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Abstract—Hydraulic machinery monitoring using non-intrusive sensors is today’s trend in the hydroelectric power 

industry. The phenomena of cavitation vortex occurs mostly at off-design regimes, which reduces the turbine’s efficiency. 

In this paper we propose a mathematical model for vortex detection and a 3D vortex presence visualization. Its 

visualization is constructed on the gyroscope principle, translating the strain gauge vertical elongations into a nutation 

movement. The mathematical model for vortex detection computes the data statistical moments. The model is tested on 

experimental data recorded using an extensometer.      

 
Index Terms—extensometer, hydraulic turbine monitoring, pdf estimation, vortex detection  

 

I. INTRODUCTION 

Rotating machines, such as rotary engines, turbines or wheels, are 

often exposed, during their operational lifetime to several undesired 

phenomenon: vibrations, mechanical stress or cavitation [1]. Such 

phenomena can lead to premature wear of the machines or worse, to 

their destruction [2]. It is particularly the case for the hydraulic 

turbines, because of their dimensions, diversity and components 

complexity.  

A hydraulic turbine is mainly composed by a specific number of 

guide vanes that control the water flow rate, the moving part (rotor-

blade assembly), the draft tube controlling the water evacuation and 

the electrical generator that transform the mechanical energy into 

electrical energy. The turbine is designed to transform the water 

kinetic energy with maximum of efficiency, under certain operating 

conditions, called best efficiency operating point.  

Nowadays, the expansion of renewable energy sources (solar, wind, 

etc.) may affect, by their intermittent nature, the stability of the power 

system. In order to maintain the balance between energy production 

and consumption, the hydroelectric power plants are often used. Thus, 

in order to be able to respond to a various demands of the power grid, 

the hydraulic turbines tend to have their operation range extended (i.e. 

operate under off-design conditions). When a hydraulic turbine 

operates under off-design conditions, the phenomena of vortex 

cavitation is likely to appear [3]. The conditions for vortex cavitation 

appearance are an unsteady flow with water pressure drop under the 

water vaporization pressure. In this case, the turbine efficiency is 

decreased as flow instabilities induce mechanical vibrations and large 

pressure fluctuations. They generate axial and radial efforts together 

with the mechanical stress created by the turbine’s rotation. Apart 

from the machine mechanical damage, output power fluctuations are 

 
 

generated, putting at risk the electrical grid stability. Therefore, it is 

important to know at every instance of time, the amplitude of these 

instabilities and to be able to control them. Up to a certain level, the 

efforts are absorbed by a coupling system composed by bearings, thus 

avoiding a direct transfer to the electrical generator. In today practice, 

for hydraulic system monitoring, intrusive pressure sensors are used 

in order to detect pressure fluctuations. Mathematical simulations and 

reduce scale tests are also performed for flow prediction and vortex 

identification [4-9]. Due to flow instabilities and turbulences, these 

methods cannot be generalized, despite that they may provide 

satisfying results [10-12].  

Multiple sensors of different types are used in order to perform 

constant hydropower plant monitoring, especially in the case of the 

rotational components. In particular, the time evolution of the axial 

efforts is measured using extensometers. Having the extensometer 

elongations measurements at the bearing unit level, we propose a 

novel processing method, in order to visualize the turbine off-design 

behavior in terms of the generated axial efforts. Our study is based on 

a mathematical model, presented in section II of this paper. In section 

III, the model is applied to a real calibration dataset, for different 

turbine’s operating conditions. Conclusions and perspectives are 

presented in section IV.     

II. THEORETICAL FRAMEWORK 

In order to characterize the vortex cavitation presence, we create a 

mathematical and statistical interpretation of the generated axial 

efforts. The proposed method performs a conversion of the measured 

elongations in a way that the axial efforts can be directly interpreted 

with the nutation movement of a gyroscope (Fig. 1). This axial effort’s 

measurement is crucial in quantifying the instabilities levels at the 

current operational point of the turbine. Similar representations are 
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performed in [13], as part of shaft dynamical analysis. The analogy 

between the extensometer measurements and the nutation movement 

provides a new virtual monitoring instrument of the machine 

instabilities. In the proposed framework we expect to obtain a 

minimum level of instabilities for the best efficiency point, and larger 

one for lower efficiency operating points. 

