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Abstract— Electrical arc faults represent a danger for today’s 

power generation systems, and their detection can have a serious 

positive economic impact. In this paper we present a system for 

the detection and localization of DC electrical arc faults (typical 

for a photovoltaic power generation system). Our approach is 

based on the multidimensionality of the arc fault emissions, 

therefore we use a dual sensing system, composed by 

electromagnetic & acoustic sensors. Also, we present a 

comparison between two possible signal processing methods in 

order to recover the TOA (“time of arrival”), which then enables 

us to precisely localize the source of the arc fault.  

Keywords—electrical arc fault; acoustic; electromagnetic; time 

of arrival; transient detection. 

I. INTRODUCTION 

The increasing amount of energy production and of the 

scale of energy producing facilities increase the wear of these 

installations. Then, the surveillance systems need to be 

defined in order to avoid fault generation and propagation. 

One such case is the occurrence of electrical arc faults in 

photovoltaic (PV) systems. The physical impact of such a fault 

can be seen in Fig. 1. 

 
Fig. 1 DC arc fault in a photovoltaic system [4]. 

 

Our system exploits the multiple emissions of the arc 

fault phenomenon, by measuring the generated 

electromagnetic and acoustic waves. With these 

measurements, the system (with the help of different signal 

processing methods) succeeds in detecting the presence of the 

arc fault, as well as computing the position of  its source.   

In the first section, we will give a short description of the 

system (with regards to the sensors used and their 

positioning). In section II, we will describe two different 

signal processing methods with the aim of detecting and 

localizing the arc fault. In section III, results and performances 

for one type of measurement will be evaluated, in order to 

conclude what method works better in this context and to 

present our explanation for the results. 

II. SYSTEM DESCRIPTION 

The study of electrical arc faults is a topic of interest in the 
scientific community [1]-[3], as well as in the field of detecting 
DC electrical arc faults that occur in PV systems.  

The authors have also previously exploited the arc fault 
feature of generating electromagnetic and acoustic waves, as 
can be seen in [5]-[7]. In this paper we will present a more up 
to date embodiment of the system, with two classical TOA 
estimation methods, which are generally used for transient 
detection.  

The physical feature that makes the system robust is that 
the generation of electromagnetic waves is instantaneous (to all 
extents and purposes) and serves as an external trigger for the 
acoustic sensing channels. By having the reference t0 of the arc 
fault ignition given by the electromagnetic sensor, we then 
proceed to calculate the TOA on each of three acoustic sensing 
channels. Once having done this, by employing the difference 
of TOA (“difference in time of arrival”-DTOA) between each 
of the three channels, we manage to compute an estimation of 
the position of the arc fault source. Fig. 2 shows the elements 
that were used for this system. 

 
Fig. 2 Description of the detection and localization system. 

The electromagnetic sensor consists of two FR-4 double 
sided antennas (element 1 of Fig. 2). The acoustic sensing is 
done with three ultrasound microphones, with a frequency 
response which makes them acceptable for use in the 10-
135kHz range.  

An example of a measurement is in Fig. 3, where we can 
clearly see the arc fault ignition on the electromagnetic sensor 
and the acoustic sensor reception, which arrives at a slightly 
different TOA on each channel. Again, the first sharp peak in 
the electromagnetic signal (blue) triggers the data acquisition 
for the acoustic sensing. 



 
Fig. 3 Electromagnetic and acoustic signals. 

Once having computed the three TOA’s, we then solve the 
following equation system in order to complete the localization 
[5]-[7]: 
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                is the difference of time of arrival (DTOA), 

ti is the time of arrival at each acoustic sensor Si, 

               , v is the speed of sound and P            is the 

photovoltaic panel location (the arc fault source). A visual 

description of the measurements setup is presented in Fig. 4 

(antenna – S1, acoustic sensor 1 – S2, acoustic sensor 2 – S3, 

acoustic sensor 3 – S4, consistent with Fig. 3) . 

 
Fig. 4. Experimental measurement setup description.  

 

III. SIGNAL PROCESSING METHODS 

In this study, we present two classical methods in transient 

signal detection in order to detect the sharp peaks in each of 

the signals in Fig. 3. 

