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Abstract

Objective: Ontologies are widely used in the biomedical domain. While many tools exist for the edition, alignment or evaluation of
ontologies, few solutions have been proposed for ontology programming interface, i.e. for accessing and modifying an ontology within
a programming language. Existing query languages (such as SPARQL) and APIs (such as OWLAPI) are not as easy-to-use as object
programming languages are. Moreover, they provide few solutions to difficulties encountered with biomedical ontologies. Our objective
was to design a tool for accessing easily the entities of an OWL ontology, with high-level constructs helping with biomedical ontologies.

Methods: From our experience on medical ontologies, we identified two difficulties: (1) many entities are represented by classes
(rather than individuals), but the existing tools do not permit manipulating classes as easily as individuals, (2) ontologies rely on the
open-world assumption, whereas the medical reasoning must consider only evidence-based medical knowledge as true. We designed a
Python module for ontology-oriented programming. It allows access to the entities of an OWL ontology as if they were objects in the
programming language. We propose a simple high-level syntax for managing classes and the associated “role-filler” constraints. We
also propose an algorithm for performing local closed world reasoning in simple situations.

Results: We developed Owlready, a Python module for a high-level access to OWL ontologies. The paper describes the architecture
and the syntax of the module version 2. It details how we integrated the OWL ontology model with the Python object model. The paper
provides examples based on Gene Ontology (GO). We also demonstrate the interest of Owlready in a use case focused on the automatic
comparison of the contraindications of several drugs. This use case illustrates the use of the specific syntax proposed for manipulating
classes and for performing local closed world reasoning.

Conclusion: Owlready has been successfully used in a medical research project. It has been published as Open-Source software
and then used by many other researchers. Future developments will focus on the support of vagueness and additional non-monotonic
reasoning feature, and automatic dialog box generation.

Keywords: Semantic web, Ontology-oriented programming, Automatic classification, Local closed world reasoning, Biomedical
ontology, OWL

1. Introduction

A formal ontology is the specification of the concepts, their
attributes and relationships, in a given domain of discourse [1].
Ontologies have two major interests: (1) they can be used to per-
form logical inferences for deducing new facts, with a reasoner,
and (2) they can link together various pieces of knowledge from
different ontologies in the Semantic Web. The W3C (World Wide
Web Consortium) proposed OWL (Web Ontology Language) [2]
for formalizing ontologies, and OWL ontologies are often repre-
sented as RDF graphs (Resource Description Framework) [3].

Ontologies have been used in many domains, and in particu-
lar the biomedical domain [4, 5]. Today it is one of the most
complex domain of Human knowledge, and there is an increas-
ing need for structuring and formalizing this knowledge. More
than twenty years ago, the GALEN project [6] was already based
on an ontology. The development of recent biomedical terminolo-
gies has also been heavily influenced by ontologies. Examples are
SNOMED CT (Standardized NOmenclature of MEDicine - Clin-
ical Terms) [7], Gene Ontology [8] and the FMA (Foundational
Model of Anatomy) [9], which was recently converted to OWL 2
[10].
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Many methods and tools have been proposed for the design,
the edition, the maintenance, the alignment or the evaluation of
ontologies, including the Protégé editor and the HermiT reasoner
[11]. However, fewer options are available for ontology program-
ming interface, a problem identified by Rector et al. [12]. Ontol-
ogy programming interfaces are tools for accessing and modifying
an ontology within a programming language. Typical examples
of use include populating an ontology with data extracted from a
database, or generating a website displaying the inferences pro-
duced by running a reasoner on the ontology. Programming lan-
guages, and especially object-oriented programming languages,
are widely taught and used nowadays. Thus it is a common need
to interface ontologies with these programming languages.

In the literature, three strategies have been proposed for ontol-
ogy programming interfaces: query languages such as SPARQL,
APIs (Application Programming Interfaces) such as OWLAPI,
and ontology-oriented programming. The first two strategies are
commonly used. However, with these strategies, it is still much
longer and more difficult to work with ontologies than to develop
an object oriented program. The last strategy is still a matter of
research, but it also seems the most promising. In a previous pa-
per [13], we highlighted the potential interest of ontology-oriented
programming for the biomedical domain.

An example is the comparison of contraindications between
several drugs. Contraindications can be extracted from drug
databases or entered manually by an expert from official reference
documents (such as Summary of Product Characteristics, SPC).
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However, due to synonymy, partitions and variations in granu-
larity level, the contraindications cannot be compared “as-is” be-
tween drugs. For instance, drug A might be contraindicated with
“acquired hemorrhagic disorder” and “fulminant hepatitis”, and
drug B with “hemorrhagic disorder” and “severe hepatic impair-
ment”, but it does not mean that drug B is not contraindicated
in case of “acquired hemorrhagic disorder” and “fulminant hep-
atitis”. A solution is to design an ontology and use a reasoner;
it has been shown that ontologies could improve the quality of
drug databases [14]. However, two difficulties are expected. First,
drugs and disorders cannot be represented by individuals in the
ontology. They can only be represented by classes, due to the
subsumption relations that exist between them. But classes are
more difficult to manipulate with common APIs. Second, the rea-
soning should only consider contraindications that are known (i.e.
present in databases or entered by an expert). This requires lo-
cally closed world reasoning, which is not supported by common
OWL reasoners.

The objectives of this work were to design a module for
ontology-oriented programming in Python supporting OWL 2 on-
tologies1, focusing on two points: (1) providing a clear, concise
and easy-to-use syntax, based on both the notations of the well-
known Protégé ontology editor and the dot notation common to
many object-oriented programming languages, including Python,
and (2) providing high-level syntactic elements for facilitating the
manipulation of classes and a simple algorithm for local closed
world reasoning. These two elements have been inspired by the
difficulties we encountered with medical ontologies.

The rest of the paper is organized as follows. Section 2 de-
scribes two difficulties that we identified in medical ontologies.
Section 3 presents the main strategies that exist for accessing and
modifying an ontology in a programming language, and the ap-
proaches proposed for local closed world reasoning in the lit-
erature. Section 4 compares object models and ontologies, and
details the differences. Section 5 presents Owlready, including
the general architecture, the technical details and the syntax. It
gives simple examples and more complex ones with Gene On-
tology (GO). It also describes testing procedures on 5 ontolo-
gies and presents performance measurement and comparison with
OWLAPI. Section 6 provides a use case in a medical application
that illustrates how the high level syntax of Owlready can help
with the two difficulties identified at the beginning of the paper.
Finally, section 7 discusses the results and compares Owlready to
similar approaches in the literature, before concluding.

2. Two particularities of ontologies in the medical domain

From our experience in the field, we identified two particular-
ities of medical knowledge that complicate the design of ontolo-
gies and ontology-based reasoning. They are described in the next
two subsections.

2.1. The open-world assumption is appropriate for medical data
but not for medical knowledge

In medicine, knowledge is based on evidence as much as pos-
sible, i.e. knowledge comes from a proof, typically a significant
difference observed during a clinical trial and involving a statisti-
cal test. This is known as Evidence-Based Medicine (EBM) [15].
A classical clinical trial design consists in recruiting two groups of
patients, each group receiving a different treatment (e.g. drug A or

1In the rest of the paper, unless otherwise specified, the OWL version is 2.

B), blindly. At the end of the study, the efficacy of the treatment
is evaluated for each patient, by considering biological markers
or symptom evolution. If the difference between the efficacy of
the two groups is statistically significant, one of the two drugs is
more efficient and should be preferred; this produces a new piece
of medical knowledge. When no evidence is available (and only
in this case), medical knowledge should be established by consid-
ering the consensual opinion of groups of experts.

Consequently, in a medical reasoning, only evidence-based or
expert-validated knowledge should be considered as true. There-
fore, the open-world assumption, which considers that anything
that is not said is possible and might be true, is not appropri-
ate for medical knowledge. The reasoning should not make new
hypotheses about medical knowledge, because such hypothesis
would not be evidence-based. On the contrary, open-world as-
sumption is interesting when considering patient data. It allows
the reasoner making hypotheses about yet-unknown patient disor-
ders or clinical conditions. This is especially useful in diagnostic
systems.

For example, when a physician checks the contraindications
of a drug, he considers that all contraindications are known (and
listed in official texts and drug databases), even if this might not
be entirely true. Thus, a medical decision-support system should
only reason using known contraindications, rather than making
hypotheses about potential new contraindications. This would
lead to stupid alert messages such as “the patient is diabetic, the
drug you are prescribing is not contraindicated with diabetes but
a yet-unknown contraindication might exist. Please verify your
prescription!”.

In conclusion, a mix of open- and closed-world assumption is
needed for the medical reasoning. This is usually referred to as
local closed world reasoning. Other authors [16] made a sim-
ilar observation, when reasoning on patient records and patient
inclusion in clinical trials, and they showed that some patient data
must be considered under the open world assumption while other
must not. They considered patient diagnostics to be “open” (there
might be yet-unknown diagnostics) and patient pharmacy data to
be “closed” (all drugs prescribed to the patient are known via the
pharmacy service).

2.2. The main medical concepts cannot be represented by indi-
viduals, but only by classes

The second particularity is that many granularity levels are
usually considered in medicine. For example, disorders can be
expressed at various granularities, e.g. intestine inflammatory
disorders, Crohn disorder, severe Crohn disorder, Crohn disor-
der with cutaneous manifestations, etc [17]. Patient data is typ-
ically described at a fine granularity, e.g. “M. X suffers from
Crohn disorder”, while medical knowledge is described at a more
general level, e.g. “this drug is contraindicated with intestine
inflammatory disorders” (thus including Crohn disorder). Drug
treatments behave similarly, for example analgesics, NonSteroidal
Anti-Inflammatory Drugs (NSAID), aspirin, aspirin in the an-
tiplatelet indication, aspirin tablet 1g, etc. These numerous levels
of granularity complicate the representation of medical concepts
because, when considering a medical concept, it is almost always
possible to specify it more for defining a finer concept.

