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Résumé – Ce papier présente une solution à un problème très connu dans la distribution de l’énergie électrique : la 

détection des décharges partielles dans un système de distribution utilisé également pour la communication par des 

courants porteurs et qui peuvent perturber le fonctionnement des détecteurs actuels. Nous montrons les inconvénients 

de la méthode classique (basée sur le seuillage énergétique) et on présente les résultats d’une nouvelle approche, basée 

sur la projection des signaux dans le diagramme des phases suivie de l’analyse par transformée de Hough.     

Abstract – This paper presents a solution of a well-known problem in electrical energy distribution: the detection of 

partial discharges in a distribution system also used for power line communication (COMM). We show the 

inconveniences of the classical approach (energy thresholding) and we present the results of a new approach, based 

on the projection of the signals in a multidimensional phase space, followed by a Hough transform-based analysis. 

 

1 Introduction 

The topic of fault detection in electrical system is of 

great interest in the present day, and one of the most 

common faults is represented by partial discharges (PDs). 

More than 30% percent of breakdowns in power systems 

are caused by isolation defects [1], which can occur in 

any phase of the production-transport-distribution chain. 

From o signal signature point of view, PDs are very 

short, impulse-like transient signals, while also 

presenting a wide band frequency characteristic. From a 

physical point of view, the phenomenon is also 

associated with electromagnetic, ultrasonic and acoustic 

emissions. Based on these features there exist several 

procedures for PD detection and/or localization [2]: 

 Electrical measurement-based 

detection/localization; 

 Electromagnetic sensing; 

 Acoustic/ultrasound sensing; 

In the context of electrical-based detection, the 

classical approach is to use current sensors (Rogowski or 

current transformers) with a wide bandwidth and 

inspecting the High Frequency domain of the current (10 

kHz and upwards to tens of MHz). This approach, 

coupled with energy thresholding, is very robust in a non-

noisy environment. But in real-life applications, there are 

noise sources in the system, which can interfere with 

proper detection. Loads also generate high frequency 

content, but not at the same levels as PDs and of a 

different temporal pattern.  

The most difficult problem to overcome for detecting 

the temporal signature of the high frequency emissions of 

the PDs is identifying their presence in a network used 

for power line communication (COMM). These types of 

systems normally generate a high frequency content of 

levels greater than the PD and is difficult to distinguish 

between the two phenomena.  

The method proposed in this paper attempt firstly to 

represent the two phenomena, the PD and COMM, in the 

phase diagram domain that shows up good discrimination 

capability for the both signal types. The, the Hough 

transform is applied in order to measure this 

discrimination and to allow the accurate identification.  

This paper presents the detection problem in more 

detail in section 2; in section 3 a new approach based on 

phase space embedding is explored, followed by 

experimental results and the concluding remarks. 

2 Practical problem formulation: PDs vs. 

COMMs 

As stated in the previous section, one of the most 

employed PD detection principles is electrical-based 

sensing, with the use of high frequency current 

measurements. The energy levels of the high frequency 

current are compared to a threshold and a decision is 

taken [3]. 

This approach fares well in a noise-free electrical 

system, because loads generate traditionally lower levels 

of high frequency energy (depending of the analyzed 

bandwidth – some bandwidths are more polluted than 

others).  

But one of the most important high frequency noise 

sources are power line communication (COMM) 

systems, that employ carrier frequencies spread over a 

wide band spectrum and thoroughly mask the PD 

phenomenon.  

 
 



 
Figure 1. Partial discharge (blue) & envelope (red). 

 

An example of a recorded partial discharge is shown 

in figure 1, which is clearly visible in a noise-less 

environment. 

 Note that the signal, as all the other signals, are 

normalized between 0 and 1.  

Figure 2 presents the case where a PD happens during 

the operation of a COMM system, and the transient signal 

of interest has become a lot more difficult to recognize 

(green rectangle). 

 

  
Figure 2. PD+COMM signals (blue) & envelope (red). 

 

Figure 3 shows the power spectral density (Welch’s 

method) for the signal in figure 2, showing the amplitude 

masking of the PD phenomenon. 

 

  
Figure 3. Power Spectral Density: PD+COMM. 

 

A different approach than a simple energy detector is 

required aimed to identify the presence of the partial 

discharge in this signal window (and others similar). 

