yang and Stern [58], this simulation is performed on a large square domain

of [−24c, 24c]× [−24c, 24c] to obtain a better periodicity for the results. A uniform mesh of

2400× 2400 is employed to cover the computational domain and the mesh spacing around the

wing is 0.02c, which is slightly finer than the grid resolution used in [51, 58]. A larger time step is

selected in the present study (∆t = 0.01) based on the CFL number (CFLmax = 0.72), while a much

smaller time step ∆t = 0.001 is used in the immersed interface method (IIM) of Xu and Wang [51]

to reduce the body shape distortion.

Figure 31 shows the vorticity fields near the flapping wing in one flapping period at four different

positions, which are very similar to those given in [57, 51, 58]. A pair of leading and trailing edge

vortices of opposite rotation is formed into a dipole. The dipole moves downward, generating the
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Figure 33. L2 norm error of the horizontal velocity component (u) as a function of grid spacing for the
flapping wing problem.

lift of the wing. The vortices shed from the wing by the self-induced flow, without interfering the

new vortices in the next cycle.

The time history of the drag and lift coefficients are plotted in Figure 32 and compared to the

results of [57, 51, 58]. Good agreements have been found. Note that in order to maintain the shape of

the rigid body in the immersed interface method of [51], a feedback control technique is employed

and the time step is kept small to reduce the shape distortion. The present immersed boundary

method is found to be much more satisfactory, since no additional springs for feedback control are

needed and the no-slip boundary condition is exactly imposed at the interface.

A grid convergence study is also conducted to assess the accuracy of current MIBM in this case.

A domain size of [−4D, 4D]× [−4D, 4D] is chosen and the grid spacing varies sequentially. The

numerical solution after one flapping period is used for the analysis. A fine time step of 10−4

is selected in order to ensure the analysis is not influenced by the temporal discretization error.

Figure 33 shows the error of the horizontal velocity in L2 norm as a function of the grid spacing. A

convergence rate of around 1.29 is observed.

5.6. Flow past an impulsively started cylinder

As our last example we present results of a suddenly accelerated circular cylinder in a quiescent

fluid at different Reynolds numbers Re = U0D/ν ranging from 40 to 3000, with U0 being the

cylinder moving velocity. Initially we place the cylinder with unit diameter (D = 1) at the origin

and suddenly set it into motion to the left at a constant velocity U0 = −1, as illustrated in Figure 34.

We first consider the Reynolds number Re = 40 and compare our results to the IBPM of Taira

and Colonius [17]. A uniform grid is used to cover the computational domain with no-slip boundary

condition applied at all outer boundaries. The grid resolution is h = 0.01D and the time step is set

to ∆t = 0.001. Two computational domains are employed to examine the effect of finite domain

size on the results, namely a large domain of [−16.5D, 13.5D]× [−15D, 15D] as used by Taira

and Colonius [17] and a relative smaller domain [−8D, 4D]× [−5D, 5D] as used by Mimeau et

al. [50]. The time history of the drag coefficient is plotted in Figure 36a from t = 0 to 3.5. Our
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U0 = −1

No-slip No-slip

No-slip

No-slip

Figure 34. Sketch of the flow past an impulsively started cylinder.

results are in excellent agreement with the immersed boundary projection method [17] on the large

computational domain. When the computational domain is reduced the resulting drag coefficient

is increased, which has also been observed in previous test cases. The snapshots of the vorticity

field are shown in Figure 35a. Good agreements have been found compared to IBPM of Taira and

Colonius [17].

At this regime, a grid convergence study has been performed on a domain [−2D, 2D]×
[−2D, 2D]. The time step is set to ∆t = 0.0001 and the grid spacing changes sequentially. The

numerical errors are computed at t = 0.5 based on a very fine grid. Figure 37 shows the variation

of the L2 norm error for the horizontal velocity as a function of the grid spacing. A little better than

first order spatial accuracy is observed.

Next we increase the Reynolds number to Re = 550 and compare our results to the vortex

methods of Koumoutsakos and Leonard [59] and Mimeau et al. [50]. In this case, the computational

domain [−8D, 4D]× [−5D, 5D] is used and the mesh resolution is set to h = 0.005D as suggested

by Mimeau et al. [50]. The time step ∆t = 0.001 is used. The time evolution of drag coefficient

is displayed in Figure 36b. The current method has difficulties in drag prediction at early times of

impulsive motion, which is also encountered by the immersed boundary projection method of Taira

and Colonius [17] and the vortex penalization method of Mimeau et al. [50]. At later stage, our

results are comparable to those using vortex method. The corresponding vorticity fields are shown

in Figure 35b, which compare well with the simulation results of [50, 52, 59, 60].

At Re = 1000, the grid is further refined to h = 0.0025D in order to solve the very thin boundary

layer, while the computational domain [−8D, 4D]× [−5D, 5D] is kept unchanged. The time step

is reduced to ∆t = 0.0005. As mentioned by Mimeau et al. [50], the two-dimensional simulation

performed here is valid since only the impulsive start of the flow is considered before the onset

of three-dimensional instabilities. Figure 36c and Figure 35c show the drag time evolution and the

snapshots of vortex structures at different stages, respectively. We notice that the predicted drag

coefficient with present method is slightly higher than that with vortex methods [50, 59]. This can

be attributed to the finite domain size used in the present study.