A. Mathematical model 

Let consider a circle, 𝐶, in a spherical coordinates system(𝑟, 𝜑, 𝜃), 

to which we apply a set of three rotation matrixes, 𝑅𝑥, 𝑅𝑦 and 𝑅𝑧, for 

each of the three directions x, y respectively z. The rotated circle, 𝐶𝑟, 

is given by the following system of equations: 

𝐶𝑟 = 𝑅𝑧 × 𝑅𝑥 × 𝑅𝑦 × 𝐶,            (1) 

Here, 𝑡 ∈ [0, 𝑇], with 𝑇 being the duration of one full rotation of a 

disk around the 𝑂𝑧 axis and 𝜑, 𝜃 ∈ [0, 2𝜋]. We define the rotation 

angle 𝜑 as a function of the extensometer elongations measurements, 

Sin(t): 
 

𝜑(𝑡) =  𝑎𝑟𝑐𝑡𝑔(
Sin(𝑡)

𝑟
)      (2) 

 
Fig. 1. 3D rotation of a circle with angle 𝜑, around y-direction.  

 

Let us consider a nonlinear operator: Х. If the Х operator is applied 

to our signal 𝑆𝑖𝑛(𝑡), the response is given by: 

 
Х{𝑆𝑖𝑛(𝑡)} =  

1

1 + 𝑆𝑖𝑛
2(𝑡)

       (3) 

 We rewrite the equations system (1) as follows: 

𝐶𝑟 =  𝑟 ∙ (

sin[𝜃(𝑡)] cos[𝜃(𝑡)] − sin[𝜃(𝑡)]

cos[𝜃(𝑡)] sin[𝜃(𝑡)] cos[𝜃(𝑡)]

0 − sin[2𝜑(𝑡)] sin[𝜑(𝑡)]
) ∙     

     ∙ (

cos[𝛼(𝑡)] 0 − cos[𝛼(𝑡)]

0 cos[𝛼(𝑡)] 0

0 sin[𝛼(𝑡)] 0

) ∙ (
𝑐𝑜𝑠2[𝜑(𝑡)]

   cos[𝜑(𝑡)]

1

) = 

= 𝑟 ∙ 𝑀(𝑡) ∙ (
𝑐𝑜𝑠2[𝜑(𝑡)]

𝑐𝑜𝑠  [𝜑(𝑡)]

1

) 
𝑟=1
⇔  𝑀(𝑡) ∙ (

Х{𝑆𝑖𝑛(𝑡)}

(𝑋{𝑆𝑖𝑛(𝑡)})
1

2

1

)          (4) 

In (4), the unity circle is considered. Further, we will study the 

response of different types of input signals, when we will apply the 

proposed operator  Х . The input signal pattern is: a steady state 

component, s(𝑡) (which corresponds to a deterministic process, in 

this case the turbine rotation frequency) and the additive noise: 

𝑆𝑖𝑛(𝑡) =  𝑠(𝑡) + 𝑛(𝑡)                                  (5) 

    We have chosen to express in this way the signal pattern, because 

we will perform a statistical analysis later. Generally, the probability 

density function for an experimental data can be predicted, if it has a 

Gaussian or sinusoidal shape [14]. Deterministic signals have periodic 

amplitudes that allow harmonically decomposition related to sin 

waves, thus 𝑠(𝑡) will be the sin wave corresponding to the turbine 

rotation. The additive noise, 𝑛(𝑡), present in the frequency bandwidth 

which corresponds to the cavitation vortex, is assumed to be Gaussian. 

In the following sections we will analytically estimate the response 

of each component, sinusoid and noise, to the X operator. 

B. Gaussian noise input 

Let us consider the case of independent and identically distributed 

Gaussian noise input, 𝑛(𝑡) . The corresponding probability density 

function, pdf, is given by the following relation: 

 
𝑝𝑛(𝑥) =  

1

𝜎√2𝜋
𝑒
−
(𝑥−𝜇)2

2𝜎2  , −∞ < 𝑥 < ∞     (5) 

We want to see how  𝑝𝑛(𝑥) is changed if we apply the Х operator. 

We will perform a probability density function variable change [11]. 

Let’s consider a random and continuous variable  𝑥 , normally 

distributed, with the probability density function given by (6). The 

variable change that we propose is: 𝑥 →
1

1+𝑥2
. Hence, consider the 

function 𝑋𝑛(𝑥) =  
1

1+𝑥2
 which is strictly increasing on the interval 

(−∞, 0]  and strictly decreasing on the interval  [0,∞) . On both 

intervals, 𝑋𝑛 is continuous and differentiable. 