In ontologies, granularity levels are represented using is-a re-
lations (e.g. Crohn disorder is an intestine inflammatory disor-
der). Since is-a relations do not exist between individuals, the
main medical concepts, such as disorders and drug treatments, can
only be represented by classes, and not individuals. For instance,
disorders cannot be represented as the individuals of a Disorder
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Query langage (SPARQL) :
PREFIX <file://path/to/drug.owl>
SELECT (SUM(?drug_price) AS ?total_price)
WHERE {

?order :name "My order" .
?order :has_drug ?drug .
?drug :has_price ?drug_price .

}

Application Programming Interface (Java + OWLAPI) :
OWLDataFactory df = OWLManager.getOWLDataFactory();
public static float getOrderCost(OWLIndividual order) {

float cost = 0.0;
OWLObjectProperty drugProperty = df.getOWLObjectProperty(IRI.create("file.owl#has_drug"));
OWLDataProperty priceProperty = df.getOWLDataProperty(IRI.create("file.owl#has_price"));
Iterator drugs = order.listPropertyValues(drugProperty);
while(drugs.hasNext()) {

OWLIndividual drug = (OWLIndividual) drugs.next();
Float price = (Float) drug.getPropertyValue(priceProperty);
cost = cost + price.floatValue();

}
return cost;

}

Ontology-oriented programming (Python + Owlready) :
class Order(Thing):

def get_cost(self):
cost = 0.0
for drug in self.drugs: cost = cost + drug.price
return cost

Figure 1: Examples of source codes for accessing an ontology in a computer program, using a SPARQL query (top), OWLAPI in Java (middle) and ontology-oriented
programming in Python (bottom). The three examples compute the cost of a drug order, considering a single box for each drug in the order (thus it just computes the sum
of the price of each drug in the order).

class, but only as subclasses of Disorder. Classes are usually more
complex to manipulate than individuals, and thus this point com-
plicates the use of ontologies in the biomedical domain. For ex-
ample, in order to assert that Crohn disorder is a chronic disease,
we need a single (subject, predicate, object) RDF triple if Crohn
disorder is represented by an individual in the ontology:

(crohn_disorder, is_chronic, true)

On the contrary, if Crohn disorder is represented by a class, we
need a “role-filler” constructs (noted ∃R.{i} in Description Logics
(DLs) notations, or “R value i” in Protégé, R being a property
and i an individual or a literal). In OWL, it is represented by a
restriction which requires 4 RDF triples and a blank node (_bn):

(Crohn_disorder, rdfs:subclassOf, _bn)
(_bn, rdf:type, owl:Restriction)
(_bn, owl:onProperty, is_chronic)
(_bn, owl:hasValue, true)

Moreover, it is not possible to assert directly that all individu-
als of a class A are related to all individuals of a class B [18].
For example, there is a well-known contraindication between
NSAID and hemorrhagic disorders. However, this contraindica-
tion cannot be represented in OWL by a single restriction, be-
cause both NSAID and hemorrhagic disorders are classes and
not individuals. OWL (version 2) can only express the fact that
“NSAID are contraindicated with some hemorrhagic disorders”
or “NSAID are contraindicated with only hemorrhagic disorders”,
but not “NSAID are contraindicated with all hemorrhagic disor-
ders”. Consequently, this contraindication can only be modeled
in OWL by (1) creating a third class, Contraindication, (2) creat-
ing an individual of this class, the NSAID-HemorrhagicDisorders
contraindication, and (3) relating the NSAID drug class and the

HemorrhagicDisorder class to the contraindication individual us-
ing two “role-filler” constructs.

In the literature, Schulz et al. [19] also noticed that RDF triples
(corresponding to individuals and their data) were not enough for
representing medical knowledge and even patient data.

3. Related works

3.1. Ontology programming interfaces
Many tools have been proposed for interfacing RDF graphs or

OWL ontologies, and many of them are listed on the W3C web-
site2. However, the existing tools provide little help for dealing
with the two difficulties we identified in the previous section. Sev-
eral tools propose closed world reasoning, but options are more
limited for local closed world. Most of the tools focus on RDF,
some of them support OWL but they rarely provide specific syn-
tax for facilitating the use of classes and role-filler constructs.

We can distinguish three main strategies for accessing an on-
tology in a programming language (Figure 1). The first strategy
is the use of a query language, such as SPARQL (SPARQL Pro-
tocol and RDF Query Language) [20]. SPARQL is a query lan-
guage proposed by the W3C. It allows searching and modifying
RDF graphs. It has been inspired by SQL (Structured Query Lan-
guage), developed for relational databases. However, SPARQL
has two important drawbacks. First, it is not an object-oriented
approach: a query must be written for each access to the ontology,
even the simplest (e.g. get the value of the functional property p
for individual x). This may be tedious, especially if the number of
different queries is high.

2https://www.w3.org/2001/sw/wiki/Tools
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Second, SPARQL is based on RDF and not OWL. Thus,
SPARQL is data-oriented, it performs queries but no inference.
Moreover, it is possible to query the individuals in the ontology,
but manipulating the classes, for example adding new restriction
(such as ∀R.C), is more complex, although still possible [21]. This
point is particularly problematic in the biomedical domain, since
we have seen that most medical concepts, such as disorders and
drug treatments, are classes in ontologies.

The second strategy is the use of an Application Programming
Interface (API). These APIs provide objects and functions for ma-
nipulating the elements that compose an ontology (i.e. classes, in-
dividuals, properties, annotations, restrictions, etc). In this strat-
egy, a class in the ontology is an instance of the OWLClass class
in the object-oriented programming language. Several similar
APIs exist, such as OWLAPI [22] and Jena3 in Java, or owlcpp
[23] for C++ with binding for other languages (including Python).

These APIs are widely used, but they focus on performance
rather than ease of use. They lead to complex and voluminous
source codes (see example in Figure 1). Moreover, since an OWL
class is considered as an instance in the programming language
rather than a class, it is not possible to take full advantage of
object-oriented programming. In the example Figure 1, the sum
computation is implemented in a static function while, to strictly
stick to the object paradigm, it should have been implemented in a
method of the Order class (e.g. Order.getCost()). However, APIs
cannot associate methods with OWL classes.

The third strategy is ontology-oriented programming. It is
based on object-oriented programming, a well-known and suc-
cessful paradigm. It takes advantage of the similarities that exist
between ontologies and object models [24]: classes, properties
and individuals in an ontology correspond to classes, attributes
and instances in an object model [25].

Ontology-oriented programming tries to connect, or even to
unify, ontologies and the object model of a given programming
language, e.g. a class in the ontology becomes a class in the pro-
gramming language. The W3C showed that this approach could
reduce the length of the source code by a half [25]. In Figure 1,
ontology-oriented programming not only reduces the length of the
source code, but also adheres more strictly to the object paradigm,
by defining a get_cost() method in the Order class of the ontology.

We can distinguish two approaches for ontology-oriented pro-
gramming. The static approach automatically generates source
codes for the entities present in the ontology (i.e. classes, prop-
erties, etc). It relies on a “translator” program that reads the on-
tology description (typically an OWL file) and produces one or
more source files containing the classes in a given programming
language. The static approach facilitates the access to the content
of the ontology and performs type-check at compile time. In con-
trast, because of its static nature, this approach cannot perform
inference or automatic classification. Several static approaches
have been proposed for Java [26, 27] and C# [28].

On the other hand, the dynamic approach consists of a dynamic
“translation” between the ontology and the object model, at run-
time. This approach allows access to the ontology but can also
execute a reasoning engine and update the object model according
to the produced inferences. For example, the automatic classifi-
cation can dynamically change the classes to which an individual
belongs. Moreover, this approach also allows the integration of
methods in the ontology’s classes. However, it cannot perform
type-checking, since types can change at runtime.

3https://jena.apache.org/

A dynamic tool has been proposed in Common Lisp [24, 29],
using a specific subsumption algorithm rather than an external
reasoner. A prototype in Python has also been achieved using
metaclasses [30]; however, the reasoning and the expression of
restrictions remain quite limited. Other authors aimed to design
new programming languages specific to ontology-oriented pro-
gramming, such as Go! [31] (not to confound with the Go pro-
gramming language from Google).

More recently, a semi-dynamic approach has been proposed in
Java [32]. It can perform automatic classification of individuals
with a reasoner, with some limits (it is not possible to change
the class of an instance in a static programming language such as
Java, therefore new instances are created after classification, and
the programmer should no longer use the older ones).

3.2. Local closed world reasoning

Many situations require local closed world reasoning in ontolo-
gies or databases. We described evidence-based medical knowl-
edge in section 2; in the literature other authors mentioned natural
language interfaces [33], Semantic Web Service policies [34] or
aerial vehicle planning [35]. However, most of the works were
not focused on local closed world reasoning, but more generally
on non-monotonic features, which also includes defeasible inher-
itance or default rules (e.g. one can consider that the heart is lo-
cated on the left of the body unless otherwise specified for a given
patient).

The integrity constraint approach [36] considers some OWL
axioms as usual axioms when reasoning on individuals (ABox),
but as relational database integrity constraints when reasoning on
classes (TBox).

