
HAL Id: hal-01592680
https://hal.science/hal-01592680

Submitted on 25 Sep 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stereo Ambiguity Index for Semi-Global Matching
Mathias Paget, Jean Philippe Tarel, Pascal Monasse

To cite this version:
Mathias Paget, Jean Philippe Tarel, Pascal Monasse. Stereo Ambiguity Index for Semi-Global Match-
ing. ICIP’17, IEEE International Conference on Image Processing, Sep 2017, PEKIN, China. 5p.
�hal-01592680�

https://hal.science/hal-01592680
https://hal.archives-ouvertes.fr


STEREO AMBIGUITY INDEX FOR SEMI-GLOBAL MATCHING

Mathias Paget, Jean-Philippe Tarel
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ABSTRACT
Stereoscopic reconstruction is important to automatic vision sys-
tems. As an intermediate step, estimating this reconstruction is not
enough for good performance of the whole system, and its uncer-
tainty must be characterized. Several methods propose uncertainty
indexes based on specific data features, thus incomplete, while oth-
ers are based on learning. We propose a simple index, named am-
biguity index, taking into account both data and regularization, and
derived directly from the optimization process. Exploiting properties
of dynamic programming, this index is related to the posterior vari-
ance of the solution when the Semi-Global Matching (SGM) algo-
rithm is used for stereo reconstruction. To illustrate its interest, im-
provements in refining stereo reconstruction are shown on the KITTI
datasets when the index is used.

Index Terms— Stereo reconstruction, Discrete optimization,
Dynamic Programming, Semi-Global Matching, Uncertainty index

1. INTRODUCTION

A robust and accurate perception of the environment is required
for advanced driver assistance systems (ADAS) to perform driving
tasks. When only cameras are used for perception, many driving
tasks, where the system extracts high-level information from low-
level image information, are known to challenge computer vision
systems. To face these difficult and complex problems, tasks are
usually decomposed into a chain of sub-problems, each sub-problem
being handled by an image or computer vision process. In such an
approach, the output of each process is the input of another one. Of-
ten, each process consists in the minimization of an energy. The
advantage of the decomposition into sub-problems is that the prop-
agated information is reduced along the chain; however the risk is
to reduce the propagated information too drastically and to lead to
inconsistent results. To solve this issue it is necessary to propagate
uncertainty information in addition to the estimated result to allow
the next process to integrate it in its processing. We focus here on
stereoscopic reconstruction of road scenes.

When the input noise is Gaussian and the problem is linear and
well-posed, the uncertainty of the output is a Gaussian function char-
acterized by the covariance matrix of the output. This covariance
matrix can be formally derived from the minimized energy. When
the input noise is not Gaussian, or when the problem is non-linear,
the uncertainty of the output can only be approximated by a Gaussian
function. The covariance matrix is voluminous for large number of
parameters. Thus, only problems with a reduced number of param-
eters, such as for instance camera calibration, can be handled, but
not stereo reconstruction, where the number of parameters is usually
over one million. Rather than estimating the full covariance matrix
of the output, it was thus proposed to estimate an uncertainty index
per pixel based on the data features which are known to hinder the

resolution of the problem, such as texture-less regions, repetitive pat-
terns [1]. The difficulty of this approach is that it is hard to capture
the effect of data on the estimated solution due to the usual regu-
larization term, such as the logarithm of the prior probability of the
depth map, used during stereo reconstruction minimization.

This is why it was recently proposed to learn confidence on the
solution. Confidence has to be understood as a prediction of an error
on matching over a given threshold. It is learned from data, data cost
and estimated disparity map features [2, 3, 4] and additionally from
final energy cost [5]. These approaches require supervised learning
and a large ground-truth database, so we investigate the possibility of
building an uncertainty index from the energy and the optimization
process only, in order to estimate the ambiguity of the solution. It
appears that optimization methods based on Dynamic Programming
(DP), such as the discrete optimization method Semi-Global Match-
ing (SGM) [6], have very interesting properties, which allows us to
estimate easily an index on the solution. This so called ambiguity
index comes from intermediate costs computed during the optimiza-
tion and needs a reduced amount of computation to be obtained. The
proposed ambiguity index is evaluated in several experiments, show-
ing its interest. In particular, we use it to refine the stereo reconstruc-
tion and show how it can be used to improve results.

2. STEREO RECONSTRUCTION

The used stereo reconstruction algorithm is a simplified version of
a recent method [7], assuming input images are already in rectified
geometry. Following [8], we describe the algorithm split into match-
ing cost computation and cost aggregation in Sec. 2.1, optimization
in Sec. 2.2 and refinement in Sec. 2.3.