The two approaches are: 

- Pre-filtering and finding the time instant with the 

maximal energy (energy detector); 

- Sliding window kurtosis and standard deviation 

analysis. 

A. Energy detector 

Firstly a time-frequency analysis (spectrogram) of the 
signals is performed. The aim is to observe how the frequency 
content of the signals is spread in the 20-70kHz range (Fig. 5), 
so we applied an appropriate pass-band filter in order to 
denoise the signal. 

 
Fig. 5 Time-frequency analysis of the acoustic signal (one channel). 

On this denoised signal the well known energy detector is 
applied, as depicted in Fig. 6. 

 
Fig. 6 Continuous (analog) energy detector (Upper); Discrete (numerical) 
energy detector. 

 The basic principle of this approach is that it measures the 
energy associated with the received signal over a specified time 
duration (and in this case, also in a specified bandwidth). The 
measured value is compared afterwards with an appropriately 
selected threshold to determine the presence or the absence of 
the transient signal [8], cases which define the binary 
hypothesis testing problem [10]: 

 
                                              

                                               
      (2) 

Equation 2 translates in the following formulation: 

      
                     
            

                        (3) 

where x(n) is the signal to be detected (the arc fault) and w(n) 
is the background noise, with known variance    

 .  



The associated test statistic, in a numerical implementation, 
after appropriate pre-filtering, sampling, squaring and 
integration is given in Equation 4: 

           
                               (4) 

where N is the window length (which will be appropriately 
chosen for our detection purpose). 

In the context of this formulation of our detection problem, 
the probability distributions of each of the two hypotheses will 
be computed based on the carried out measurements, which 
will then yield the metrics on which we will base our final 
evaluation of the proposed solutions: the probability of 
detection (probability of correctly detecting H1) and probability 
of false alarms (probability of incorrectly detecting H0 as H1).  

 

In conclusion, it is a classical detection scheme and in the 
case of our application, with the type of signals depicted in Fig. 
3, it is advisable to test its performances with regards to our arc 
fault detection objective. 

 

B. Sliding window kurtosis and standard deviation analysis 

For this approach, instead of analyzing the output of an 
integrator (such as the case for the energy detector), we 
consider the standard deviation and the kurtosis values of the 
samples that are located in the sliding window of analysis. The 
variation of statistical moments (in this case, time variation) 
can be a good indicator for transient signal detection.  

The standard deviation of a random variable X, as a statistical 
moment, is defined in eq. 5: 

                                          (5) 

The unbiased estimator of the sample standard deviation is 
given in eq. 6, for a signal x of N samples and mean   : 
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The kurtosis of a random variable X (with mean µ) is the fourth 
standardized moment, as defined in eq. 7: 

        
         

            
                           (7) 

The sample kurtosis formula that was used for this work (for N 
samples, with sample mean   ) is given in eq. 8: 
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And finally, an aggregation of the two statistical indicators is 
done by computing their arithmetic mean: 

     
      

 
                                   (9) 

An example of such an analysis carried out on a set of signals 
is shown in Fig. 7, where we can see the electromagnetic and 
acoustic sensors’ processed outputs. 

 
Fig. 7. Aggregate statistical indicator (normalized) example for a set of signals 
(one measurement).  

IV. RESULTS 

The two methods were tested on arc fault sources located at 
different ranges, with the following spatial coordinates:  

Config. 1: Xarc = 150cm, Yarc = 180 cm, Zarc = 0cm; 

Config. 2: Xarc = 180cm, Yarc = 180cm, Zarc = 0cm; 

Config. 3: Xarc = 510cm, Yarc = 0cm, Zarc = 0cm. 

The arc fault was placed at the same height as the centroid 
of the sensing system. The signals from Fig. 3 were obtained in 
this configuration and also, the processed signals in Fig. 7 were 
computed on the same signal set. 

A. Energy detector results 

For the configurations presented earlier, we have carried 
out five measurements, with the following mean results: 

TABLE I.  ENERGY DETECTOR: MEAN RESULTS & ERRORS (%). 

Conf. 

No. 