Another approach is the extension of OWL by epistemic op-
erators for non-monotonic features [37]. These operators dis-
tinguish known facts (K) and assumed facts (A). Further works
lead to hybrid MKNF (Minimal Knowledge and Negation as Fail-
ure) knowledge bases [38] which integrate Description Logics
and production rules in the same framework. The authors pro-
posed specific algorithms for reasoning on these knowledge bases.
Then, other authors defined well-founded semantics based on hy-
brid MKNF knowledge bases, compatible with OWL [39].

The grounded circumscription approach [40] is an adaptation
of circumscriptive Description Logics which remains fully decid-
able. It restricts the extensions of some classes and properties to a
given set of individuals (for classes) or individual pairs (for prop-
erties).

Another approach extended the SROIQ Description Logic
with an NBox (Negation As Failure Box) specifying the classes
or properties to close [41]. Individuals that are not asserted as be-
longing to a class in the NBox are considered as belonging to the
complement of the class. This method has been implemented in
the TrOWL reasoner4.

Local closed world assumption was also studied for databases.
Databases usually rely on closed world assumption, but local
closed world is often desirable, when the database coverage is
incomplete. In this context, information is separated in two parts:
the first one (M) includes known data, and the second one (L)
includes metadata that indicates in which situations the coverage
of the database is complete. L is composed of local closed world
assumptions (LCWA), e.g. everything is known about the patients
in service XYZ, but not for those of other services. Circumscrip-
tion and quantifier elimination techniques were used for defining

4http://trowl.org
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Static object models
(e.g. Java)

Dynamic object models
(e.g. Python)

Formal ontologies
(e.g. OWL)

Closed-world assumption Closed-world assumption Open-world assumption

Implicit disjoints between classes (two
classes are disjoint if none of them is a
child of the other, two classes cannot be
equivalent)

Implicit disjoints between classes (two
classes are disjoint if they have no common
descendant, two classes cannot be
equivalent)

No implicit disjoint between classes
(disjoint classes must be stated explicitly,
two classes can be equivalent)

Implicit distinction between instances (all
instances are distinct, two instances cannot
be the same)

Implicit distinction between instances (all
instances are distinct, two instances cannot
be the same)

No implicit distinction between individuals
(distinct individuals must be stated
explicitly, two individuals can be the same)

Single inheritance Multiple inheritance Multiple inheritance

Single instantiation Single instantiation Multiple instantiation

The class of an instance cannot be changed
at runtime

The class of an instance can be modified at
runtime

The classes of an individual can be
modified to more specific classes by the
reasoner

The superclass of a class cannot be
changed at runtime

The superclasses of a class can be modified
at runtime

The superclasses of a class can be modified
to more specific superclasses by the
reasoner

Attributes are defined for a given class Attributes are defined for a given class, but
can be considered as independent from the
class (duck-typing)

Properties are independent from classes
(they are first-order constructs with
inheritance support)

No annotation support No annotation support Annotations are supported

Table 1: Comparison of static object models, dynamic object models and ontologies. Features of ontologies are shown in blue and italic, and different features in red.

a tractable inference method for local closed world reasoning in
database [35]. The authors represented LCWA by conjunctions
of literals. In a more complete work, Denecker et al. [42] stud-
ied the semantics of the LCWA. They showed that the complexity
of database requests in a local closed world is unacceptably high.
The authors proposed approximate methods with acceptable com-
plexity. They also proposed specific categories of queries and lo-
cally closed databases for which the problem is tractable.

3.3. Final words

In conclusion to this related works section, several strategies
have been proposed for ontology programming interfaces. Var-
ious approaches have also been proposed for performing local
closed world reasoning. However, there is no existing ontology
programming interface supporting local closed world reasoning
and including high-level syntax for manipulating classes, the two
needs we identified in section 2. For local closed world reason-
ing, all approaches found in the literature involved new constructs
(e.g. NBox) and specific reasoning methods. We will propose a
different, simpler but more limited, method in section 5.5, based
on the automatic generation of universal constraints.

4. Comparison of object models and formal ontologies

We have seen in section 3 that object models and formal on-
tologies are similar in many aspects. Several object models ex-
ist (actually one per object-oriented programming language), and
two main categories can be distinguished: static object models
(e.g. in Java), in which classes are compiled and statically typed at
compile time, and dynamic object models (e.g. in Python), which
are dynamically typed at runtime. Dynamic object models are

generally more permissive, for instance the class of an instance
can be changed at runtime. New attributes can also be added to
an instance, even if these attributes were not declared at the class
level. Table 1 shows the differences between static object models,
dynamic object models and formal ontologies. It appears clearly
that dynamic object models are closer to ontologies than static
ones.

The major differences between dynamic object models and
formal ontologies are: 1) whether non-stated facts are consid-
ered as false or possible (closed- or open-world assumption,
respectively), 2) whether two classes can be equivalent and
class disjointness must be stated explicitly, 3) whether two in-
stances/individuals can be the same and the fact that they are dis-
tinct must be stated explicitly, 4) whether multiple instantiation
is supported, 5) whether attributes/properties are first-order con-
structs, independent from classes and supporting inheritance, or
are defined inside a given class, and 6) whether annotations are
supported.

Difference #5 (properties as a first-order construct) has been
partly fixed by the recent development of duck-typing. Duck-
typing is a kind of “programming philosophy” which can be ap-
plied to dynamic object-oriented programming languages such as
Python or Perl, without having to modify the language. Although
attributes are still defined at the class level, duck-typing takes ad-
vantage of the ability of dynamic languages to access an attribute
value without the need of a type-check. When using duck-typing,
the programmer associates the semantics of the attribute with the
attribute name only, and not with the (attribute name, class) pair
as usual in object models.

In conclusion, dynamic object models are closer to ontolo-
gies than static ones are. For developing our ontology-oriented
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Figure 2: General architecture of Owlready.

programming module, we chose Python because it is a dynamic
object-oriented programming language, because it is easy to use
and widely used in the biomedical domain, and also because
we already developed several tools in this language, including a
generic API for medical terminologies [43].

5. Description of Owlready

5.1. General architecture
Figure 2 shows the general architecture of Owlready. It in-

cludes 5 components: (1) an optimized RDF quadstore, imple-
mented with an SQL database in SQLite3 and stored either in
memory or on disk in a file, (2) metaclasses for OWL classes
and constructs, (3) optional ontology-specific Python source files,
defining methods to insert into OWL classes, (4) the HermiT
OWL reasoner [11], for performing automatic classification, (5)
the SPARQL engine from the RDFlib Python module. Owlready
is in charge of importing ontologies in the quadstore, dynamically
loading their entities and wrapping them in Python objects, im-
porting Python source files associated with the ontologies, and
executing the reasoner. Owlready presents to the programmer a
unified interface, mixing OWL statements (properties, class hier-
archy, individuals) with Python statements (method definitions).

The quadstore relational database includes two tables: a 2-
column table mapping IRI (Internationalized Resource Identifier)
to shorter alphanumeric codes, and a 4-column table containing
RDF quads of the forms (subject, predicate, object, ontology),
where object can be an IRI or an RDF literal. Owlready uses a
lazy parser for dynamically loading the entities from the quad-
store on demand: when an entity (class, property or individual) is
accessed in Python, it is loaded in memory from RDF, wrapped
in a Python object, stored in a cache and returned. If the wrapper
Python object is modified, the RDF quadstore is automatically up-
dated, by adding, removing or changing RDF triples. When the
wrapper is no longer referenced and the cache is full, it is de-
stroyed. Then, the entity may be loaded again from RDF if the
program needs to access it again. User-defined Python methods
can also be associated with OWL classes; in this case, a specific
annotation (“python_module”) can be used to link an ontology
with the name of the associated Python module. Finally, the Her-
miT reasoner can be used for performing automatic classification
of classes and individuals (see section 5.5).

This architecture supports big ontologies, stored in the opti-
mized quadstore. It allows a fast access for “poking around” enti-
ties in ontologies.

5.2. Mapping OWL to the Python object model

The objective of the mapping between OWL ontologies and the
Python object model was to obtain the most transparent access
to ontologies in Python, from a programmer’s point of view. The
programmer should be able to manipulate the classes and the indi-
viduals of the ontology as if they were normal Python classes and
objects. Owlready can express almost all OWL 2.0 constructs,
including classes, individuals, object properties, data properties,
annotations, property domains and ranges, constrained datatypes,
disjoints, class expressions such as intersections, unions, property
value restrictions and one-of,...

Our implementation in Python relies on metaclasses. An OWL
class is represented in Python by an instance of the metaclass,
i.e. a Python class. Table 2 shows the various special methods
that have been redefined in order to adapt OWL ontologies to the
Python object model. These special methods are defined either at
the metaclass level (i.e. they are applied on classes) or at the class
level (i.e. they are applied on instances).

In the previous section, we identified 6 major differences be-
tween dynamic object models and ontologies. The following para-
graphs describe how we dealt with each of them.

For difference #1 (closed- or open-world assumption), we
choose to keep the closed-world assumption when programming
in Python. When reasoning, the default is to rely on the open-
world assumption, although we will propose a simple solution for
local closed world reasoning in section 5.5.

For difference #2 (class disjoints and equivalent classes), we
added an AllDisjoint() construct which states that the given
classes are pairwise disjoint. OWL proposes two ways for declar-
ing disjoint classes: the disjointWith relation (when only two
classes are involved) and the AllDisjoint construct (supporting
more than two classes). On the contrary, Owlready presents a sin-
gle way for representing disjoints, corresponding to AllDisjoint.
disjointWith relations are automatically translated into AllDis-
joints, and AllDisjoints with two entities are stored in the quad-
store as disjointWith relations. We also added an “equivalent_to”
attribute to classes. We reimplemented the Python methods for
checking subclasses and instances, to take into account equivalent
classes. For example, if A ≡ B, when testing C v A, we also test
for C v B.

