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Distributed Object-Oriented Design of Autonomous
Control Systems for Connected Vehicle Platoons

Sebti Mouelhi
ECE Paris — Ecole d’ingénieurs
F75015, Paris, France
Email: sebti.mouelhi @ece.fr

Abstract—The contribution of this paper is articulated around
a new software design approach of autonomous control systems
for connected vehicle platoons. Our control system is distributed
and real-time based on object-oriented component-based method
of design that brakes with the industrial traditions subject to
cyclic OS-free approaches. We illustrate our design by relevant
case studies of the longitudinal speed control widely studied in
industrial and academic research around automotive platooning.
Qur software is mainly implemented using the Ada standard of
programming (in particular the annexes D and E of real-time and
distributed systems). The distribution in our software is managed
by the versatile middleware PolyORB. The control scenarios and
communication aspects covered by the case studies are animated
by wheeled robot prototypes commanded by single-board ARM
Cortex computers under real-time Linux kernels.

Index Terms—Embedded systems, distributed architectures,
object-oriented components, real-time, smart automotive systems,
vehicle platooning.

I. INTRODUCTION

The impact of massive usage of cars in terms of traffic jams
and air pollution makes the mastery of automotive systems of a
paramount importance and a hot topic in today’s politics. Over
the last decades, several solutions have been proposed and
shaped. They range from increasing road capacities by creating
more roads and adopting smart circulation modalities (platoon-
ing, green wave, smart roads, etc) to the encouragement of
car sharing and the choice of public and electric transport [1].
Most of these solutions have shown positive affects but have
not been able to solve congestion problems. In fact, the traffic
jams have become more severe because of the growing number
of vehicles and hence, more drastic and innovative solutions
are needed. Few years ago, embedded electronics and software
advances are transforming progressively computers to become
ambient in human mobility which renders transport systems
more advanced. One of the innovations are Advanced Driver
Assistance Systems (ADAS) that aim to improve efficiency,
safety and comfort using advanced information and commu-
nication technologies [2]. In this context, the industrial actors
of automotive systems are becoming increasingly interested
in embedding sensors and actuators massively in cars to make
them sensitive to their external environment circumstances and
intelligent by allowing them to take decisions on behalf of or
to assist the driver for safer and less expensive journey and
more fluid and nature-friendly traffic.
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However, current mature industrial products are limited by
the driver able to overrule the system. To make vehicles highly
cooperative, a system that automates human tasks with high
performance electronic and networking counterparts would be
ultimate. For example, enabling data exchange and automation
in vehicle platooning systems would allow more reliable and
faster control of circulation and smaller inter-vehicle headway
which increase road capacities and reduce energy consump-
tion. Semi-autonomous platooning control systems have been
a lively research topic for decades. A strong theoretical focus
already exists on the longitudinal and lateral control [3] and
string stability [4].

As a first contribution, we propose an automatic process to
control the longitudinal speed and ensure collision avoidance
in vehicle platoons. Two simple scenarios are presented and
studied in order to illustrate the speed control system: i) the
tail-merging of a new connected vehicle in a platoon already
in circulation, and ii) the propagation of the braking alarm
to followers by the leader’s detection of obstacles. As said
earlier, many theoretical contributions were proposed to deal
with the physical aspects of longitudinal and lateral control and
string stability in vehicle platooning. Our approach to deal with
the longitudinal speed control is purely algorithmic and takes
advantage from Vehicle-To-Everything (V2X) communication
technologies recently being used in automotive smart systems
under several forms and network support and standards like
the IEEE 802.11p [5]. We made the choice to not rely on
rigorous physical approaches of analysis and simulation of the
control behavior because they require a thorough knowledge of
different parameters (like vehicles masses, friction errors, loss
of energy, etc) difficult to consider in robot prototypes. A deep
investigation of these issues quickly derails us from the scope
of our work rather oriented towards the software engineering
issues in Intelligent Transportation Systems (ITS).

On the other hand, automation is clearly critical in this kind
of systems: an equipment failure or malfunction may result in
catastrophic outcomes and harms on people, environment and
properties. Safety is strictly required face to this emergence.
We talk about High Integrity Safety-Critical (HISC) systems:
the different parts of such systems are networked and coordi-
nated with an intelligent software that understands and learns
the state of its environment and takes sensible decisions under
hard and/or soft real-time constraints.



In industry, the software layer of HISC systems is built using
component-based cyclic reactive OS-free approaches [6]—[8].
Safety requirements are checked using the V-Model’s testing
techniques, posterior formal proof, or prior incremental formal
design. The classic test is out of step compared to the size and
complexity of large-scale applications. Formal methods are
usually used to check low level software requirements on the
software components “separately” while nearly ignoring high
level system requirements (covering in part the interoperability
of components and their composite behavior) relevant to reach
the required high level of integrity.

The second main contribution of this work is to demonstrate
that the Distributed Object-Oriented Component-Based Design
(DOOCBD) is appropriate to build HISC embedded software,
scalable in concrete implementation, and can help solve the
problems above. Object-oriented design has often been a hard
sell to manufacturers of HISC systems in many areas like au-
tomotive, railway, avionic, etc. Standards like [9], [10] require
extensive verification processes and sometimes hard real-time
difficult to carry on by the dynamic aspect and flexibility of
object-oriented paradigms (polymorphism, dynamic dispatch,
late binding, overriding, etc). Distribution is also penalizing
because of its semantics (message passing, remote dispatch
and procedure call, etc). The Ada ISO standard can decidedly
settle these disadvantages. It has built-in strong typed pro-
gramming language with powerful support for explicit tasking
and concurrency, protected objects, design-by-contracts [11],
compiler directives (pragmas), and other features allowing the
developers to exploit the object-oriented assets while avoiding
vulnerabilities and ensuring real-time. Ada is also provided
with powerful compilers allowing the detection of run-time
errors which improves safety and maintainability [12].