XARC/Err.(%) YARC/Err.(%) 

1 154.3 2.9 187.9 4.4 

2 183.7 2.05 186.1 3.4 

3 519.6 1.88 2.4 - 

 

Table 1 shows us that there are reasonably low error 
percentages for this type of transient detection and TOA 
estimation. Normalized versions of the signals are presented in 
Fig. 8.  



 

Fig. 8. Normalized windowed energy indicator (one measurement).  

B. Sliding window kurtosis and standard deviation analysis 

The results of the second TOA estimation is given in Table 

2: 

TABLE II.  STATISTICAL ANALYSIS: RESULTS & ERRORS (%). 

Conf. 

No. 

XARC/Err.(%) YARC/Err.(%) 

1 161.2 7.4 196.5 9.1 

2 187.2 4 196.8 9.3 

3 523.6 2.6 4.4 - 

 

The results are comparably worse than those obtained for 

the energy detector, but this may be caused by some internal 

sensitivities of the statistical approach, as we will explain in 

the concluding remarks. 

 

C. Statistical simulations based on the measurements 

For the energy detector, seeing as it offered the best 

performances (based on Tables I and II), we have carried out 

statistical simulations based on the results of the 

measurements. The procedure consisted in undertaking five 

measurements for each of the three configurations, and the 

following steps: 

1. Compute means and standard deviations for each 

configuration. 

2. Compute the corresponding normal distributions for 

each of the configurations.  

3. Based on the normal distributions computed in the 

previous step, compute the survivor functions: 

Probability vs. Threshold.  

 

The survivor functions are shown in Figures 9, 10 & 11 

and indicate how the probability of detection and probability 

of false alarm (noise) vary with the threshold and also with the 

distance between the arc fault source and the detection system. 

 

 
Fig. 9. Survivor function for the 1st configuration: Probability of detection 

(Arc Fault – Blue) & Probability of false alarm (Noise – Red) vs. Normalized 

Threshold, Range of Thresholds with 0% false alarms & 100% detection – 
Green rectangle.  

 

 

 
Fig. 10. Survivor function for the 2nd configuration: Probability of detection 

(Arc Fault – Blue) & Probability of false alarm (Noise – Red) vs. Normalized 
Threshold, Range of Thresholds with 0% false alarms & 100% detection – 

Green rectangle. 

 

 

 
Fig. 11. Survivor function for the 3rd configuration: Probability of detection 

(Arc Fault – Blue) & Probability of false alarm (Noise – Red) vs. Normalized 

Threshold, Range of Thresholds with 0% false alarms & 100% detection – 

Green rectangle. 

 

Again, as can be seen from the statistical simulations 

carried out on the measurements, the farther away the arc fault 

source, the more difficult it is to find an adequate threshold 

that ensures 100% probability of detecting the arc faults and 

0% probability of false alarm (of misclassifying noise as an 

arc fault).  

 

V. CONCLUSION 

It is clear that the better results were obtained by using the 
energy detector, as compared to those of the statistical analysis 
approach.   



For the sliding window statistical analysis there is always a 
compromise to be made between the length of the window ( 
time resolution) and the overlap between windows ( 
“smoothness” of numerical indicator). The length of the 
window also influences greatly the validity of each statistical 
indicator, as a larger number of samples has the tendency to 
have more statistical relevance than a low-sample number 
window.  

On the other hand, the energy detection scheme can be 
carried out even with a 1-sample overlap between integration 
windows, and have excellent time resolution and low SNR. A 
more complex detection scheme would be based on a known 
signal model for the arc fault generated pulses that would allow 
the use of a matched filter, that may even further improve the 
expected SNR [9]. 

The results obtained with the system and associated 
methods indicate the added value of further studying and 
modeling the spatial performances of our approach (maximal 
distance of detection), which will be carried out as future 
works. 

More precisely, what is envisioned in the future for this 
project, is to carry out a detailed study on the statistical 
performances (probability of detection and probability of false 
alarm) with regards to the position of the arc fault source, in 
order to obtain a 3D mapping of the expected performances. 
The energy detector still stands as the go-to method, but other 
approaches may be investigated in order to determine the 
Time-of-Arrival.  

The hardware platform that was designed (the multi-
sensing system), in conjunction with the developed methods 
and its associated results, show the extremely promising nature 
of the electromagnetic-acoustic detection approach.  
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