Finally we increase the Reynolds number to Re = 3000. At this Reynolds number, the simulation

is quite challenging as it requires a very fine grid to capture the boundary layer. We reduce the

grid size to h = 0.00125D and adjust the time step respectively to ∆t = 0.0002. Due to memory

limits, we select a much smaller computational domain [−4D, 2D]× [−3D, 3D]. The temporal

Copyright c⃝ John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids ()

Prepared using fldauth.cls DOI: 10.1002/fld

Page 39 of 44

http://mc.manuscriptcentral.com/fluids

International Journal for Numerical Methods in Fluids

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Peer Review Only

40 S.-G. CAI ET AL.

t = 0.5

t = 2.5

t = 3.5

(a) Re = 40

t = 1.0

t = 1.5

t = 2.0

(b) Re = 550

t = 1.0

t = 1.5

t = 2.0

(c) Re = 1000

t = 1.0

t = 1.5

t = 2.0

(d) Re = 3000

Figure 35. Computed vorticity contours for a suddenly started cylinder at different stages in the start-up
process. Contour levels are set from -3 to 3 in increments of 0.4.

history of the drag coefficient is shown in Figure 36d along with the results computed with past

settings Ω = [−8D, 4D]× [−5D, 5D], h = 0.0025D. Even though the magnitude of the predicted

drag coefficient with current MIBM is higher than that with vortex methods because of the small

domain size, the variation follows well the benchmark results. The corresponding vorticity fields
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Figure 36. Time history of the drag coefficient for flow past an impulsively started cylinder at different
Reynolds numbers. (a): −−−, results of Taira and Colonius [17]; − ·−·, present Ω = [−16.5D, 13.5D]×
[−15D, 15D]; ——, present Ω = [−8D, 4D]× [−5D, 5D]. (b) and (c): −−−, results of Koumoutsakos
and Leonard [59]; − ·−·, results of Mimeau et al. [50]; ——, present Ω = [−8D, 4D]× [−5D, 5D]. (d):
—— (black), present Ω = [−8D, 4D]× [−5D, 5D], h = 0.0025D; —— (blue), present Ω = [−4D, 2D]×
[−3D, 3D], h = 0.00125D; −−−, results of Koumoutsakos and Leonard [59]; − ·−·, results of Mimeau

et al. [50].
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Figure 37. L2 norm error of velocity (u) for the impulsively started cylinder problem.
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are shown in Figure 35d at different time levels, which are in close agreement with those reported

by the vortex methods [50, 59, 60].

6. CONCLUSIONS

We presented a new implicit but very efficient formulation of immersed boundary method for

simulating incompressible viscous flow past complex stationary or moving boundaries. The current

method treats the boundary force and the pressure as Lagrange multipliers for satisfying the no-slip

and the divergence-free constraints. The fractional step method is applied to decouple the pressure

as well as the boundary force from the fluid velocity field, and the two Lagrange multipliers are

solved separately within their own systems. The main advantages of current approach are the

accurate imposition of the no-slip condition and the efficiency in computation. The system matrices

are well conditioned and generic solvers can be used directly. Especially for moving boundaries,

only the boundary force coefficient matrix is updated while the coefficient matrices of velocity and

pressure remain unchanged. Even though we have only dealt with rigid boundary in this article,

deformable body with its motion known a priori can also be handled. A variety of distinct two

dimensional flows are simulated and the results are in excellent agreement with available data sets

in the literature, demonstrating the fidelity of the proposed method.
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55. Dütsch H, Durst F, Becker S, Lienhart H. Low-Reynolds-number flow around an oscillating circular cylinder at low

Keulegan-Carpenter numbers. J. Fluid Mech. 1998; 360:249–271.

56. Iaccarino G, Verzicco R. Immersed boundary technique for turbulent flow simulations. Appl. Mech. Rev. 2003;

56(3):331–347.

57. Wang ZJ. Two dimensional mechanism for insect hovering. Phys. Rev. Lett. 2000; 85(10):2216–2219.

58. Yang J, Stern F. A simple and efficient direct forcing immersed boundary framework for fluid–structure interactions.

J. Comput. Phys. 2012; 231(15):5029–5061.

59. Koumoutsakos P, Leonard A. High-resolution simulations of the flow around an impulsively started cylinder using

vortex methods. J. Fluid Mech. 1995; 296:1–38.

60. Ploumhans P, Winckelmans G. Vortex methods for high-resolution simulations of viscous flow past bluff bodes of

general geometry. J. Comput. Phys. 2000; 165:354–406.

Copyright c⃝ John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids ()

Prepared using fldauth.cls DOI: 10.1002/fld

Page 44 of 44

http://mc.manuscriptcentral.com/fluids

International Journal for Numerical Methods in Fluids

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