We present a software architecture of generic speed control
in vehicle platoons using a DOOCBD approach. An object-
oriented component is a unit of a third-party composition with
environment-dependent interfaces provided and required [13]
and may exhibit progressive behavior. By allowing distribution
and object-orientation, component instances can communicate
while being deployed in distant sub-systems. Unlike the cyclic
reactive approaches, their interaction and data exchange are
easy to trace and debug in the components implementation.
Besides, they can be checked early during the design phase by
using formal techniques for example. Our approach is flexible
and suitable for the design of HISC communicating systems in
general and ensure both safety and reliability for sub-systems
individually but also for their interactive behavior.

Our design is implemented using the annexes D [14] and
E [15] of the Ada Reference Manual resp. of real-time and
distributed systems. The Annex E (abbreviated DSA) provides
support for efficient distribution by making the middleware
layer completely transparent and the development more easier.
We opt for the middleware PolyORB [16], [17] maintained
by AdaCore to deploy and animate the implementation. It
supports many distribution models including CORBA [18] and
DSA but also the Ravenscar profile [19] (a restricted tasking
Ada subset used for hard real-time).

The platooning scenarios provided were tested on mock-up
wheeled robots controlled by Arduino-based boards enslaved
by ARM Cortex-A single-board computers on which our soft-
ware distributed application is deployed and executed under
real-time (Preempt_RT) Linux kernels.

In Section II, we provide a brief survey about the common
implementations of vehicle platooning systems and some of
their underlying control problems. In Section III, we present
the platooning case study scenarios considered in this paper.
They are recalled gradually in the next sections to illustrate
our contributions. In Section IV, we introduce our concept of
object-oriented components and interoperability and explain
with details our distributed software design of speed control in
vehicle platoons. The Ada implementation, robot prototyping,
distributed deployment, real-time considerations, and finally
testing results are given in Section V. Conclusion discussions,
related works and some of the future directions of our work
are provided in Section VI

II. VEHICLE PLATOONING, A BRIEF SURVEY

The concept of vehicle platooning aims to increase roads
capacities and traffic fluidity. Vehicles are organized in tightly
controlled platoons that operate close together. A highway for
example can accommodate more vehicles when organized as
platoons compared to classic human driving conditions [1].

Adaptive Cruise Control (ACC) systems are well-known in
vehicle platooning systems and currently available in many of
upscale vehicles. A vehicle with ACC is commonly equipped
with front radars. When a preceding vehicle is detected by
these radars, the ACC system adjusts the vehicle’s velocity in
order to maintain a fixed time-gap to the preceding vehicle.
This all happens without the driver’s intervention. The follow-
up is the Cooperative Adaptive Cruise Control (CACC). This
concept augments ACC with wireless communication capabil-
ities and enables a closer inter-vehicular cooperation which
improves the traffic flow even more. Wireless communication
allows vehicles to extend view beyond the line of sight of the
front radars and allows faster transmission of speed updates
between vehicles. However, in both kinds of system, the driver
is partly responsible for the vehicle’s operation [20].

By adopting an Autonomous Connected Vehicle Platooning
(ACVP) concept, control becomes fully automated, driver-free
and cooperative. The Automated Highway Systems (AHS) is a
variant of ACVP systems and has been under research by the
Program of Advanced Technology for Highway (PATH) for
years [21], [22]. It aims to make vehicles in highways guided
autonomously to their destination under both controlled and
optimized traffic flow for maximum efficiency and safety.

Platooning control functions

The main functions to control the behavior of vehicles in
a platoon are mostly: longitudinal and lateral control, string
stability, lane tracking and changing, maneuver coordination
for platoon formation and split. We provide in the paragraphs
below a brief description of these control functions and some
of their related research contributions.



Instant ¢, Instant t; > ¢,

.

¥

1(1((.@)

Va2 (3)

Instant ¢, > t;

-

V

o

l(l{ldcr)

:(©), =
<

V3

Fig. 1. Tail-merging in platoon already in circulation; step (1): V3 requests the references of vehicles covered by BS installed on the platoon’s leader vehicle
(V1); step (2): BS sends back to V3 the references of V1 and V2; step (3): V3 tail-merges in the platoon (already composed of V1 and V2) and accelerates
to catch up with V2; step (4): V3 controls (C) its velocity based on that of V2 in order to keep a minimal safety distance and avoid collision between them.

The longitudinal speed control [3], [23] consists in adapting
the vehicle’s velocity compared to that of the preceding one
using the powertrain and brakes. Implementations of longitudi-
nal control are also highly dependent on the headway from the
preceding vehicle. Front-radar and image-processing sensors
are typically used to get the measurements of these inputs. It
should provide comfortable ride for passengers and be accurate
so that safety can be guaranteed.

The lateral control [3], [24] consists in keeping the vehicle
in the middle of the road (or the lane) by tracking its median
trajectory. Designing such functionality involves a trade-off
between the ride quality and the system accuracy, just like for
longitudinal control. The challenges handled in the design of
lateral control systems include high-speed operation using a
purely “look-down” sensor system without transitional lateral
position measurements. It is also concerned with lane changing
from the current lane to an adjacent one. This aspect of lateral
control is considered to be the most challenging as it involves
more vehicle dynamics, changes of the radar targets but also
more coordination and communication between vehicles.

The string stability [4] ensures that range errors decrease by
propagation along the vehicle stream. It is widely known that
when the transfer function from the range error of a vehicle
in the platoon to that of its follower has a magnitude value
less than 1, string stability is guaranteed. V2X communication
was shown to be necessary in order to achieve string stability
with constant inter-vehicle spacing.

Platoon formation, also called joining or merging, is the
term used for a situation where two platoons (or a platoon
and one or several vehicles) are combined into one platoon.
Platoon split is however the situation where one or several ve-
hicles leave the platoon. Communication is obviously required
in such scenarios to ensure safety and stability.