2.1. Matching Cost and Aggregation

In the rectified geometry, object depth is easily parameterized by
the horizontal difference in position between its left and right pro-
jections, the so-called disparity. Stereo reconstruction problem is
usually set as the minimization, with respect to the disparity image,
of an energy which is a function of the left and right images. The
Bayesian approach provides ways to derive this energy from a sta-
tistical model of the stereo reconstruction problem. The classic form
of the energy is

E(D) =
∑
p∈P

Data(p, dp) +
∑

(p,q)∈N

Prior(dp, dq), (1)

where D = (dp) is the disparity map with dp the disparity of the
pixel p, P is the pixel set, N the set of neighbor pairs of pixels. The
data term Data describes how data agrees with the solution and the
prior term Prior, used as a regularizer, encodes the wanted properties



of the solution. In our case, Data is set to the census dissimilar-
ity [9] between left and right pixel patches. The census is computed
on a 5 × 5 pixel window and the advantage is its invariance to an
increasing function on the intensities, so it can handle photometric
calibration differences between the two images and partially pertur-
bations due to aspect differences depending on the view angle. Like
in [10], cross-based aggregation is performed on the data cost. By
smoothing the data cost in regions of homogeneous intensities, the
noise is reduced in the data cost.

The term Prior is set to a function of the disparity difference,
assuming that two neighbor pixels frequently have the same depth
(also called fronto-parallel prior). The assumption on the data term
is not quite valid due to occlusion, reflections and specularities, as
well as on the prior term due to non-frontal surfaces such as the road
and lateral buildings. Attests at perform more accurate modeling, for
instance to handle occlusion [11, 12] or regularization with higher
order prior [13], make it more difficult to optimize energies. For this
reason, simple energies are often preferred and erroneous pixels of
the solution are post-processed. In practice, Prior is set to:

Prior(i, j) = 0 if i = j,

Prior(i, j) = P1 if |i− j| = 1,

Prior(i, j) = P2 otherwise,
(2)

where 0 ≤ P1 ≤ P2 are fixed parameters. It thus behaves al-
most like a Pott regularization function, yet is more permissive for
slow disparity variations. This allows better handling of road scenes
where there are non-frontal planes.

2.2. Semi-Global Matching Optimization

The energy (1) is a 2D first order Markov Random Field (MRF).
Global optimization of such an energy is difficult, so approxi-
mate optimization algorithms have been proposed. In Semi-Global
Matching (SGM) introduced by Hirschmüller [6], the original en-
ergy is decomposed in many 1D energies whose each global opti-
mum can be found. SGM thus consists in minimizing along “arms”
around each considered pixel by Dynamic Programming (DP). For
each pixel and vector direction v, a 1D energy Cv is computed using
the following recursion rule:

Cv(p, d) = Data(p, d) +

min
d′

Cv(p− v, d′) + Prior(d, d′). (3)

The original SGM is performed along R = 16 directions v. We
consider only R = 4 directions as in [7], since fostering horizontal
and vertical directions in the optimization achieves better results for
vertical and horizontal scene objects. The energies Cv are added at
the current pixel and the estimate is selected at the minimal value of
this energy over disparities:

SGM(p, d) =
∑
v

Cv(p, d)− (R− 1)Data(p, d)

dp = argmin
d

SGM(p, d).
(4)

Because of the 1D decomposition, each pixel solution is obtained
independently and thus the smoothness of the solution is not guaran-
teed, despite the regularization term, leading to artifacts. Smoothing
the data cost with cross based aggregation reduces these artifacts.

2.3. Left-Right Consistency (LRC) refinement

Since the model is not always valid, in particular at occlusions, an
additional prior is introduced during post-processing, the so-called
Left-Right Consistency (LRC) on disparities [14]. The idea is to
check that for the same object point, the disparity in the left and right
images are opposites. LRC check consists in comparing the disparity
of a given pixel to the disparity at the corresponding position in the
other image. Three pixel categories are thus defined:

if |Dl(p) +Dr(p−Dl(p))| ≤ 1 correct,
else if |d+Dr(p− d)| ≤ 1, for some d 6= Dl(p), mismatch,

otherwise occlusion.
(5)

A refinement on the result is performed based on the LRC cate-
gory [7]: for “correct” pixels, the solution value is not modified; for
any “occlusion” pixel, the value is copied from the closest “correct”
pixel at its left, thus occluded pixels are set to the background. For
“mismatch” pixels, the value is set to the median value of the nearest
“correct” neighbors in 8 directions (originally 16).