 The equation 𝑋𝑛(𝑥) = 𝑦  has the following two solutions:            

𝑥1 = √
1−𝑦

𝑦
  and 𝑥2 = −√

1−𝑦

𝑦
 . Thus, we have: 

 
𝑝𝑛(𝑦) =

𝑝𝑛(𝑥1)

|𝑋𝑛
′ (𝑥1)|

+
𝑝𝑛(𝑥2)

|𝑋𝑛
′ (𝑥2)|

= 

= 
1

𝜎𝑦√2𝜋𝑦(1 − 𝑦)
∙ [𝑒

−
(√
1−𝑦
𝑦
−𝜇)2

2𝜎2 + 𝑒
−
(−√

1−𝑦
𝑦
−𝜇)2

2𝜎2 ] 

(6) 

for 𝑦 ∈ (0,1).  An example of the estimated and calculated Х 

transform of a Gaussian noise pdf is displayed in Fig. 2. According to 

(7), the pdf domain of definition is restrained to the interval (0, 1).  

 
Fig. 2. Probability density function of the Х transform of a Gaussian 

noise~N(2.5, 0.5) has the mean=0.15 and the variance=0.01 if it is computed 

using (7), and it has the mean=0.17 and the variance=0.3 if it is numerical 

estimated. 

C. Sinusoidal with additive noise input 

 In this section, we will perform the pdf analysis of the 𝑋 transform 

of a sinusoidal wave with Gaussian noise. Consider a sinusoidal wave 

of the form:  𝑠(𝑡) = 𝐴 ∙ sin (2𝜋𝑓𝑡 + 𝜃). Firstly, we compute the joint 

pdf of one sinusoid and an additive noise, supposed to be Gaussian 

noise. It is given by the convolution of their corresponding pdfs [14]: 
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    𝑝𝑆𝑖𝑛(𝑥) = ∫ 𝑝𝑠

∞

−∞

(𝑥 − 𝜏) ∗ 𝑝𝑛(𝜏) 𝑑𝜏     (7) 

                           =
1

𝜎𝜋√2𝜋
∫ 𝑒

−(
𝑥−𝐴𝑐𝑜𝑠(𝜃)

4𝜎
)
2𝜋

0

𝑑𝜃       

where  𝜎 is the noise’s standard deviation; 𝐴 and  θ are the sinusoidal 

wave’s amplitude and phase. If we develop, in Taylor- MacLaurin 

series, the exponential term from (8), then 𝑝𝑆𝑖𝑛(𝑥) can be rewritten as 

follows: 

 
𝑝𝑆𝑖𝑛(𝑥) =

𝛼

𝜎√2𝜋
𝑒
−(
𝑥
4𝜎
)
2

 (8) 

where 𝛼 = 𝛼 (𝐴, 𝜎,𝑁)  is a constant depending on the sinusoid 

amplitude, noise standard deviation and the number of Taylor-

MacLaurin series terms, 𝑁. For calculus simplicity, we suppose 𝑁 is 

an odd number. 

Secondly, we perform for 𝑝𝑆𝑖𝑛(𝑥) the same variable change as in 

the previous section, and we will get the pdf of 𝑋(𝑆𝑖𝑛): 

 
    𝑝𝑋(𝑆𝑖𝑛)(𝑦) =  

𝛼

𝜎√2𝜋𝑦3(1 − 𝑦)
∙ 𝑒

𝑦−1
(4𝜎)2𝑦     (9) 

The k-th order moments of 𝑝𝑋(𝑆𝑖𝑛)(𝑦) , 𝑘 ≥ 1, are given by the 

following relation [15]: 

 
𝑚𝑘 = ∫ 𝑦𝑘 ∙

∞

−∞

 𝑝𝑋(𝑆𝑖𝑛)(𝑦)     (10) 

As mentioned in previous section,  𝑦 ∈ (0,1) . We perform the 

variable change 
1−𝑦

𝑦
= 𝑡 and we obtain: 

 
𝑚𝑘 =

𝛼

𝜎√2𝜋
∫

1

√𝑡
∙

∞

0

1

(1 + 𝑡)𝑘
∙ 𝑒−𝑎𝑡  𝑑𝑡    (11) 

with =
1

(4𝜎)2
 . If we compute the integral from (12), for the first 

moment [16], we get: 

                      𝑚1 = 𝜋 ∙
𝛼

𝜎√2𝜋
∙ 𝑒𝑎 ∙ 𝑒𝑟𝑓𝑐(√𝑎)   (12) 

As Eq. (12) proves, the pdf’s moments are functions of sinusoid 

amplitude and noise standard deviation. The sinusoid describes a 

deterministic process, hence 𝐴 is known, and 𝜎 can be estimated. 