III. PLATOON CASE STUDIES

Sensing technologies like on-board sensors, cameras, radar,
and lidar devices are mature nowadays and adopted by many
car manufacturers. They are well-suited for ITS in general and
ADAS in particular by allowing the drivers to be warned from
impending dangers so that they take corrective actions, or the
system to intervene on their behalf autonomously.

While these technologies are highly beneficial, our proposal
relies on V2X communication technologies based on forceful
wireless exchange of information between connected vehicles
and infrastructure devices. They represent a major upgrade in
improving passengers comfort, preventing dangers, but also
they promote a smooth transition to fully automated autos.
We consider two common control scenarios in ACVP systems
based on V2X communications to illustrate our approach of
software design detailed in depth in the next sections: 1) the
tail-merging of a new connected vehicle in a platoon already
in circulation, and 2) the propagation of braking alarms to
followers when the leader vehicle detects an obstacle.

We consider three connected vehicles V1, V2 and V3. V1
and V2 are already forming a platoon of which V1 is the
leader. At the instant ¢y of Fig. 1 (left), in order to tail-merge
in the platoon, V3 sends its remote reference by wireless
to a mobile base station (BS) installed on the leader when
entering its coverage area (step 1). In turn, BS sends back the
references of V1 and V2 to V3 (step 2). We talk here about
Vehicle-To-Base (V2B) communication. Once connection is
established and the references of V1 and V2 are acquired, V3
can consequently communicate directly with each of them.
We point here that the coverage area of BS should be larger
than that of vehicles to detect the approach of new merging
vehicles as soon as possible. At t; > ty of Fig. 1 (middle),
V3 accelerates briskly to catch up with V2 (step 3). The front-
radars of V3 and V2 are clearly used to compute the distances
to their predecessors resp. V2 and V1. By approaching V2 at
to > t1 of Fig. 1 (right), V3 controls velocity so that collision
with V2 is avoided by respecting a prefixed minimal inter
safe distance. Besides, stability should be guaranteed for the
platoon by preventing shake-up in case where a vehicle does
not respect the safety distance to its predecessor and brakes
prematurely (step 4). The speed control of a vehicle is defined
based on the velocity of its predecessor communicated by
Vehicle-To-Vehicle (V2V) under real-time determinism.

We propose an intuitive longitudinal speed control process,
pragmatic and easy to implement. As said before, we abandon
mathematical control approaches since they require a deep
consideration of the system parameters in software design,
rather considered to be the central focus of our work.
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Fig. 2. Longitudinal speed control.

The relative distance between a vehicle and its predecessor
is subdivided into three zones as schematized in Fig. 2:

o Safety zone (SZ): this is the area behind the predecessor
vehicle between its rear position p, and the limit the
successor shall not cross, that is ps = p,, — ds with ds is
a constant safety distance;

o Control zone (CZ): this is the area beyond SZ between
ps and the position from which the successor starts to
stabilize gradually its regime V so that the safety distance
ds is maintained between them, that is p. = p; — os with
os is a relative distance called the stabilization offset;

o Acceleration zone (AZ): being in this zone, the successor
is still far from the predecessor and has a leeway to
accelerate briskly and reach CZ quickly.

When the successor’s front position X exceeds p., it requests,
at periodic instants, the predecessor’s velocity V), (constant in
Fig. 2) which in turn responds by sending the information
before the next request. This is critical: the exchange delay
should be deterministic to guarantee a safe and stable behavior.
The successor adapts accordingly its acceleration so that both
vehicles roll at the same velocity. The stabilization offset os
shall be large enough to prevent bodywork shake-up during
speed control. Shake-up occurs when the successor enters SZ
while it is reducing velocity to align progressively with that
of its predecessor, braking is triggered prematurely.
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Fig. 3. Platoon obstacle handling: the steps (1) and (2) represent the braking
alarm (B) propagation to the followers by the leader’s detection of the obstacle.

The second control scenario is depicted in Fig. 3. When the
leader detects an obstacle, it brakes immediately and alerts
(by V2V) V2 to perform an emergency brake and propagate
alert to V3. These situations are unpredictable and handled as
aperiodic events in the control design (cf. Section IV).

IV. DESIGN APPROACH

In this section, we present a DOOCBD design approach
to handle V2X communications between vehicles in ACVP
systems. Before presenting our software design approach, we
start first by providing a preliminary description of distributed
systems and object-oriented components.

A. Distributed systems and object-oriented components

A distributed system is a set of distant computing nodes
connected by a network. Each node incorporates one or several
distributed partitions interacting locally within the node or
remotely with partitions instantiated in other nodes. Each par-
tition is a set of live software components. They may interact
locally within the partition or remotely with components of
other partitions in the same or distant nodes.

Component
(Attributes )
i fu
Required methods

(private)

(callable from references to Output interfaces
e

&
T1s--sTm  external local or remote <€ {
component instances)

Provided methods

Input interfaces

A1, ...; A (public and private) L —-1C0
<—
Jobs
315 ey 471 (behavioral periodic jobs) memmemt
J

Fig. 4. Abstract representation of an object-oriented component.

A component is typically a description of an open entity
interacting with others composing its environment. It accepts
inputs provided by the environment, generates some outputs
(or provides some services) and may express activities. In
DOOCBD, a component is object-oriented consisting of a set
of attributes and a set of named services and jobs. Concretely, a
service is a method callable locally by the component (private
or public) or by its environment (only public), and may require
internal and external methods. A job (if defined) represents the
actions and reactions impacting the component’s visible state,
and may also require internal or external methods (cf. Fig. 4).
Inputs to a component are the parameters passed as arguments
to its provided methods and outputs are their return parameters
or raised exceptions and errors.

We start by defining the concept of a component context M
which is a collection of object-oriented components. Given a
component M € M, at run-time an instance ¢ of M (c :: M)
is an active running entity of the component M. It reserves
resources (memory) for attributes, provides methods for open
use, requires methods from components in M, and exhibits a
progressive behavior by running jobs. A distributed system is
seen as a collection of instance sets, each of them corresponds
to a separate node or partition. A given node or partition may
contain several instances of the same component and a given
component may be instantiated in several nodes or partitions.
From now on, we use the term “component” (for short) instead
of object-oriented component.