For difference #3 (individual distinction and same individuals),
we added an AllDistinct() construct which states that the given list
of instances are distinct.

For difference #4 (multiple instantiation), when an instance re-
ceives more than one class, we automatically create a new class
inheriting from all the classes, and we associate this new class to
the instance. This emulates multiple instantiation in Python.

For difference #5 (properties as first-order constructs), we de-
fined properties as subclasses of the ObjectProperty or the Dat-
aProperty class. This allows inheritance relations between prop-
erties in Python.

For difference #6 (annotations), annotations behave like prop-
erties, but they can be applied to any entities (unlike properties
that are applied to individuals) and, when applied to classes, their
values are not inherited by subclasses. Owlready emulates this be-
havior in Python, using the __getattr__() and __setattr__() special
methods.

OWL provides various datatypes, which are represented by
RDF literals. Owlready supports the following datatypes:
boolean, integer, float, string, normalized string, localized string,
date, time and datetime. A normalized string is a string without
line break. A localized string is an RDF literal in a given lan-
guage. Literals are stored in the quadstore as a string which is
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Special method Effect Why we redefined it?

Metaclass __new__ Create a new class (i.e. a new instance
of the metaclass)

Combine the new class with the already existent OWL
class of the same name, if any

__instancecheck__ Test if a given object is an instance of
this class

Take into account OWL equivalent classes

__subclasscheck__ Test if a given class is a subclass of this
class

Take into account OWL equivalent classes

mro Compute the method resolution order
(MRO), which is used in case of
multiple inheritance

If Python cannot find a consistent MRO, generate an
appropriate one. This occurs in case of complex
hierarchies with multiple inheritance.

__setattr__ Set the value of a given class attribute Set annotation property values, and update the quadstore
Define role-filler construct as class property

__getattr__ Get the value of a given class attribute Query the existent annotations in the quadstore, if any
Query role-filler construct as class property

Class __setattr__ Set the value of a given attribute of this
instance

Set annotations or property values and update the quadstore
Update the inverse property, if any

__getattr__ Get the value of a given attribute of this
instance (called only for attributes not
defined yet)

Query the existent annotations or relations in the
quadstore, and cache the result

Table 2: Special methods that have been redefined in the metaclass (thus executed on classes) and in classes (thus executed on instances) in order to map OWL to the
Python object model.

the concatenation of two elements: a serialization of the value
and an alphanumeric code identifying the datatype IRI. For ex-
ample, the number 4 is stored as "4"H, where H is the ar-
bitrary alphanumeric code associated with the following IRI :
“http://www.w3.org/2001/XMLSchema#integer”.

5.3. Syntax for accessing and modifying the content of an ontol-
ogy

The syntax of Owlready has been heavily inspired by both the
notations of the well-known Protégé editor and the dot notation,
widely used in object-oriented programming, including Python.
Table 3 shows the Owlready syntax, the corresponding DLs nota-
tion, Protégé notation and OWLAPI syntax.

Many object-oriented programming languages, including
Python, rely on the dot notation. In order to mimic object-oriented
programming, Owlready uses the dot notation at five levels:

1. to access the entities defined in an ontology. Each
ontology is considered to define its own namespace,
and the dot notation is used to access the entities in
this namespace. For example, if a hypothetical ontol-
ogy (URI http://www.test.org/drug.owl) is loaded in the
“drug_onto” variable, the Drug class defined in this ontol-
ogy (URI http://test.org/drug.owl#Drug) can be accessed as
“drug_onto.Drug”. Additional methods are provided to ob-
tain the list of classes, properties, individuals or annotations
in an ontology, and so on.

2. to access or modify the value of a property for an individ-
ual. For example, to obtain the values of the “hasIngredient”
property for the individual in the “test_drug” variable, one
can write “test_drug.hasIngredient”. Functional properties
return a single value, defaulting to None (the Python null
value) if not defined. Non-functional properties return a list
of values (lists are written with brackets [...] in Python, and

the .append() method is used to add an item to a list). Finally,
the values of inverse properties are automatically updated.
In ontologies, properties are often considered as relations
and thus named with a verb, e.g. hasX instead of X, but
this is not usual in programming languages. Therefore,
Owlready proposes the “python_name” annotation that can
be used to specify a different name when using the dot
notation. For instance, after defining the (hasIngredient,
python_name, ingredients) annotation triple, one can now
access to the values of the property in a more conventional
way: “test_drug.ingredients”.

3. to access or modify the annotations for any entity (class,
property or individual). This works in a similar manner that
for properties, but with annotation properties.

4. to access or modify “role-filler” constructs associated with
a class (i.e. property value constraints involving individu-
als, noted ∃R.{i}). From an object-oriented point of view,
these role-filler constructs can be seen as class attributes.
Thus, in Owlready, we represented role-fillers as class at-
tributes. The last line of Table 3 shows the general syn-
tax we propose and its equivalence in formal notation.
For example, to assert that all drugs belonging to the As-
pirinDrug class have for administration route oral (an indi-
vidual of the class AdministrationRoute), i.e. AspirinDrug
v ∃has_for_administration_route.{oral}, one can write “As-
pirinDrug.has_for_administration_route = oral” (assuming
that has_for_administration_route is functional). In addition,
an existential constraint is automatically created on the indi-
vidual using the inverse property, e.g. in the previous exam-
ple, (∃has_for_administration_route−.AspirinDrug)(oral).

5. to access or modify the domain, the range and the in-
verse of a property. For example, the range of the
has_for_administration_route property can be defined as fol-
lowing: “has_for_administration_route.domain = [Drug]”.
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Table 3: Correspondence between DLs, Protégé notations, Owlready syntax and OWLAPI syntax. A and B are classes, R and S are properties, i and j are individuals, n
is a literal. The last line of the table shows the Owlready syntax for asserting role-fillers as class attributes, and the corresponding assertion in DLs.
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In OWL, all statements regarding a given entity do not need to be
asserted in the same ontology. Owlready uses the “with <object>:
code bloc” Python syntax for specifying the ontology in which
any new RDF triples are asserted. When a triple is asserted outside
a “with...” code bloc, it goes into the first ontology that has been
associated with the entity.

5.4. Loading and exporting ontology files
Owlready natively supports three ontology file formats:

NTriples, RDF/XML and OWL/XML, using simple parsers writ-
ten in Python. When loading an ontology, Owlready automati-
cally loads all imported ontologies, recursively.

To ease access to local copies of ontologies, we also defined
an “onto_path” global variable. It contains a list of directories
in which local copies are searched. It thus behaves similarly to
the Java classpath or the Python PYTHON_PATH environment
variable. If an ontology is not found in those directories, it is
downloaded from its IRI, which usually corresponds to an Internet
address.

Errors detected when loading an ontology are reported by
raising an exception specific to Owlready (OwlReadyOntology-
ParsingError). Owlready uses several methods for loading ontolo-
gies, depending on the file format. For all methods, we followed
the same error reporting scheme and we used the same exception
when an error is encountered. In addition, if some RDF triples
were already loaded when the error occurred, they are removed
from the quadstore. Consequently, a failed load leaves the quad-
store unchanged. When an ontology cannot be found, a HTTPEr-
ror exception is raised. Since each ontology has an IRI, it is ex-
pected to be available online. Therefore, missing ontologies lead
to an HTTP error.

The quadstore can be stored in memory (default behavior) or
on disk (in a file). When stored on disk, it allows persistence:
all ontologies previously loaded are recovered when reusing the
same quadstore file. This feature is interesting for huge ontolo-
gies, because opening the database from disk takes only a fraction
of a second.

Finally, Owlready can export ontologies in the NTriples and the
RDF/XML formats (OWL/XML is not yet supported for export-
ing).

5.5. Automatic classification and reasoning
Owlready performs almost no inferences until the reasoner is

explicitly executed. This behavior is similar to the one of the Pro-
tégé editor, in which the user must explicitly call the reasoner by
clicking on a menu. The only exception is the values of inverse
properties, which are automatically updated by Owlready.

The reasoner is executed by calling the sync_reasoner() global
function. This function exports the RDF quadstore in a tempo-
rary file in the NTriple format. Then it runs the HermiT reasoner
on that file. We used HermiT version 1.3.8 and we modified it
in order to generate on the standard output the classification of
the classes, properties and individuals in plain text (HermiT does
not propose the classification of individuals in the command-line
options, although the reasoner performs the classification). The
sync_reasoner() function retrieves and parses the output produced
by HermiT. Finally, it updates the ontologies in Owlready with
the inferred statements deduced by HermiT. These statements are
new is-a, is-instance-of, equivalent-to and same-as relations.

The update includes two steps: (1) updating the RDF quadstore
by adding RDF triples for the inferred statements, and (2) updat-
ing the wrapper Python objects, if they have been loaded and are
still available in the cache. For example, if HermiT deduced that

Algorithm 1 Algorithm for the close_world() function.
⊔

R de-
notes the union of all concepts in the set R. The algorithm is ex-
ecuted in Python and thus run in “closed world”, i.e. it only con-
siders asserted facts.
function close_world(entity e):

if e is an individual:
for each property p whose domain is compatible with e:

I = { i | p(e, i) }
C = { c | (∃p.c)(e) }
R = C ∪ { I }
if R = ∅: assert (∀p.⊥)(e)
else if p is not functional: assert (∀p.