3. AMBIGUITY INDEX

3.1. Posterior Variance for SGM solution

The a priori variance is related to the data cost only, it does not pro-
vide useful information on the solution. This is why well selected
features from input data were proposed to partially characterize the
data uncertainty [1]. As the estimated solution is an agreement be-
tween data and prior costs, it is quite hard to derive all the good
features. The posterior variance of the estimated solution is a bet-
ter characterization, since it takes into account data and prior costs.
However, its estimation for a 2D MRF such as energy (1) is a very
complex task. Indeed, the posterior covariance is a quadratic approx-
imation of the shape of the energy (1) around the obtained solution
which is assumed at a local minimum of this energy. Due to the large
number of parameters, the computation of this quadratic approxima-
tion is intractable.

Since we are using SGM optimization, we work on the SGM
cost. As recalled, the SGM optimization decomposes and approx-
imates the 2D problem into many 1D problems. We exploit one
important property of DP: each value in the DP final cost, thus after
DP optimization, is the minimal energy of the original problem with
an extra constraint on the solution. For SGM, this implies that each
value of the SGM final cost is the minimum value of the following
sub-problem: considering the set Xp of pixels within the horizon-
tal and vertical “arms” from the pixel p, the final cost SGM(p, d)
is equal to the minimum cost over Xp, with the constraint that the
disparity value at p equals d. More formally:

SGM(p, d) = min
dx,x∈Xp|dp=d

{
∑

x∈Xp

Data(x, dx)

+
∑

(x,y)∈N∩X2
p

Prior(dx, dy)}.
(6)

The SGM final cost can be seen as an approximation of the energy
(1) where each final pixel disparity becomes independent of the oth-
ers. This allows to disregard the covariance between different pixels
and to focus only on the pixel posterior variance of the SGM solu-
tion. The latter, our ambiguity index, is estimated as the size of the
final SGM valleys along disparities:

Index(p) =
∑
d

1(SGM(p, d) ≤ SGM(p, dp) + T1), (7)



where 1 is the characteristic function witch returns 1 if argument is
true and 0 if argument is false, T1 is a fixed positive threshold. The
minimum index value of one means that there is no ambiguity. From
experiments, the profile of the final SGM cost is usually observed
with a single valley where the model is valid. Counting values un-
der a threshold allows to take into account multiple valley where a
energy profile is more complex. The proposed index looks similar
to the perturbation measure [15] proposed in the context of plane-
sweeping stereo. In practice, T1 is set at a factor of the P2 value
used in the regularization term. This link between T1 and P2 leads
to invariance of the index when a scale factor is applied to the energy.
Notice also that the estimated result and ambiguity index derive from
the same energy, so a change in the energy affects both of them. The
extra cost for ambiguity index computation is much reduced.

3.2. Index Integration Into the Stereo Process

A way to evaluate the index relevance is to use it to refine the recon-
struction and to test whether the solution is improved. We propose
two possibilities. The first one is a post-processing similar to LRC
filtering (Sec. 2.3), where pixels whose index is under a threshold
T2 are tagged as “correct” label. As the index cannot distinguish
“mismatch” and “occlusion”, all other pixels are handled as “mis-
match” and set to the median of the nearest “correct” neighbors in 8
directions.

The confidence obtained from learning has been used as a weight
in the data cost [3] or regularization cost [2] to balance data and
regularization terms. In [4], an extra regularization term is added de-
pending on the confidence value. Our second investigated possibility
is to reweight the data term using the inverse of the index:

New Data(p, d) = K
Data(p, d)
Index(p)

, (8)

where K is a constant maintaining global balance between data
and regularization terms. Then, a second SGM optimization is
performed with this new data cost.

4. EXPERIMENTS

We use stereo rectified image pairs of the KITTI 2012 [16] and
KITTI 2015 [17] datasets. Not being learned, our index is only eval-
uated on training sets with ground-truth. We use the criterion of
KITTI on the “Non-occulted” ground-truth pixels witch are forced
to stand into the two cameras’ field of view. The same parameters are
used for KITTI 2012 and 2015, color images of KITTI 2015 being
converted to grey scale before processing. Regularization parame-
ters are set as P1 = 1.2 and P2 = 23.

4.1. Ambiguity Index as an Occlusion Prediction

Where the reconstruction model is not valid, we expect data not to
agree with the model and thus the solution to show a high ambiguity
index value, especially at occlusions. We thus compare the ambigu-
ity index with the LRC pixel label which is used as a ground-truth.
This ground-truth can be discussed but seems to be the one more sig-
nificant, presently. Fig. 1 shows the result on KITTI 2012 training
set. Despite the overlap between the three histograms, considering
ambiguity index as a non “correct” label predictor gives a 77.7%
recall for a 50% precision, thus an over detection by a factor two.
This is interesting, as our ambiguity index has not been designed
specifically to be an occlusion predictor.