Vehicle

Attributes A Speed_Controller
i N
- identifier : Tnteger Attributes
- brake_alarm : Boolean - speed_tequest, acceleration_command : Float Sensor
- velocity, acceleration : Float o i A
References Required methods
References Required methods - distance_to_obstacle : Float
a it | sms = Sensor + Get Distance To Obstacle f———(— — — — —
st o Sl + Get Acceleration Command | ——(— — — — — IRl B __ g : References Required methods
——————————————————————— & | spd = Speedometes } Get_Velocity (- &
. I @ | spds Speedometer Ly = (No references) (No required methods)
spd i1 Speedometer + Get_Velocity —C- - () e = |
S [Provided methods
=== ===qi==========o | | <E | enl Provided methods
bs :: @Base_Station +@ Register_Vehicle X + Get_Acceleration_Command (— acc : Float) | BX
(- Oo— 5% O—— + GetDistance_To_Obstacle (- dist : Float
+@ Get_Remote_Vehicles “ I # Erroncous_Acceleration & e ( it )
5 Erroncous Distance
——————————————————————— | ! L e e e = = — — = IR
platoon : (Integer, @Vehicle) map | +@ Get_Velocity ! - Compute_Acceleration (dt : Float — acc : Float) ! Jobs
T -) +@ Trigger_Brake_Alarm ;! !
| | | Jobs | ¢ Update (period : Integer)
Provided methods | . | ;N J
| ! | 2 Dependent_Control (period : Integer, pvel : Float) |
! + Get._Velocity (— vl : Float) # Unknown_Velocity [ 2 Autonomous_Control (period : Integer) |
+ Trigger Brake_Alarm oy . J |
vev | T o - |
!
Brake ! |
I -
Jobs | ! |
!
¢ Drive (period : Integer) ! | :
- J | Speedometer
P! Zl P Odometer
, e Attributes A = ~
2l )
| = - velocity, distance : Float
| g - absolute_distance : Float
: ol Required methods
Base_Station } 19 References d References Required methods
(Attributes A P! =N odo :: Odometer + Get Traveled Distance |———(— — — — — A (00 efame=) (No required methods)
- o No references 1
- connected_vehicles : (Integer, @Vehicle) map [ (% | Provided methods 2 T
_ A a | rovided methods
References Required methods I '=>»O— + Get_Velocity (= vel : Float) # Erroncous_Velocity 5 + E A e (o (5 - ]
R I g ot od Distance s
No references No required methods Erroneous Distance
(No refe ) ( 8 ) | - Compute_Velocity (dt : Integer — vel : Float) QO #
Provided methods ! e Jobs
I Jobs S
+ Register_Vehicle (id : Integer, veh : @Vehicle 1 < ¢ Update (period : Integer
“ N b V2B 1 Update (period : Tnteger) 2 \ pdate (p eer) )
# Tllegal_Vehicle_Identifier | N Y, 2z
+ Get_Remote_Vehicles (— ngbs : (Integer,@Vehicle) map) O«--- /A
# No_Connccted Vehicles
Jobs
(No jobs)
- J

Fig. 5. Component static UML-like architecture.

Let’s X be the universe of variables and consider X C X,
we define by T[z] the type of x € X i.e., x:T[z]. We define
a component M € M by a tuple (Far, Pas, Ins> Erts Rvr)
where F)y is the set of its attributes f:T[f], Pas is the set of
its provided methods, J); is the set of its jobs, £y is a set of
references to instances of components in M, and R, is the
set of its required methods. The set Pj; of provided methods
is split into 73& and P;, resp. of public and private provided
methods. We deduce obviously from the above definitions that
Ry C {b€Pl, (VN € M(M),c € Ey and ¢ :: N)} where
M(M) = {N € M, P, # 0} is the contextual environment
of the component M under M.

The input signature of a method a € Py U Rjs is written
by a(i:T[i1], ..., ix:T[ig]—01:T[01], ..., 0= T[or])#(€1, ..., €m)
where {i1,...,4;} and {o1,...,0;} are resp. the sets of input
and return parameters of a, and {eq,...,e,,} is the set of
exceptions throwable by a. Methods with no return parameters
are called void methods. The signature of a job b € Jys is
written b(j1:T[j1], .., jp:Tjp]) Where {j1,...,Jp} is the set of
input parameters of b. Absence of input/return parameters or
exceptions is represented by a void.

Jobs are periodic stateful tasks evolving in time i.e., they
represent the component’s progressive operation within its
environment while updating the attributes by sequential com-
putations and method invocations. Methods are stateless one-
shot programs invoked if needed by both local and remote
environments. No evolving behavior is expected by method
executions. Inter nodes and partitions method invocations are
handled concurrently as aperiodic events with other tasks.

B. Software architecture

The static architecture shown in Fig. 5 presents the software
components interfacing with various electronic control devices
embedded in the connected vehicles of our ACVP system. The
implementation of control scenarios of Section III is based on
that architecture. We consider a component context composed
of six components: Vehicle, Base_Station, Speed_Controller,
Speedometer, Odometer and Sensor.

The component Speedometer calculates the attribute velocity
of a vehicle by computing % where At is time period and
Ad is the relative distance traveled during At. The public
(+) method Get_Traveled_Distance, provided by Odometer via
the interface Distance_Computer, returns the current traveled
absolute_distance since the beginning of the journey. At each
period At of the job () Update, Ad is calculated by subtract-
ing form the current absolute distance, the last measured one
(attribute distance). Second, the current velocity (attribute) is
the result of computing 2—‘:. Both of the operations are grouped
in the private method Compute_Velocity (-). It provides the
public method Ger_Velocity (that returns the current value of
velocity) to its contextual environment via the input interface
Speed_Computer which is both required by the components
Speed_Controller and Vehicle according to Fig. 5.