⊔
R)(e)

else if e is a class:
I = { i | e(i) }
if I , ∅: assert e v I

for each property p whose domain is compatible with e:
I = {i | ∃e′ v e u ∃p.{i} }
∪ {i | ∃i′, e(i′) ∧ p(i′, i) }

C = {c | ∃e′ v e u ∃p.c }
∪ {c | ∃i′, e(i′) ∧ (∃p.c)(i′) }

R = C ∪ { I }
if R = ∅: assert e v ∀p.⊥
else: assert e v ∀p.(

⊔
R)

for each class c such as c v e: close_world(c)
for each individual i such as e(i): close_world(i)

A v B, the sync_reasoner() function will add the (A, subclassO f ,
B) RDF triple in the quadstore. In addition, if the class A has
been loaded in Python, the superclasses of the Python class A will
be modified to include the class B. If the class A has not been
loaded yet, but is loaded after executing the reasoner, the new (A,
subclassO f , B) RDF triple will be taken into account when load-
ing the class and thus the class A will include B in its superclasses,
as expected.

The inferred facts can be tested in Python using the standard
methods for object introspection. For example, the standard
Python function issubclass(A, B) can be used for testing whether
class A is a subclass of B. Owlready can also save the inferred
facts in a new ontology.

In section 2.1, we have seen that local closed world reasoning
is often needed for medical reasoning. Owlready relies on Her-
miT for reasoning, and HermiT uses the open world assumption.
For permitting local closed world reasoning, Owlready provides
the close_world() function. It expects a single argument, which
is an individual or a class. This function acts like a “preproces-
sor” that generates the appropriate universal constraints needed
for considering a given individual or class in a closed world. For
an individual, it means that the individual relations are limited to
asserted relations and existential constraints. For a class, it means
that all individuals of the class are known, and that all subclasses
and individuals of the given class are also considered in a closed
world.

The constraints generated by close_world() depend on the as-
serted relations (for individuals), restrictions (for individuals and
classes) and individuals (for classes). Algorithm 1 details the
close_world() function. For an individual, for each property, it
considers both the asserted values (set I in the algorithm) and the
existential constraints (C), and it creates an appropriate universal
constraint (excepted for functional properties, in which case it is
not needed). For classes, the function performs 3 steps. First,
if the class has individuals, it creates a one-of constraint (other-

9



wise, we suppose that individuals have not been asserted, although
they might exist, the only alternative being considering the class
as equivalent to Nothing). Second, for each property, it creates
a universal constraint, depending on the defined constraints on
the class, on its ancestors, its descendants and their individuals.
Third, it calls itself recursively on subclasses and individuals.

Consequently, by calling close_world() on >, it is possible to
reason in an entirely closed world (although usually better options
exist for that). By calling close_world() on a limited set of indi-
viduals or classes, it is possible to reason in a local closed world.

For example, if we consider an ontology with the following
assertions:

A v ∃p.B
A v ∃p.{c}

Then close_world(A) would generate the following universal
constraints:

A v ∀p.(B t {c})
If switching back to open world reasoning is needed, the best

option is to assert the constraints generated by close_world() in
a new ontology (using the “with...” statement as described be-
fore). Then, removing this ontology from the quadstore removes
the constraints, reversing to open world reasoning.

5.6. Adding methods to OWL classes
With Owlready, an OWL class is a Python class, thus it is easy

to define methods in these classes. The methods can be defined
either directly in the program, or in a separate .py Python source
file. Methods can take any parameters (including entities defined
in the ontology) and they can be called as any other method in
Python, using the dot notation. Examples will be provided in sec-
tions 5.8 and 5.9.

5.7. Implementation
Owlready has been implemented in Python 3 using agile devel-

opment methods and unit tests (see section 5.10 for more details
on tests). The first version of Owlready was a “proof of concept”
that proposed ontology-programming in Python; it loaded the en-
tire ontology in memory. Version 2 (which is the one described
here) is based on an optimized RDF quadstore. It is more robust
and supports big ontologies with millions of triples (see example
with Gene Ontology in section 5.9).

Owlready is a free software, available under the GNU GPL v3
license. It can be downloaded from the Python Package Index or
from BitBucket:

- https://pypi.python.org/pypi/Owlready2 (stable version)
- https://bitbucket.org/jibalamy/owlready2 (development)

The documentation of Owlready can be consulted online:
- http://pythonhosted.org/Owlready2/

5.8. Example #1: reasoning
Figure 3 shows a simple example of a drug ontology associated

with a Python module with method definitions. The classes are
redefined in Python for adding methods, but their parent classes
and their definitions are not repeated. Thus, there is no dupli-
cated information. The third files shown in Figure 3 is a small
test program that loads the ontology (which in turn imports the
drug.py Python module), creates a test drug, runs the reasoner,
and calls the take() method. As the reasoner classifies the test
drug in DrugCILactoseIntolerance, the implementation in Drug-
CILactoseIntolerance.take() will be executed. This example uses
polymorphism with ontology classes.

Owlready also proposes constructs for creating an ontology en-
tirely in Python, including class and property definitions, with full

OWL ontology (drug.owl):

Drug v Thing

Ingredient v Thing

ActivePrinciple v Ingredient

Aspirin v ActivePrinciple

Excipient v Ingredient

Lactose v Excipient

DrugCILactoseIntolerance ≡ Drug

u(∃hasIngredient.Lactose)
DrugOKLactoseIntolerance ≡ Drug

u¬(∃hasIngredient.Lactose)

Annotation triple: (drug.owl, python_module, drug.py)

Python module with methods (drug.py):

from owlready2 import *
onto_path.append("/path/to/local/copy")
drug_onto = get_ontology("http://.../drug.owl")

with drug_onto:
class DrugCILactoseIntolerance(Thing):

def take(self):
print("Baah!")

class DrugOkLactoseIntolerance(Thing):
def take(self):

print("Ok, it is safe for me.")

Python script for testing (test.py):

from owlready2 import *
onto_path.append("/path/to/local/copy")
drug_onto = get_ontology("http://.../drug.owl")
drug_onto.load()

test_drug = drug_onto.Drug()
test_drug.hasIngredient = [

drug_onto.Aspirin(),
drug_onto.Lactose() ]

sync_reasoner()
test_drug.take()
# Prints "Baah!"

Figure 3: Example of an OWL ontology complemented by a Python module with
methods. CI stands for “contraindicated with”.

support for complex constraints. This is especially useful for gen-
erating ontologies from other source of data, e.g. from the content
of a database. Figure 4 shows an example of an ontology fully
defined in Python, corresponding to the ontology of Figure 3.

5.9. Example #2: using Gene Ontology
Owlready is able to load big ontologies with millions of triples,

such as Gene Ontology (GO) [8]. GO includes 1,567,718 triples
defined in a 178 Mb RDF/XML file. GO includes three distinct
hierarchies of concepts: cellular components, molecular func-
tions and biological processes. In the OWL version of GO, a
GO concept is represented by an OWL class. Hierarchical rela-
tions between concepts are represented by subclass of relations,
e.g. GO1 v GO2. Other relations, such as part of relations,
are represented using restriction with existential qualifier, e.g.
GO1 v ∃part o f .GO3.
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Python script (drug2.py):

from owlready2 import *
drug_onto = get_ontology("http://.../drug.owl")

with drug_onto:
class Drug(Thing): pass

class Ingredient(Thing): pass

class ActivePrinciple(Ingredient): pass

class Aspirin(ActivePrinciple): pass

class Excipient(Ingredient): pass

class Lactose(Excipient): pass

class hasIngredient(ObjectProperty):
domain = [Drug]
range = [Ingredient]

class DrugCILactoseIntolerance(Drug):
equivalent_to = [

Drug
& hasIngredient.some(Lactose)
]

def take(self):
print("Baah!")

class DrugOkLactoseIntolerance(Drug):
equivalent_to = [

Drug
& Not(hasIngredient.some(Lactose))
]

def take(self):
print("Ok, it is safe for me.")

Figure 4: Example of an ontology (an excerpt of a drug ontology) entirely defined
in Python.

Figure 5 shows a small program that uses GO. Line #1 imports
Owlready. Line #2 loads GO in the “go” variable. Line #3 defines
a namespace for accessing GO concepts. This is needed because
the IRIs of GO concepts do not start with the ontology IRI. Line
#4 uses the namespace for accessing the concept GO_0006310.

In ontologies, entities have often arbitrary names or IDs, and
their Human-comprehensive name is defined using the “label” an-
notation. In order to display the entities in a more friendly manner,
lines #5-9 define a rendering function. This function take one pa-
rameter, the entity, and returns a string for displaying this entity.
The function defined here generates strings of the form “ID:label”,
or “ID” if no label is available. The .first() method of the list re-
turns the first element (here, the first label), or None if the list is
empty. Line #10 prints the concept GO_0006310 again, and now
its label appears, “DNA recombination”.

Lines #11-14 iterate over all classes in GO, and for each class,
it prints the class and its superclasses.

Figure 6 shows a more complex example with GO, and illus-
trates the uses of Python methods in OWL classes. In GO, the
cellular component hierarchy uses part of relations in addition to
subclass of relations. This example will extend the cellular com-
ponent OWL class with an additional method for dealing with the
part of hierarchy. Then, it will extract the sets of all GO concepts

related to the nucleus using two different methods: linguistic and
semantic. Finally, it will compare the two results and verify that
all GO concepts mentioning “nucleus” are indeed related to the
nucleus GO concept.