 

3 Phase space-based analysis 

Energy detectors or matched filter-like approaches are 

limited in this context, therefore we propose an approach 

based on the embedding in the phase space. 

A measured signal can be considered as a time series s 

of length N samples, as expressed in equation (1). 
 

𝑠 = {𝑠[1], … , 𝑠[𝑁]}      (1) 
 

The time series is embedded in an m-dimensional 

phase space, as described by Takens  & Abarbanel in [6], 

[7]. In this new representation the time series becomes a 

succession of m-dimensional vectors of the form: 

 

𝑣[𝑖]⃗⃗ ⃗⃗  ⃗ = ∑ 𝑠[𝑖 + (𝑘 − 1)𝜏] ∙𝑚
𝑘=1 𝑒𝑘⃗⃗⃗⃗ , 𝑖 = 1,𝑀̅̅ ̅̅ ̅̅     (2) 

 

where  𝑣[𝑖]⃗⃗ ⃗⃗  ⃗  are the vectors, m is the embedding 

dimension, τ is the lag (delay) taken between samples, 

M=N-(m-1) and 𝑒𝑘⃗⃗⃗⃗  is the versor of the k axis. By 

computing the phase space trajectory, we can completely 

unfold the dynamics of the phenomena under inspection.  

The parameters m and τ (dimensions of the phase space 

and delay/lag between samples, respectively) can be 

deduced in a wide variety of ways, as described in [4]-

[6]. For this work, we have used the False Nearest 

Neighbors method for deducing m and the mutual 

information criterion for the choice of τ.  

The deduced parameters are presented in table 1. 

 
Table 1 : Embedding parameters.  

 PD COMM  DP+COMM 

m 8 8 8 

τ 30 10 30 

 

After properly embedding the signals in the 

corresponding phase space that completely unfolds their 

dynamics, we must use a tool that allows data 

visualization. Seeing as we are working in an 8-

dimensional space, visual representation of the 

trajectories becomes impossible in a straightforward 

matter. 

A powerful tool that is used in situations of this type is 

the “cosine distance” between vectors u and v, expressed 

in equation (3): 

𝐶𝐷𝑢𝑣 = 1 − cos 𝜃   (3) 

 

 where 

cos 𝜃 =
𝑢∙𝑣

‖𝑢‖∙‖𝑣‖
      (4) 

 

 where ‖∙‖ is the Euclidean norm operator and u•v is 

the Euclidean dot product. 

So, for an M×M trajectory matrix, the distance matrix 

will contain M×M points, which consist of the pair-wise 

cosine distance between the said pair of points. 

 

The general advantages of using the cosine distance 

are: 

 Bounded output: between 0 and 1; 



 Commonly used in high-dimensional spaces; 

 Also commonly used in information retrieval 

and text mining; 

 Widely used measure of cohesion within 

clusters for data mining; 

 Relatively simple to compute; 

 Intuitive measure of distance/dissimilarity. 
 

After computing the cosine distance matrices, we have 

normalized (0-to-1 scale) and threshold them 

(empirically chosen at 0.5, in order to keep only the 

points that are further apart), thus obtaining binary 

matrices. 

 

Figures 4-to-6 present the distance matrices of the 

partial discharge (PD), the communication signal 

(COMM) and of the COMM overlapping the PD, 

respectively.  

 
Figure 4. Cosine distance matrix for Partial Discharge. 

  
Figure 5. Cosine distance matrix for COMM signal. 

  
Figure 6. Cosine distance matrix for PD+COMM signal. 

 

We can see in the above images, as in other 

measurements we have carried out, that in the case of the 

mixed partial discharge and COMM signal, the binary 

image of Fig. 6 that resulted from the thresholding of the 

cosine distance matrix, presents a great number of 

diagonal shapes, parallel to the principal diagonal of the 

matrix. To confirm this, we have used the Hough 

Transform, in order to investigate the presence of lines in 

the images and what are the orientations of these lines. 

Lines can be represented in a 2D image (with 

coordinates XY), in the following manner: 
 

𝑦 = 𝑎𝑥 + 𝑏      (5) 

where xy are the coordinates of a pixel and a and b are 

parameters of that particular line. 