The component Sensor is the software facet of front-radars.
It computes the distance separating the vehicle to the nearest
front obstacle (attribute distance_to_obstacle). It provides the
method Get_Distance_To_Obstacle to its contextual environ-
ment through the interface Sensing_Engine.



Speed_Controller is a central component responsible for the
longitudinal speed control. It has two main jobs, the first one
Autonomous_Control is the leader’s speed control task. Since
the leader is the vehicle guiding the rest of the platoon, its
velocity may be controlled automatically or by human driving.
This job handles the obstacle detection, triggers braking, and
initiates the propagation of braking alarms to followers (cf.
Fig. 3). The second Dependent_Control is the speed control
task of the followers. The velocity of a follower vehicle is
computed according to the principle explained in Section III
and represented in Fig. 1 (middle and right) and Fig. 2. The pa-
rameter pvel is the velocity value inputted from the predecessor
when the vehicle’s front position crosses the border p. of CZ.
Both jobs compute an acceleration_command (attribute) peri-
odically based on a speed_request (attribute) by calculating %
where At is a time period and Aw is the difference between
the current speed_request (defined by the control decision)
and the current velocity recoverable by invoking the method
Get_Velocity of Speedometer. This operation is performed by
the method Compute_Acceleration. Speed_Controller outputs
periodically the acceleration_command to adjust the engine
velocity by providing the method Get Acceleration through
the interface Accelerator.

The component Vehicle represents the software unit of a
connected vehicle. It contains two main instance references sct
and spd resp. of Speed_Controller and Speedometer used to
get the actual acceleration command and velocity in attributes.
Besides, it contains also a reference bs to remote instance (@)
of the component Base_Station that represents the mobile BS
installed on the leader. As soon as the V2B connection to
BS is established, a new tail-merging vehicle to the platoon
stores a remote reference to its Vehicle instance by it (integer)
identifier in the map attribute connected_vehicles by invoking
Register_Vehicle. It can acquire as return a map platoon con-
taining references the other connected vehicles of the platoon
by invoking Get_Remote_Vehicles. By the way, an instance of
a connected vehicle provides the methods Get_Velocity and
Trigger_Brake_Alarm (via the interface V2V) to the others. It
has a job Drive used to initialize the system and motors but
also to adopt the autonomous driving mode if needed.

The dynamic distributed architecture is given in the model
of Fig. 6. The component Vehicle is instantiated thrice in
three partitions Leader, Follower_I and Follower_2 running
in three distributed nodes resp. dispatched in V1, V2 and V3.
Locally within each node, each of them embodies component
instances of Speed_Controller, Speedometer, Odometer and
Sensor. They also require remotely i) from each other, the
methods of the interface V2V, and ii) those of the interface V2B
from the component Base_Station instantiated in a separate
partition Base running in the leader’s node.

At ty (cf. Fig. 1), by having the intention to tail-merge in the
platoon and being under the coverage area of BS, V1 acquires
the reference of BS remote instance, registers itself into it by
invoking Register_Vehicle, and requests the references of other
registered vehicles by invoking Get_Remote_Vehicles (step 1).
BS responds by sending them back to V1 (step 2).

Distributed node of V1 (leader)

Partition 1: Base |

Distributed node of V2 Distributed node of V3

Partition: Follower_2

sct :: Speed_Controller

O Sensing Engine

Partition: Follower_1

sct :: Speed_Controller

O Sensing Engine

sns :: Sensor

»»»»»

leader : Vehicle ] .
vav

e
Vv

Fig. 6. Distributed dynamic architecture; interfaces —® are input and output.

At t1, V3 accelerates to catch up with V2 (step 3) as said
before in Section III. No V2X communication is required
because V3 is still rolling in AZ. At t, (step 4), by entering
CZ, V3 requests periodically the velocity of V2 (by calling
remotely Get_Velocity). We assume that synchronization is
required between the caller body (the job Dependent_Control
of Speedometer instance) in V2 and that of the called method
Get_Velocity i.e., the body of Dependent_Control is blocked as
long as Get_Velocity does not return. This blocking time shall
be bounded by the period of Dependent_Control. A trick to
implement this requirement is given at the end of Section V-D.

The propagation of braking alarm is also handled using V2V
exchange between vehicles as explained above in Section III
and shown in Fig. 3. When the leader (V1) detects an obstacle
in the road, it brakes immediately and notifies its direct
follower (V2) by invoking the method Trigger_Brake_Alarm
in which the private procedure Brake is executed to actuate
the brakes. V2 performs the same actions to notify V3.

V. ROBOT PROTOTYPING AND IMPLEMENTATION

We present in this section the software implementation
and the robotic prototyping of our design method detailed in
Section I'V. Specifics about the distributed deployment of our
application and respectfulness of real-time constraints are also
provided. We start by presenting the robots architecture.

A. Robots architecture

The architecture of Fig. 7 represents the hardware structure
of our prototypes of four-wheeled robots. A robot is composed
of: 1) four micro DC (Direct Current) geared motors used
to rotate four wheels with a power supply of 7.5V, 2) two
motor encoders with a resolution of 20 PPR (Pulses Per motor
Revolution) which can be fixed on the front or rear motors,
3) an ultrasonic sensor (HC-SR04) positioned at the front of
the robot, 4) a Romeo (DFRobot product) low-level slave
robot controller used to efficiently interface (using Arduino
functions) with the three first hardware components, and 5) a
Raspberry Pi (RPi) master high-level control card on which
our distributed software is deployed to command the Romeo
board. The control outputs and the sensing inputs are wired
between the two boards using the I2C bus.
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Fig. 7. Wheeled robot architecture; acronym legend of pins and connectors:
GND (Ground), VCC/VIN/5V (Power-Supply), Echo (Ultrasonic Echo), Trig
(Ultrasonic Chirp), SDA (Serial DAta line of I2C), SCL (Serial CLock line
of 12C), M1 and M2 (Power inputs for resp. left and right motors).