Lines #1-3 import Owlready, load GO and create a names-
pace as before. Line #4 begins a “with...” code block, indi-
cating that any entity created in this code block will be located
in the “obo” namespace of the GO ontology. Lines #5-19 rede-
fine the class “GO_0005575”, which is the “Cellular_component”
GO concept. The new class definition declares a method called
“subparts()”, which returns the list of the subparts of a GO con-
cept. This method is declared as a Python class method (line #6),
i.e. it is executed on the class itself (or one of its descendants)
and not on its instances. The method creates an empty list (line
#8), iterates over all OWL class constructs referring to the class
(line #9), tests whether the construct is a restriction on the prop-
erty “BFO_0000050” (part of) (line #10) and, if so, extends the
list of results with the subclasses of the construct. The “.sub-
parts()” method is now available for concept GO_0005575 (Cel-
lular_component), but also all its descendants (thanks to inheri-
tance).

Line #13 creates an empty set named linguistic. Line #14
searches all GO concepts whose label includes “nucleus”. Line
#15 tests whether the concept is a descendant of GO_0005575
(Cellular_component) and, if so, line #16 adds the concept to the
linguistic set.

Line #17 creates an empty set named semantic. The semantic
set will include all concepts related to GO_0005634 (nucleus) by
subclass-of and/or part-of relations (including possibly a mix of
both). Thus, we need a recursive function for computing the set.
Line #18-22 define the function: it has one parameters, a GO con-
cept x, and it tests whether x is already in the semantic set. If not,
it adds x to semantic and calls the function recursively on all sub-
classes and subparts of x (using the previously defined subparts()
method). Finally, line #23 calls the function of GO_0005634 (nu-
cleus).

Line #24 computes and prints the set difference between
linguistic and semantic. Two results are found: GO_0071561
(nucleus-vacuole junction) and GO_0042025 (host cell nucleus).
The first one involves the junction between nucleus and vacuole,
which explains why it is not a part of the nucleus itself. The sec-
ond is not the nucleus of the cell but of another cell, the host.

The supplementary computer code “go.txt” includes the entire
source code for the second GO example, with additional methods
(superparts(), etc.).

[Insert Supplementary Computer Code 1 here]

The results show that all GO concepts mentioning “nucleus” in
their label are related to the nucleus, with two exceptions that can
be justified. This process could be repeated for other cellular com-
ponents (e.g. Golgi apparatus, cytoplasm, etc.) for performing a
simple audit of GO. The entire audit is beyond the scope of this
paper; however, several auditing methods have been proposed for
biomedical terminologies [44], including linguistic and semantic
ones.

We were unable to reproduce this second example with
SPARQL, and more specifically to write a SPARQL query for
obtaining the semantic set. Figure 7 shows an example of RDF
graph with 4 concepts A, B, C, D. When computing the semantic
set on this graph, and starting with concept A, the expected results
is {A, B,C} (because B is a part of A and C is a part of B); on the
contrary D should not be included in the set because it is related
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Python script (go1.py):
1 from owlready2 import *
2 go = get_ontology("http://purl.obolibrary.org/obo/go.owl").load()
3 obo = go.get_namespace("http://purl.obolibrary.org/obo/")

4 print(obo.GO_0006310)
# prints obo.GO_0006310

5 def render(entity):
6 label = entity.label.first()
7 if label: return "%s:’%s’" % (entity.name, label)
8 return entity.name
9 set_render_func(render)

10 print(obo.GO_0006310)
# prints GO_0006310:’DNA recombination’

11 for go_concept in go.classes():
12 print(go_concept)
13 for parent in go_concept.is_a:
14 print(" is a %s" % parent)
# prints:
# GO_0000001:’mitochondrion inheritance’
# is a GO_0048308:’organelle inheritance’
# is a GO_0048311:’mitochondrion distribution’
# GO_0000002:’mitochondrial genome maintenance’
# is a GO_0007005:’mitochondrion organization’
# ...

Figure 5: Example of a small program that imports Gene Ontology, declares a rendering function, and finally displays each GO concept with its parent classes.

Python script (go2.py):
1 from owlready2 import *
2 go = get_ontology("http://purl.obolibrary.org/obo/go.owl").load()
3 obo = go.get_namespace("http://purl.obolibrary.org/obo/")

4 with obo:
5 class GO_0005575(Thing): # Redefines Cellular_component class
6 @classmethod
7 def subparts(self):
8 results = []
9 for construct in self.constructs():

10 if isinstance(construct, Restriction) and (construct.property is obo.BFO_0000050):
11 results.extend(construct.subclasses())
12 return results

13 linguistic = set()
14 for x in go.search(label = "*nucleus*"):
15 if issubclass(x, obo.GO_0005575):
16 linguistic.add(x)

17 semantic = set()
18 def found(x):
19 if not x in semantic:
20 semantic.add(x)
21 for y in x.subclasses(): found(y)
22 for y in x.subparts(): found(y)
23 found(obo.GO_0005634)

24 print(linguistic - semantic)
# prints { GO_0071561:’nucleus-vacuole junction’,
# GO_0042025:’host cell nucleus’ }

Figure 6: Example of a small program for auditing GO. The program imports GO, defines the subparts() class method, and then searches for all cellular components
related to “nucleus” using a linguistic approach and a semantic approach. Finally, it compares the results of both approaches.
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Figure 7: Example of an RDF graph with 4 concepts A, B, C, D such as B v
∃part o f .A, C v ∃part o f .B and D v ∃other relation.B.

to B with a relation that is not “part of”. Using SPARQL property
paths, it is possible to chain subclassOf and onClass relations (e.g.
using the following syntax “(subclassOf | onClass)*”). However,
it is not possible to restrict the query to blank nodes having the
“onProperty part-of” relation. In the previous example, we can
obtain the set {A, B,C,D} but not {A, B,C} as desired.

5.10. Tests and benchmarks

We tested Owlready by two means. First, we wrote a set of
190 unit tests. These tests represent about 40% of the volume
of Owlready source code. In particular, there are 9 tests for the
“role-filler as class property” syntax, and 7 for the close_world()
function. Unit tests were used during the development of Owl-
ready.

Second, we tested Owlready on 5 biomedical ontologies of var-
ious sizes (see Table 4 for the list of ontologies). For each ontol-
ogy, we loaded it in Owlready, and we executed a script that sys-
tematically tested all individuals and classes. For each individual,
the script tries to obtain its classes, and to access to the values of
all properties (i.e. it tries all individual-property combinations).
For each class, it tries to obtain its superclasses, its subclasses,
its equivalent classes (including indirect ones), its ancestors, its
descendants, its individuals, and the disjoint and class constructs
referring to the class. The test on the 5 ontologies was performed
after the development of Owlready. It led to the discovery of 3
bugs that were fixed; all of them were discovered when testing
the first ontology.

We also benchmarked Owlready on the 5 ontologies: we mea-
sured the time for loading the ontology, the time for listing all
classes with their superclasses (similarly to lines #11-14 in Figure
5) and the memory consumption. Table 4 shows the results with
Owlready and OWLAPI. Owlready has decent performances, al-
though not as good as OWLAPI. Owlready also uses much less
memory. These differences can be explained by the programming
languages (Java being several times faster than Python) but also
by the different approaches and architectures (OWLAPI works at
the axiom intermediate level, while Owlready works both at the
RDF low level and the object high level).

OWLAPI Owlready Owlready

Language Java Python Python
Storage memory memory disk

OBI (54,991 triples, 3,071 classes)
http://purl.obolibrary.org/obo/obi.owl

Memory 171 Mb 28 Mb 24 Mb
Disk space - - 6 Mb
Loading time 2.4 s 0.7 s 0.9 / 0.01 s
Listing time 0.3 s 0.6 s 0.6 s

Uberon (655,680 triples, 15,036 classes)
http://purl.obolibrary.org/obo/uberon.owl

Memory 605 Mb 122 Mb 63 Mb
Disk space - - 57 Mb
Loading time 8.3 s 9.2 s 9.6 / 0.02 s
Listing time 0.8 s 3.6 s 3.5 s

VTO (1,397,257 triples, 107,138 classes)
http://purl.obolibrary.org/obo/vto.owl

Memory 1,131 Mb 356 Mb 245 Mb
Disk space - - 105 Mb
Loading time 13.1 s 19.5 s 19.7 / 0.01 s
Listing time 3.4 s 16.0 s 16.2 s

GO (1,567,718 triples, 48,535 classes)
http://purl.obolibrary.org/obo/go.owl

Memory 1,123 Mb 330 Mb 157 Mb
Disk space - - 155 Mb
Loading time 14.1 s 21.3 s 22.6 / 0.01 s
Listing time 3.2 s 9.5 s 9.1 s

DRON (4,923,381 triples, 492,577 classes)
http://purl.obolibrary.org/obo/dron.owl

Memory 1,655 Mb 832 Mb 481 Mb
Disk space - - 314 Mb
Loading time 33.1 s 71.8 s 72.3 / 0.02 s
Listing time 10.5 s 183.9 s 183.4 s

Table 4: Benchmark of OWLAPI and Owlready for loading 5 ontologies of various
sizes from local copies, and for listing all classes with their parent classes. For
Owlready with disk storage, the first loading time corresponds to the initial import
in the quadstore, and the second time corresponds to subsequent execution reusing
the same quadstore.

6. Use case: reasoning on drug contraindications

The use case consists in reasoning on contraindications. It il-
lustrates the two features of Owlready that were inspired by the
particularities of medical ontologies: local closed world reason-
ing and the easy definition of “role-filler” on classes using the dot
notation.