 

However, the form expressed in equation (5) is not 

capable of representing vertical lines. Thus, a more 

proper form, used in the Hough Transform, is given in 

equation (6): 

𝜌 = 𝑥 ∙ cos 𝜃 + 𝑦 ∙ sin 𝜃     (6) 
 

which can be rewritten in the form: 

𝑦 = −
cos𝜃

sin𝜃
∙ 𝑥 +

𝜌

sin𝜃
     (7) 

where ρ and θ are the distance from the line to the origin 

and the angle of line, respectively. 

All lines can be represented in this form, as θ goes 

from 0 to 180 degrees and ρ varies in R+.  

Thus, the Hough space has two dimensions, ρ and θ, 

and a line is represented by a single point, corresponding 

to a unique set of parameters (ρu and θu). The line-to-point 

mapping is illustrated in figure 7 and the mapping of a 

point to the Hough space is depicted in figure 8. 

 

 
Figure 7. Line to point mapping to the Hough space. 

 

 
Figure 8. Point to line mapping to the Hough space. 

 

Figure 8 shows how a point is mapped to all lines that 

can pass through that point, which results in a sine-line 

line in the Hough space. 

Having established the suitability of the Hough 

Transform for line inspection, we have carried out this 

type of analysis for each of the three cases presented 



previously: partial discharge, COMM and mixed signal. 

Figures 9, 10 and 11 illustrate the results. 

 

 
Figure 9. Hough transform of the partial discharge. 

 

  
Figure 10. Hough transform of the COMM signal. 

 

  
Figure 11. Hough transform of the PD+COMM signal. 

 

The large concentration of lines for the PD+COMM 

signal of Fig. 11, around the π/4 = 0.7854 (45°) θ point 

indicates a high number of lines parallel to the diagonal 

in figure 6.  

Hough-based diagonal line detection is depicted in 

Fig. 12. In our application, we focus directly on the 

largest 45°- line found in the binarized distance matrix. 

The left side of Fig. 12 references Fig. 5, while the right 

side references Fig. 6. 

 

 
Figure 12. Hough-based Longest Diagonal Detection. 

 

4 Results & conclusion 

We have carried out this analysis for 16 acquired 

partial discharge signals that occurred during the several 

hours of functioning of a resistive load, in a DC network, 

which also included a COMM-based communication 

system. There is clear separation between the two classes 

(COMM and PD+COMM signals). 

  
Figure 12. Results for 16 COMM/PD+COMM pairs of signals: 

maximal diagonal length. 

 

The results are very promising and we intend to extend 

this study to a larger database of signals, as it enables the 

tackling of issues that are very difficult to solve in the 

temporal domain.  

5 References 
   [1] Boggs and G. C. Stone, "Fundamental limitations in the 

measurement of corona effect and partial discharges" Ontario 

Hydro Research, Toronto, Canada IEEE Transactions on 

Electrical Insulation Vol. EI-17 No.2, April 1982 143. 

[2] A. Krivda, “Automated recognition of partial discharges”, 

IEEE Transactions on Dielectrics and Electrical Insulation, 

Vol.2, No. 5, October 1995, pp. 796-821. 

[3] I. Candel, B. Gottin, C. Ioana, “Monitoring partial 

discharges in power networks: contribution to the energetic 

distribution security”, IEEE EnergyCon, 2010, DOI: 

10.1109/ENERGYCON.2010.5771712. 

[4] A. Digulescu, C. Bernard, E. Lungu, I. Candel, C. Ioana, 

G. Vasile, “Transient signal characterization using multi-lag 

phase space analysis”, IEEE COMCAS, 2015, DOI: 

10.1109/COMCAS.2015.7360411. 

[5] I. Candel, A. Digulescu, C. Ioana, A. Serbanescu, E. 

Sofron, “Optimization of partial discharge detection in high 

voltage cables based on advanced signal processing 

techniques”, IEEE ISSPA, 2012, DOI: 

10.1109/ISSPA.2012.6310489. 

[6] H. Abarbanel, “Analysis of observed chaotic data”, 

Springer, 1996, ISBN 978-0-387-98372-1.  

[7] F. Takens (1981). "Detecting strange attractors in 

turbulence". Lecture Notes in Mathematics. pp. 366–381. 