B. Robot speed controller

The block diagram of Fig. 8 illustrates the speed control
process of our wheeled robots. Light gray boxes are software
instances of the design components (cf. Section IV-B). Dark
gray boxes are some of the robot hardware components shown
in Fig. 7. The velocity of a given robot in the platoon is
controlled using two inputs: i) the error err (Av) between the
speed request sr and the current velocity vc of the robot, and
ii) the distance do to the nearest obstacle acquired by calling
the method Get_Distance_To_Obstacle from the instance sns
of Sensor (cf. Section IV-B). The distance is computed using
the duration wo from the moment the chirp output signal is
emitted by the ultrasonic sensor until the echo input one is
received. The current velocity vc is computed using the relative
distance traveled during a period of the job Update of the
instance spd of Speedometer based on the current absolute
distance ad acquired by calling Get_Traveled_Distance from
the instance odo of Odometer (cf. Section IV-B). The absolute
distance ad is computed based on the number of revolutions 7]
and rg resp. of the left and right motors which can be traced
by getting the number of interrupts (pulses) ¢/ and ig registered
resp. by the left and right encoders having a resolution of 20
PPR as mentioned above. The instance sct of Speed_Controller
computes periodically the acceleration command ctl using err
and do. If no braking alarm is triggered locally by the robot in
case an obstacle is detected or remotely by other robots, ctl is
supposed to be <7 where At is the time period of one of the
jobs Dependent_Control (if follower) or Autonomous_Control
(if leader) as explained in Section IV-B.

| sns :: Sensor Ultrasonic sensor |

uo

do rl
,l =
sct :: Speed_Controller a g
Right motor

il
L—| Left encoder |<—
y ad
spd :: Speedometer I<—| odo :: Odometer I

ig

ST err

Right encoder

Fig. 8. Block diagram of the robot speed controller.

In our prototyping context, the command ct! is implemented
by Pulse-Width Modulation (PWM), a technique for getting
analog voltage control using a digital square signal switched
between On (7.5V) and Off (0V). The duration of “On time” is
called the pulse width. It is modulated to get varying the analog
values. This On-Off pattern is fast repeated under the Romeo
with a short duty cycle of about 2 milliseconds (ms) which
produces a steady voltage used to control the rotation speed
of motors. The PWM command is an integer varying in the
interval [0,255] where 0 and 255 resp. correspond to 0% (null
speed) and 100% (max speed) duty cycle. At a given instant,
the actual PWM value of ctl is calibrated proportionally to
err to reach the desired value sr of velocity.

I12C_Connector|

Attributes A

- descriptor : Integer

methods

(No references) (No required methods)

Provided methods

+ Set_Connection # I12C_Connection Failure
+ Acquire Bus # 12C Bus_Acquiring Failure
12C + Send Data (data : Byte array)
# 12C_Sending Failure
+ Receive Data (— data : Byte array)
# 12C_Receiving_Failure

+ Disconnect

Jobs

{ Data_Exchange (period : Integer)
(& J

Fig. 9. The component 12C_Connector.

The Romeo acquires il, ig and wo resp. from the left and
right encoders and the ultrasonic sensor and transmits them
to the RPi. In turn, the PWM command ctl is computed and
transmitted from the RPi to the Romeo. This bidirectional data
exchange is rooted by I2C between the cards. The component
I2C_Connector (cf. Fig. 9) plays the role of the I?C connection
endpoint from the side of the software application running on
the RPi. A parallel endpoint Arduino code is executed from the
Romeo side. The job Data_Exchange serves to exchange data
periodically with the Romeo. The methods Set_Connection
and Acquire_Bus initiate resp. the connection with the Romeo,
acquire the bus, and set the attribute file descriptor serving to
identify the memory area, handled by the I2C driver, in which
the component reads/writes data. The methods Send_Data and
Receive_Data are called by Data_Exchange to resp. send and
receive data as byte arrays.



C. Ada implementation

In this subsection, we present the Ada implementation of
components. For that, we select the components Odometer and
Speedometer (cf. Fig. 5). The package specification (.ads file)
of Odometer is given by the code below.

—— Specification file '‘odometer_component.ads’’
package Odometer_Component is
type Odometer is tagged private;
type Access_Odometer is access all Odometer;
function Get_Absolute_Distance (O: in Odometer) return Float;
procedure Update (O: in out Odometer; Period: Integer;
IG, IL: access Integer);
Erroneous_Distance: exception;
private
type Odometer is tagged record
Right_Interrupts: Integer;
Left_Interrupts: Integer;
Absolute_Distance: Float;
end record;
procedure Compute_Absolute_Distance (O: in out Odometer);
end Odometer_Component;

—— in millimeters (mm)

In the package odometer_component, Odometer is defined
as a tagged (heritable) private type implemented as a record
containing the main attribute Absolute_Distance with two ex-
tra attributes Left_Interrupts and Right_Interrupts resp.
the actual numbers of interrupts registered by resp. the left
and right encoders. The latter two attributes are updated by the
job update (implemented as a procedure) by getting as inputs
the current values of i/ and ¢g (parameters IL and 1G) sent
by I2C from the Romeo. The job uses for that the procedure
Compute_Absolute_Distance that computes first adl and adg
the distances traveled resp. by the left and the right wheels by
using the wheel’s circumference and the encoder resolution
(20 PPD). Then, it sets the attribute Absolute Distance by
calculating (adl 4+ adg)/2. The body of update (code below)
is defined as a periodic loop under Ada.Real_Time.

with Ada.Real_Time; use Ada.Real_Time;

procedure Update (O: in out Odometer; Period: Integer;