This use case took place during the VIIIP research project (In-
tegrated Visualization of Information on Pharmaceutical Innova-
tion), founded by the French drug agency. Today, information
on new drugs is provided to physicians mostly by pharmaceuti-
cal company sales representatives [45, 46]. However, they are
not independent of the companies and thus they may deliver bi-
ased information: a review showed that the physician’s exposure
to information from pharmaceutical companies was associated
with higher prescribing frequency, higher costs, lower prescribing
quality, or no effect, but never with net improvements in prescrib-
ing quality [47].

The objective of the VIIIP project was to design a platform for
the diffusion of independent information on new drugs. As the
independence of experts is sometimes questionable and difficult
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ticagrelor heparin aspirin

hemorrhagic disorder CI 1
acquired hemorrhagic disorder CI 3

constitutive hemorrhagic disorder CI 2 CI 4

ticagrelor heparin aspirin

hemorrhagic disorder CI 1 CI/Ok CI
acquired hemorrhagic disorder CI Ok CI 3

constitutive hemorrhagic disorder CI CI 2 CI 4

Table 5: Examples of contraindications for 3 drugs for thrombosis prevention, as extracted from drug databases or reference documents (top) and as interpreted by an
expert (bottom). CI stands for contraindication, and Ok for the verified absence of contraindications.

to assess, the information of the platform was not based on expert
opinions but rather produced from raw data extracted from drug
databases and official reference texts (Summary of Product Char-
acteristics, SPC). Consequently, the platform proposes tables and
other visualizations comparing the properties of the new drugs
with the properties of the already existing drugs for the same indi-
cation. However, drug properties (contraindications, interactions,
adverse effects, etc) are often expressed at various granularity lev-
els, which impairs the comparison. In this use case, we will focus
on the comparison of the contraindications, i.e. the interactions
that exist between a drug and a disorder5.

Table 5 (top) shows 4 examples of contraindications for 3
drugs. But this table does not allow an easy comparison, be-
cause the 3 disorders (hemorrhagic disorder, acquired hemor-
rhagic disorder, constitutive hemorrhagic disorder) are not inde-
pendent from each other. In fact, although it is not shown in the
table (or specified in drug databases and reference documents),
ticagrelor is a fortiori contraindicated with acquired and constitu-
tive hemorrhagic disorders, because it is contraindicated with all
hemorrhagic disorders (subsumption). Similarly, aspirin is con-
traindicated with hemorrhagic disorders, because it is contraindi-
cated with both acquired and constitutive hemorrhagic disorders
(partition). In addition, if we consider that all contraindications
are known (as a physician usually does), it is possible to deduce
the absence of contraindications, such as acquired hemorrhagic
disorder for heparin. Table 5 (bottom) shows how a medical ex-
pert interprets this small dataset, including deduced contraindica-
tions and absences of contraindications (“Ok” in the table). The
reasoning for determining contraindications and absences of con-
traindications can become complex, even for experts, when the
number of drugs and disorders increases, and when multiple in-
heritance and many partitions are involved. The objective of the
use case is to automatize this reasoning with an ontology.

We first built an ontology of contraindications. Drugs and drug
therapeutic classes were extracted from the French Thériaque
drug database. Disorders and contraindications were extracted
from SPCs and coded manually by an expert pharmacist, to avoid
the errors present in the database (we actually encountered a sur-
prisingly high number of errors in the various drug databases we
tested). Inheritance relations between disorders were obtained
from the ICD10 (International Classification of Diseases, release
10) medical terminology. Partitions were determined using NLP
(Natural Language Processing) methods and then reviewed by the
expert. As stated in section 2.2, drugs and disorders cannot be

5In practice, contraindications can involve disorders but also more general clin-
ical conditions, such as pregnancy or age classes. For the sake of simplicity and
brevity, we will continue to speak about disorders, although clinical conditions
would be a more appropriate term from a medical point of view.

represented by individuals, and need to be modeled as classes in
order to allow is-a relations between them. We also defined a
Contraindication class, related to both drugs and disorders. The
resulting ontology belongs to the ALCOI family of Description
Logics. Figure 8 (top) shows an excerpt of this ontology corre-
sponding to the examples of Table 5.

For each drug, contraindications were manually extracted from
reference documents (corresponding to the Table 5, top). They
were then asserted in the ontology using Owlready, in five steps
(see example in Figure 8, bottom, corresponding to Table 5):

1. Create an individual for each contraindication.
2. Relate each drug to its contraindications.
3. Relate each disorder to its contraindications.
4. Assert that everything is known about contraindications.
5. Assert that everything is known about drugs.

Step 1 consists in creating individuals and presents no difficul-
ties.

Step 2 and 3 consist in creating “role-filler” constraints on
classes (drugs and disorders) and existential constraints on in-
dividuals (contraindications). This can be achieved easily using
the dot notation with the syntax we proposed for “role-filler”:
“Class.property = values” (see section 5.3).

Step 4 and 5 consist in asserting that everything is known on
contraindications and drugs (i.e. the reasoner should not make
hypothesis involving unknown contraindications). This can be
achieved easily by calling the close_world() function on the Con-
traindication and the Drug classes (which recursively close all in-
stances of Contraindication and all subclasses of Drug).

On the contrary, the Disorder class must remain in open-world
if we want to deduce contraindications through the reasoning (us-
ing subsumption and partitions). Therefore, the reasoning occurs
in a local closed world.

The two following classes can be used to classify the disorders
with regard to aspirin:

DisorderContraindicatingAspirin
≡ Disorder u ∃contraindicates.(∃has_ f or_drug.Aspirin)

DisorderOkWithAspirin
≡ Disorder u ¬∃contraindicates.(∃has_ f or_drug.Aspirin)

Similar classes can be defined for the other drugs. After run-
ning the reasoner, disorders will be automatically classified ac-
cording to these defined classes. All disorders contraindicating
aspirin will be asserted as subclasses of DisorderContraindicatin-
gAspirin (“CI” in table 5, bottom), all disorders for which the
absence of contraindications with aspirin can be proved will be
asserted as subclasses of DisorderOkWithAspirin (“Ok” in the
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Ontology

Drug v >

Disorder v >

Contraindication v >

Disorder,Drug,Contraindication are pairwise dis joint

has_ f or_drug domain Contraindication

has_ f or_drug range Drug

has_ f or_disorder domain Contraindication

has_ f or_disorder range Disorder

contraindicated_with ≡ has_ f or_drug−

contraindicates ≡ has_ f or_disorder−

HemorrhagicDisorder v Disorder

AcquiredHemorrhagicDisorder v HemorrhagicDisorder

ConstitutiveHemorrhagicDisorder v HemorrhagicDisorder

AcquiredHemorrhagicDisorder,

ConstitutiveHemorrhagicDisorder are pairwise dis joint

HemorrhagicDisorder v AcquiredHemorrhagicDisorder

tConstitutiveHemorrhagicDisorder

T icagrelor v Drug

Heparin v Drug

Aspirin v Drug

Ticagrelor,Heparin, Aspirin are pairwise dis joint

(1)
Python program
ci1 = Contraindication()
ci2 = Contraindication()
ci3 = Contraindication()

ci4 = Contraindication()

Corresponding assertions in formal notation
Contraindication(ci1)
Contraindication(ci2)
Contraindication(ci3)
Contraindication(ci4)

(2) Ticagrelor.contraindicated_with = [ci1]

Heparin.contraindicated_with = [ci2]

Aspirin.contraindicated_with = [ci3, ci4]

Ticagrelor v ∃contraindicated_with.{ci1}
(∃has_ f or_drug.Ticagrelor)(ci1)
Heparin v ∃contraindicated_with.{ci2}
(∃has_ f or_drug.Heparin)(ci2)
Aspirin v ∃contraindicated_with.{ci3}
(∃has_ f or_drug.Aspirin)(ci3)
Aspirin v ∃contraindicated_with.{ci4}
(∃has_ f or_drug.Aspirin)(ci4)

(3) HemorrhagicDisorder.contraindicates = [ci1]

AcquiredHemorrhagicDisorder.contraindicates
= [ci3]

ConstitutiveHemorrhagicDisorder.contraindicates

= [ci2, ci4]

HemorrhagicDisorder v ∃contraindicates.{ci1}
(∃has_ f or_disorder.HemorrhagicDisorder)(ci1)
AcquiredHemorrhagicDisorder v ∃contraindicates.{ci3}
(∃has_ f or_disorder.AcquiredHemorrhagicDisorder)(ci3)
ConstitutiveHemorrhagicDisorder v ∃contraindicates.{ci2}
(∃has_ f or_disorder.ConstitutiveHemorrhagicDisorder)(ci2)
ConstitutiveHemorrhagicDisorder v ∃contraindicates.{ci4}
(∃has_ f or_disorder.ConstitutiveHemorrhagicDisorder)(ci4)

(4) close_world(Contraindication) (∀has_ f or_drug.Ticagrelor)(ci1)
(∀has_ f or_disorder.HemorrhagicDisorder)(ci1)
(∀has_ f or_drug.Heparin)(ci2)
(∀has_ f or_disorder.ConstitutiveHemorrhagicDisorder)(ci2)
(∀has_ f or_drug.Aspirin)(ci3)
(∀has_ f or_disorder.AcquiredHemorrhagicDisorder)(ci3)
(∀has_ f or_drug.Aspirin)(ci4)
(∀has_ f or_disorder.ConstitutiveHemorrhagicDisorder)(ci4)
Contraindication v {ci1, ci2, ci3, ci4}

(5) close_world(Drug) Ticagrelor v ∀contraindicated_with.{ci1}
Heparin v ∀contraindicated_with.{ci2}
Aspirin v ∀contraindicated_with.{ci3, ci4}

Figure 8: The ontology for the use case (top) and the Python + Owlready program (bottom) for creating the contraindications of table 5, with the corresponding assertions
in DLs. The numbers on the left correspond to the steps described in the text.
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Dataset Example Vitaros® Pylera® Ciloxan® Antarene codeine®

Number of drugs 3 8 4 9 5
Number of disorders 3 29 17 14 26
Number of asserted contraindications 4 70 30 42 50
Number of partitions 1 9 4 1 8
Number of disjoints (involving disorders) 1 640 166 82 499
Number of inferences:

- contraindications 3 23 9 13 7
- absences of contraindications 1 23 4 0 12

Table 6: Metrics and number of inferences for the use case example and for four datasets.

table), and all disorders that are contraindicated in some situa-
tions but not all are subclasses of neither of these two classes
(“CI/Ok” in the table). The automatic classification can be per-
formed in Python, and then the issubclass() standard function can
be used to test if a class is a subclass of another, e.g. issub-
class(HemorrhagicDisorder, DisorderOkWithAspirin) would re-
turn False.