In order to test the robustness of our proposed transform, we 

perform an SNR level test. The moments of first and second order are 

calculated for a SNR range between -30 and 10 dB. Their variation is 

displayed in Fig. 3. 

 
 Fig. 3. SNR level test. 

III. Experimental tests and results 

A. Data acquisition 

In our experiment, SCAIME Epsimetal extensometer sensor with a 

resolution better than 1µm/m [17] is placed on the alternator bearing 

conical support at 150mm distance from its outer edge and at 300mm 

distance from the alternator bearing of a Francis turbine (Fig. 4). 

 
Fig. 4. The extensometer placement on the alternator bearing. 

 

Using 18 different operating conditions (different water flow rates, 

between 80 and 350 l/s), elongations variations were recorded with a 

sampling rate of 5120 Hz. The extensometer measurements are 

related to the turbine mechanical behavior. The link with the hydraulic 

phenomenon is made by the presence of low frequencies, under 1Hz, 

in the spectral analysis of the recorded data.      

B. Results 

The theoretical framework presented in part II, will be used now to 

detect and visualize the cavitation vortex presence (Fig. 5). The input 

signal,  𝑆𝑖𝑛(𝑡),  is composed by the sum of one sinusoids, 

corresponding to the turbine rotation frequency and the noise in the 

corresponding vortex frequency bandwidth: between 0.5 and 1 Hz.  

 
Fig. 5. Measured data processing method.  

 

The vortex detection is performed by the computing the first and 

second order statistical moments of  Sin  and  X{Sin} , for several 

working regimes. In order to apply (12), the sinusoid parameters are 

constants, no matter the turbine’s working regime, and σ is the 

reference noise standard deviation (the σ of recorded noise for the 

optimal working conditions of the turbine). Fig. 6 shows moments 

variation of  Sin and  X{Sin}, for all flow rates. The effect of using the 

proposed transform X, is that the statistical moments m1 and m2 of 

 X{Sin} are correlated and they vary according to the cavitation vortex 

appearance.  

 
Fig. 6. Statistical moments variation as a function of the gate opening. 
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One can notice a vortex detection event by the drop of the second 

order moment, 𝑚2, for a gate opening between 25-50%. The vortex 

presence, hence appearance of its corresponding frequency, is marked 

by a lower data’s second order moment. The first order moment do 

not provide enough information, especially that of  Sin. Using (3), the 

extensometer’s vertical elongations are transposed to angular rotation 

of a circle with 3 degree of freedom: rotation around  𝑥 , 𝑦  and 𝑧 

directions. In order to obtain a 3D rotation of the circle, at every 

instance of time, a product of the three rotation matrices following (1) 

and (2), for each direction, is applied to a unitary circle in initial 

position. The rotation period is equal to the vortex rotation period. Eq. 

(4) gives the spherical coordinates of the rotated circle, at each time 

instant 𝑡. In Fig. 7 we can visualize, on the turbine hill chart, the 

presence of the cavitation vortex. Three operating points are 

considered: part load (PL), the best efficiency point (BEP) and high 

load (HL). For PL, more than for HL, the vortex appearance is marked 

by the presence of low frequencies on signal’s spectrogram, and by 

the deviation from the 3D circle reference position given by the BEP. 

 
Fig. 7. 3D interpretation of the vortex cavitation appearance.  

 

   In the case of cavitation vortex appearance, the statistical moments 

of the corresponding signal are close to those of a Gaussian pdf. This 

fact is in agreement with our initial assumption from section II.A, that 

the additive noise present in the cavitation vortex frequency 

bandwidth is considered to be Gaussian. 

IV. CONCLUSION 

Cavitation vortex and all flow instabilities have a major impact on 

hydraulic machinery efficiency. The ability to detect instantly the 

flow parameters changes, improves the machines monitoring and thus, 

low efficiency exploitation can be avoided. In this paper we have 

presented a new application for extensometer measurements, which 

provide real time information about the cavitation vortex appearance, 

using a mathematical model for data processing. Perspectives of study 

concern the adaptive estimation for the reference noise standard 

deviation [18].    
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