IL, IG: access Integer) is
—- Relative deadline is implicit (Deadline = Period)
Deadline: Time_Span := Milliseconds (Period);
Next: Time; -- Periodic release instants
begin
—— First release instant
Next := Clock;
loop
—— Undertake the periodic job
O.Left_Interrupts := IL.all;
O.Right_Interrupts := IG.all;
O.Compute_Absolute_Distance;
—-— Test if the deadline is missed (Next is not yet updated)
if Clock - Next > Deadline then
Put_Line ("Odometer: Update misses deadline !");
end if;
—— Wait until the next release instant
Next := Next + Period;
delay until Next;
end loop;

end Update_Distance;

The package Ada.Real Time provides accurate access to
the hardware clock. It defines a type Time that represents real
time with a clock high precision of at most 1ms but can reach
down the nanosecond (ns), notably on the RPi. Time values are
strictly monotonic (cannot be adjusted backwards or forwards
as in Ada.Calendar) since a starting point epoch. We use
the delay until primitive to specify task periodicity since it
allows to establish a precise stamp of periodic absolute release
instants in time useful to check whether deadlines are met or

not by the repetitive computations of tasks [25].

The package speedometer_Component is structured exactly
like odometer_Component as shown in the following specifica-
tion. It defines the component Speedometer as a tagged private
record containing in addition to the attributes pistance and
Velocity an instance reference of Odometer (cf. Fig. 5) typed
Access_Odometer, pointer to objects of type odometer.

—- Specification file speedometer_component.ads’’
with Odometer Component; use Odometer_ Component;
package Speedometer_ Component is
type Speedometer is tagged private;
type Access_Speedometer is access all Speedometer;
function Get_Velocity (S: in out Speedometer) return Float;
procedure Update (S: in out Speedometer; Period: Integer);
Erroneous_Velocity: exception;
private
type Speedometer is tagged record
Odo: Access_Odometer; —-- Instance reference of Odometer
Distance: Float;
Velocity: Float;
end record;

—— in mm/ms

procedure Compute_Velocity (S: in out Speedometer; Delta T: Integer);

end Speedometer_Component;

Distribution is handled by the components Base_Station and
Vehicle (cf. Section IV-B) given by the specifications below.

—-— Specification file remote vehicle component.ads’’
package Remote_Vehicle Component is
pragma Remote_ Types;
type Remote_Vehicle is tagged limited private;
function Get_Velocity (V: access Remote_Vehicle) return Float;
procedure Trigger Brake Alarm (V: access Remote_Vehicle);
Unknown_Velocity: exception;
private
type Remote_Vehicle is tagged limited record
Identifier, PWM Command: Integer;
Brake_Alarm: Boolean;
Velocity: Float;
end record;
end Remote_Vehicle_Component;

—- Specification file '‘base station.ads’’
with Remote_Vehicle_ Component; use Remote_Vehicle Component;
package Base_Station is
pragma Remote_Call_ Interface;
Max: constant Integer;
type Remote_Vehicle Ref is access all Remote_Vehicle’Class;
type Reference_Table is array (0 .. Max) of Remote_Vehicle_Ref;
procedure Register_Vehicle (Id: Integer; V: Remote_Vehicle_Ref);
function Get_References return Reference_Table;
Illegal Vehicle Identifier, Not_Connected Vehicle: exception;
end Base_Station;
—-— Specification file '‘vehicle component.ads’’
with Remote_Vehicle_Component; use Remote_Vehicle_ Component;
with Base_Station; use Base_Station;
with Speed Controller_ Component; use Speed_Controller_ Component;
with ter_ Ci t; use d ter_Comp t;
package Vehicle_ Component is
type Vehicle is new Remote_Vehicle with private;
type Access_Vehicle is access all Vehicle;
procedure Drive (V: in out Vehicle; Period: Integer);

P

private
type Vehicle is new Remote_Vehicle with record
Sct: Access_Speed_Controller; -- Specification not provided

Spd: Access_Speedometer;
Platoon: Reference_Table;
end record;
procedure Brake (V: in out Vehicle);
end Vehicle_Component;

The package Remote_vehicle Component implements the
remote facet of the component Vehicle using the tagged limited
(not assignable by simple copy) abstract type Remote_Vehicle
with the methods Get_velocity and Trigger_ Brake_Alarm
under the pragma Remote_Types. Library units (packages)
categorized with this pragma define distributed objects with
remote methods. They can be duplicated within one partition
or several ones. The attribute PWwM_Command of Remote_vehicle
stands for the attribute acceleration (cf. Fig. 5) in our proto-
typing context as explained in Section V-B.



The package vehicle_Component provides a definition of
the component Vehicle as a concrete type Vehicle that inherits
from Remote vehicle. This inheritance makes a separation
between remote and local interfaces of Vehicle very useful for
reusability under different implementation contexts. Moreover,
Remote_Type packages cannot semantically depend on normal
ones (like speedometer Component for example). They can
only depend on other remote type library units and pure or
shared passive categorizations.

Base_Station is specified by the package Base_sStation
and categorized by pragma Remote_Call Interface (RCI).
Packages categorized by this pragma act as stateless servers
providing to client environments a collection of remote subpro-
grams (typically procedures and functions). This service-based
aspect is fully compliant with the nature of Base_Station since
it reacts only if necessary to environment invocations which
may update or not its internal state. This argues absence of jobs
in the component since they are not relevant for the system
operation. The attribute connected_vehicles is implemented as
a variable Connected Vehicles Of type Reference_Table that
is defined as (Integer, @Vehicle) map (cf. Fig. 5).

D. Middleware deployment and real-time determinism

Our implementation is built by a cross-compiled version for
ARM architectures of po_gnatdist, the compilation tool of
the PolyORB package. Three procedures Leader, Follower_ 1
and Follower_2 are compiled in three partitions deployed on
three robots according to Section IV-B and Fig. 6. A fourth
one Base providing the RCI subprograms of Base_station is
deployed in a second partition running in the leader robot.