The supplementary computer code “contraindications.txt” in-
cludes the entire source code for the example of the use case.

[Insert Supplementary Computer Code 2 here]

The example we described was simple, involving only three
drugs, three disorders and four contraindications. However, in
practice, drugs are much more complex. Table 6 shows the met-
rics for the example and for four datasets that we worked on in the
VIIIP project. Each dataset corresponds to a new drug recently
marketed in France (Vitaros®, Pylera®, Ciloxan® and Antarene
codeine®) and also includes several comparator drugs (i.e. al-
ready existent drugs with the same indication). Disorders were
coded using ICD10 whenever possible. The table also indicates
the number of inferences obtained for each dataset.

In conclusion, this use case illustrates the interest of the high-
level syntax proposed by OlwReady for local closed world rea-
soning and for defining role-filler constructs and existential con-
straints, as well as its ability to deal with classes in a simple way,
including the automatic classification of individuals and classes.
In Figure 8 (bottom), the Python program is clearly shorter and
easier to read and understand than the corresponding assertions in
DLs notation.

A more advanced program can take full advantage of the possi-
bilities offered by Python for querying drug databases or generat-
ing graphical interfaces for data entering (before creating the con-
traindications) and for generating an HTML website displaying
tables for comparing the contraindications (after the reasoning).
In a subsequent work, we also used visual analytics for facilitat-
ing the comparison of drug properties [48].

7. Discussion

7.1. The proposed syntax

The use of the dot notation allows easy access to the content
of an ontology, as if the ontology was a Python module. It is
possible to use the entities in the ontology as if they were Python
classes and objects. This permits reusing existing Python libraries
with the individuals in the ontology instead of Python objects. In
addition, thanks to the “role-fillers as class attributes” syntax, the
classes of the ontology can also be used as Python objects.

Arguably, the syntax of Owlready is more concise than the one
of OWLAPI (see Table 3) and allows a shorter source code (in

about a 1/3 ratio). OWLAPI allows the manipulation of each ax-
iom of the ontology individually; while this can be interesting in
some specific situations, it is often not a requirement. On the
contrary, the proposed ontology-oriented programming syntax is
shorter and easier to use, and satisfies the needs of most applica-
tions.

Using Owlready, the simple definition of an ontology (without
complex logical expressions such as existential and universal con-
straints) is almost as easy as the creation of a class hierarchy in a
programming language. It can thus be done by any developer.
Then, an ontologist can add constraints in an OWL file, e.g. using
the Protégé editor. Finally, Owlready is able to blend the object
model with the ontology in a single model.

Owlready can also be used as a “glue” for accessing easily to
an ontology in Python and then for connecting it to other compo-
nents (e.g. a website). It has been used by Master students (M1
in biomedical informatics) that had almost no background knowl-
edge in ontology and DLs, providing them an easy and object-
oriented access to the entities in the ontology.

7.2. Local closed world reasoning

In section 3.2, we reviewed the various approaches for local
closed world reasoning in the literature. All of them focused
on non-monotonic reasoning, which is a more general and big-
ger problem than local closed world reasoning. The various ap-
proaches modified or extended the syntax and the semantics of
DLs, which may impair their compatibility with OWL and OWL-
based tools.

In this paper, we took a different approach for local closed
world reasoning. This approach is very pragmatic and simple,
following the “keep it simple stupid” advice from Krishnadhi
[40]. It consisted in adding universal constraints to the ontology.
Our close_world() function acts like a kind of “preprocessor” for
OWL. This approach is 100% compatible with OWL and OWL-
based tools, including the HermiT reasoner.

The proposed close_world() function actually closes indi-
viduals, classes (their list of individuals is limited to the as-
serted one), and their existential constraints (including role-
filler). However, it does not close the properties themselves.
For example, in the use case (section 6), we constrained the
has_for_drug/contraindicated_with property for the four con-
traindications and the three Drug subclasses; however, we did
not restrict this property generally, i.e. we do not prevent other
relations involving other individuals (although this would be in-
consistent, due to the range and domain of the property, and since
close_world() asserted that there was no other contraindication
than the four we defined). Closing properties is known to increase
the complexity of the reasoning problem, and even lead to unde-
cidability if not limited to a fixed number of properties [49].
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Goldman
2003 [28]

Kalyanpur
2004 [26]

Koide
2005 [24]

Babik
2006 [30]

Stevenson
2011 [32]

Owlready

Type static static dynamic dynamic semi-dynamic dynamic
Language C# Java CommonLisp Python Java Python
Classification of individuals no no yes ? yes yes
Classification of classes no no ? ? no yes
Methods in OWL classes no no ? no no yes
Syntax for OWL class expressions no no yes no ? yes
Syntax for “role-fillers” no no no no no yes
Local closed world reasoning no no no no no yes

Table 7: Comparison of Owlready with other ontology-oriented programming approaches.

Our proposal has two limits. First, the “closed” status of a class
or an individual is not asserted in the ontology, but simply trans-
lated into lower-level constraints. Consequently, if the ontology
is modified later (e.g. if we create a fifth contraindication), it will
become inconsistent. Therefore, close_world() must be called()
after building the ontology (typically just before reasoning).

Second, the algorithm we propose for close_world() may be
too permissive when inheritance is involved. For example, let us
consider the following ontology: B v A, A v ∃R.C, B v ∃R.D
(where A, B, C and D are classes and R is a property). Calling
close_world(B) produces the following constraint: B v ∀R.(C t
D). However, if D v C, this would probably not be the result
expected by the user, who possibly intended B v ∀R.D. In those
circumstances, an improved version of the close_world() function
might test whether it is already known that D v C, and produce
more specific constraints.

Despite these limits, the simple close_world() function has
proved to be useful in several situations, such as in the presented
use case.

7.3. Comparison with previous ontology-oriented programming
approaches

In section 3, we reviewed the existing approaches for ontology-
oriented programming in the literature. Table 7 compares these
approaches with Owlready. Owlready appears to be one of the
most advanced approaches. In particular, it is able to perform au-
tomatic classification not only on individuals but also on classes,
it is able to perform local closed world reasoning and it proposes
a high-level syntax for defining “role-filler” constraints. As ex-
plained previously in section 2, these points are crucial when
working on medical ontologies, but they may also be useful in
other domains.

8. Conclusion and perspectives

In this paper, we first identified two difficulties encountered
when working on medical ontologies. We reviewed the existing
approaches for ontology programming interface, and we showed
that none of them proposed a simple solution to these difficulties.
We compared object models with ontologies, we found many sim-
ilarities but we also highlighted some differences. Then, we pre-
sented the Owlready module for ontology-oriented programming
in Python. We described the general architecture of the mod-
ule, the mapping between the object model and the ontology, the
syntax (including a specific syntax for manipulating classes and
role-filler constraints) and the reasoning capabilities (including a
simple algorithm for performing local closed world reasoning).

We provided two examples with Gene Ontology. Finally, we pre-
sented a use case: a medical application for comparing contraindi-
cations. It illustrated the use of the specific syntax for manipulat-
ing classes and role-fillers, and local closed world reasoning.

There is a growing community of Python programmers in biol-
ogy, bioinformatics and the medical field. Ontologies are widely
used in these domains, but there was almost no solution for ac-
cessing OWL ontologies in Python before Owlready. In the
biomedical domain, Owlready has already been used by other re-
searchers for interfacing natural language processing (NLP) and
verbalization tools with ontologies [50, 51]. It has also been em-
ployed for semantic reasoning on pain severity extracted from
clinical records [52]. Beyond medical informatics, Owlready has
been used for building an ontology-based knowledge system for
helicopter transmission design [53].

A first perspective of this work is to improve Owlready with
regard to properties and sub-properties. For instance, the asserted
values of a property could be automatically updated when the
value of a sub-property is asserted, similarly to what we did for in-
verse properties. A second perspective is to include in Owlready
additional non-monotonic reasoning features, such as defeasible
inheritance. A third perspective is to add support for vagueness
in Owlready, in order to support fuzzy-ontology. Two approaches
have been proposed for dealing with vagueness in ontologies: the
development of fuzzy extensions to OWL based on new DLs [54],
and the use of the current OWL standard using specific proce-
dures (e.g. using annotations to specify fuzziness) [55]. Both
approaches could be considered for integration in Owlready. A
fourth perspective is to connect Owlready to graphical user inter-
faces, in order to generate automatically dialog boxes for editing
the individuals of an ontology, or even the classes (since, as we
explained, many medical concepts must actually be modeled with
classes rather than individuals).
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