5 10 15 20 25 30
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5 · 10−2
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index values

“correct”
“mismatch”
“occlusion”

Fig. 1: Normalized histograms of index values for the three pixel
labels (“correct”, “mismatch”, “occlusion”) after LRC for all the
left images of KITTI 2012 training set. The “correct” mode is at
index = 7, whereas “mismatch” mode is at index = 12 and “oc-
clusion” mode at index = 13.

Error rate (%) Before After
KITTI2012 / KITTI2015 LRC refinement LRC refinement
Original (without index) 6.12 / 5.23 5.13 / 4.48
Refinement 1 5.38 / 4.77 4.85 / 4.35
Refinement 2 5.25 / 4.55 4.59 / 4.04

Table 1: Average percentage of disparities below 3 pixels error from
the “non-occulted” ground truth KITTI 2012 and KITTI 2015 train-
ing sets. Refinement 1 is LRC pixel refinement whose index is over
20. Refinement 2 divides the data cost by the ambiguity index before
a second SGM optimization.

We now consider pixels with an index value higher than the
threshold we set at T2 = 20 to be a “mismatch” in the first refine-
ment method proposed in Sec. 3.2. Error rates with the ground-truth
are shown in Tab. 1. Results before and after standard LRC refine-
ment are also shown. The error rates with LRC and Refinement 1
alone are similar and this suggests that the ambiguity index is a good
predictor of non “correct” pixels. When the LRC refinement is ap-
plied to the output of Refinement 1, results slightly improve. This
suggests that if LRC and Refinement 1 have a shared effect, they are
also slightly complementary.

Fig. 2 shows the values of the left and right ambiguity indexes
for pixels labeled “correct” by LRC. Notice there is a good cor-
respondence between left and right ambiguity indexes. Therefore,
when disparities are consistent, ambiguity index is also consistent
between left and right images.

Fig .3 shows pixels detected with a high ambiguity index with
respect to LRC labels (“correct” or non “correct”): true positive in
green, false positive in red, false negative in blue and true negative in
black. Most occlusions are detected. Under-detection concerns thin
objects or small discontinuities, and over-detection is mostly due to
objects seen in the right image but not in the left image.

4.2. Ambiguity Index as Data Uncertainty

We tested the second refinement method proposed in Sec .3.2 with
K = 15. Results are reported in the last line of Tab. 1. What was ob-
served with Refinement 1 is confirmed with Refinement 2, with the
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Fig. 2: For all “correct” matches of the KITTI 2015 training set, co-
occurrence of ambiguity index value in the left and the right image
are shown. Each element of the matrix represents a number of pixel
couple having a given index value at the left and the right image
positions. Notice how left and right ambiguity index are close when
disparity matches.

(a)

(b)
Fig. 3: (a) Left image 056 of KITTI 2015 training set, (b) shows pix-
els detected as ambiguous (threshold at 15) with respect to LRC ref-
erence: true positive in green, over detection in red, under-detection
in blue, true negative in black.

difference that combining LRC and Refinement 2 leads to even bet-
ter improvements. On KITTI 2012, the obtained error rate is ranked
37, and for KITTI 2015, it is ranked between 10 to 15 (in January
2017) which is encouraging knowing that a better data cost (based
on learning) than our simple census could be used.

A reconstruction result with and without the use of the index is
shown in Fig. 4, for illustration. Notice how the disparity map is
improved on the tramway windows. The ambiguity index detects
reflections on the tramway windows, saturated pixels in the sky and
occlusion at the left of the car.

5. CONCLUSION

Our goal was to characterize the uncertainty of the disparity map
estimated during stereo reconstruction process, a necessary but dif-
ficult task to perform. We proposed an ambiguity index designed to
approximate the variance of every pixels of the estimated disparity

(a) Left image

(b) Ambiguity index image

(c) Left disparity without index

(d) Left disparity with index weighting
Fig. 4: Results on image 144 of KITTI 2015 training set (a): Am-
biguity index in (b), (c) disparity map without using the index, and
(d) using the index. Higher index is whiter in (b). Notice how re-
construction is improved on the tramway windows between (c) and
(d).

map. This ambiguity index can only be computed when Dynamic
Programming is used to solve the stereo reconstruction problem, as
it is the case for the well known SGM optimization. In the experi-
ments, it was shown that the proposed index has higher values where
the data does not match with the model, for example in case of oc-
clusion and in presence of specularities. This allows using the am-
biguity index to improve the results by a post-processing, as shown
experimentally with two proposed refinement methods on the KITTI
2012 and KITTI 2015 datasets. The proposed index can be also used
for other kinds of problems, provided the optimization is based on
Dynamic Programming.
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