The application is executed under fully preemptible versions
of the Linux kernel 4.4.21 (patch Preempt_RT) [26]. Prior tests
were made to evaluate low latency, preemption and deadline
respectfulness of the scheduler sceED_riFo under extremely
stressful processing conditions using the tools cyclictest and
hackbench [27], but also Ada concurrent programs. Results
were positive arguing a high level of real-time determinism and
low run-time overhead. Jobs are executed concurrently with
periods defined according to the component dependencies. For
example, the period duration of the job Update in Speedometer
is the double of the same in odometer. Tasks have priority over
system calls and scheduled using scHED_FIFo enabled by the
Ada dispatching policy FIFO_Within_Priorities.

According to Section III, the response delay a vehicle can
wait for when requesting periodically the predecessor velocity
by being in CZ shall be bounded to ensure safe stable behavior.
In our prototyping context, this requirement cannot be met by
repetitive remote and synchronous invocations of the method
Get_Velocity in a periodic deadline-sensitive task because of
the TCP/IP-based WiFi connection used by the middleware. In
order to overcome this problem, we short-circuit PolyORB by
Bluetooth talk/listen socket-based communication much more
faster than WiFi since we use the model B3 of the RPi.

Video animations of the platooning scenarios of Section III
using two and three robots are available in YouTube under the
links nttp://y2u.be/2wnyy5z7nva and http://y2u.be/Cl-vGISxBed.

VI. DISCUSSIONS, PERSPECTIVES AND RELATED WORKS

The industrial actors of HISC systems are still using cyclic
reactive software design [6]—[8] rigid and hard to maintain.
System operation is a periodic execution of procedures under
offline non-preemptive OS-free scheduling policies. Aperiodic
unpredictable environment events, for which a HISC system
should be sensitive, are directly handled in the functional
description of its nominal behavior. This significantly erodes
the implementation and discriminates modularity. Besides, the
cyclic approaches are unsuitable to ensure safe interoperability
between the system parts. Messages are sent/received between
sub-systems asynchronously as stamped data flow using wired
or wireless network. This exchange has two major drawbacks:
1) it is error-prone by naming and processing crude data flow,
and 2) it does not elucidate the interaction scenarios between
sub-systems during design and hardens their verification.

Our design was mainly shaped to address these problems. It
is result of two-years effort to build an innovative distributed
object-oriented solution to control vehicle platoons powered
by V2X communication. To the best of our knowledge, our
eyesight to object-oriented components is new compared to the
existing definitions [13] in which jobs and instance references
are implicit. Our approach is appropriate to design autonomous
communicating systems in general, quite compliant with the
Ada language widely used in HISC development, and allows
explicit traceability and verification of components interactive
behavior. Our implementation of the longitudinal speed control
in ACVP systems was deployed and tested on wheeled robots
using the middleware PolyORB recently being selected by
the defense division (Astrium) of the European Aeronautic
Defense and Space (EADS) company for use in the European
contribution to the International Space Station (ISS) [28].

We see two main directions for future work. The first is
the introduction of contract-based formal top-down approach
(work in progress) based on our ground implementation frame-
work to build correct-by-design HISC systems. The second is
prototyping this formal approach in design, verification, and
code generation toolboxes based on SMT-LIB [29] solvers.

Of the extensive literature around ITS, we discuss some
topicality and works related to the ours. From a holistic view-
point, the literature converges to the concept of Cyber-Physical
Systems (CPS), in which embedded computers and networks
monitor autonomously physical processes with feedback loops.
They are able to both understand and learn the environment
and act consequently. This is why CPS principles, methods and
tools are easy applied in smart automotive systems and self-
driving cars. At the legal level, this autonomy in automotive
systems implies consideration of traffic laws and insurance
costs. In this regard, we probably witness to a change in
drivers from “how to drive” to “how to use smart commands”.
This involves investment in Human Interface Machines (HIM).
Recently, the PSA group for example are integrating vocal and
tactile commands and smart-phones in car dashboards with
visual display in order to better respect road signs and avoid
potential dangers (see www.peugeot—connect. fr).
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Worldwide, the United States are acquiring the leadership
in autonomous vehicles. The technological innovations is not
only fast, but also sharp and pretty violent. Prototypes (like
Waymo and Uber self-driving cars) are already being tested on
streets. However, safety issues are not properly addressed and
not fixed yet. Few months ago, Uber stopped tests in Pittsburgh
after road accident to focus on safety solutions [30].

In Europe, the industy of autonomous vehicles is booming to
remain competitive. Efforts are first concentrated on standard-
ization like ISO 26262 [9] and AUTOSAR (AUTomotive Open
System ARchitecture) [31]. Currently, Europe is accelerating
the technological innovation in this field while establishing
the related ecosystem. The VEDECOM institute created in
2014 as part of the plan “Investissement d’Avenir” launched
by the French Government few years ago is among the striking
examples of that transition. It is dedicated for R&D around
smart, carbon-free and sustainable mobility. The DESERVE
European project (www.deserve-project.eu) mainly focusing
on ADAS technologies is another example. All these efforts
reflect that the European community is convinced that common
specification and development platforms are necessary for the
future automotive ecosystem of the continent.

Few academic experimental works exist around prototyping
control systems for vehicle platoons. We reserve the remaining
space to quote some selected references. In [32], the authors
provide a speed control system of autonomous platoon of RPi-
commanded slot cars. They simulate various control strategies
(like CACC) using Matlab. The controller is implemented and
animated using an object-oriented cyclic-based Java library.
The cars share states between each other using UDP-based
wireless broadcast and object serialization. In [33], the authors
propose a trace-based platooning control system without inter-
vehicle communication. A given vehicle is controlled to follow
the predecessor estimated trajectory. Control robustness was
validated on Pioneer 3AT mobile robots. We finish by [34],
the authors of this work present a longitudinal speed controller
for autonomous platoons of unconnected wheeled robots. The
velocity of follower robots is found based on the inter-robot
distances and estimations of the leader velocity obtained from
the controller adaptive dynamic. The controller stability was
studied using the Lyapunov criterion.
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