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Introduction

In this paper, we deal with oriented and non-oriented graphs. When it is not specified, graphs are supposed to be non-oriented. Notations not given here are consistent with [START_REF] Bondy | Graph Theory[END_REF]. The vertex set of a graph or an oriented graph G is denoted by V (G) and its edge set (or arc set) by E(G) 1Classically, for a vertex x of a graph G, a vertex y with {x, y} ∈ E(G) is called a neighbour of x. The set of all the neighbours of x, denoted by N G (x), is the neighbourhood of x in G. In the oriented case, an out-neighbour (resp. in-neighbour ) of a vertex x of an oriented graph G is a vertex y with xy ∈ E(G) (resp. yx ∈ E(G)). Similarly, the set of all the out-neighbours (resp. in-neighbours) of x in G, denoted by N + G (x) (resp. N - G (x)) is the out-neighbourhood (resp. out-neighbourhood ) of x in G. In a graph G, we denote by x 1 . . . x +1 the path of length on the distinct vertices {x 1 , . . . , x +1 } with edges {x 1 , x 2 }, {x 2 , x 3 }, . . . , {x , x +1 }. We denote also by x 1 . . . x x 1 the cycle C of length on the distinct vertices {x 1 , . . . , x } with edges {x 1 , x 2 }, . . . , {x -1 , x }, {x , x 1 }. Classically, these notions are extended to oriented graphs, where the arcs x i x i+1 replace the edges {x i , x i+1 } 1 arXiv:1503.00965v1 [math.CO] 3 Mar 2015 (computed modulo for the oriented cycle C ).

A k-(proper) coloring of a graph G is a mapping c : V (G) → {1, . . . , k} such that c(u) = c(v) if u and v are adjacent in G. The chromatic number of G, denoted by χ(G), is the smallest integer k for which G admits a k-coloring and thus, we say that G is a χ(G)-chromatic graph. For a k-coloring of a graph G, a rainbow path of G is a path whose vertices have all distinct colors. Given a χ(G)-coloring of G, a rainbow path on χ(G) vertices is a colorful path. In particular a rainbow path is transversal to the set of colors (i.e. it has a non empty intersection with every color class). Finding structures transversal to a partition of the ground set is a general problem in combinatorics. Examples arise from Steiner Triple Systems (see [START_REF] Furedi | Triple systems not containing a Fano configuration[END_REF]), systems of representatives (see [START_REF] Aharoni | Independent systems of representatives in weighted graphs[END_REF]) or extremal graph theory (see [START_REF] Keevash | A multipartite Hajnal-Szemerdi Theorem[END_REF]). Rainbow and colorful paths have been extensively studied in the last few years, see for instance [START_REF] Akbari | Colorful paths in vertex coloring of graphs[END_REF], [START_REF] Akbari | Colorful paths in vertex coloring of graphs[END_REF], [START_REF] Fung | A colorful path[END_REF], [START_REF] Li | A generalization of the Gallai-Roy theorem[END_REF] and [START_REF] Lin | Simple proofs of results on paths representing all colors in proper vertexcolorings[END_REF]. In this paper, we concentrate on a conjecture of S. Akbari, F. Khaghanpoor and S. Moazzeni raised in [START_REF] Akbari | Colorful paths in vertex coloring of graphs[END_REF] (also cited in [START_REF] Cameron | Research problems from the BCC22[END_REF]).

Conjecture 1 (S. Akbari, F. Khaghanpoor and S. Moazzeni [START_REF] Akbari | Colorful paths in vertex coloring of graphs[END_REF]). Every connected graph G other than C 7 admits a χ(G)-coloring such that every vertex of G is the beginning of a colorful path.

Conjecture 1 holds for 1-chromatic graphs and 2-chromatic graphs. Indeed in connected bipartite graphs, every vertex is connected to a vertex of another color. The classical proof of Gallai-Roy Theorem also shows that in any χ(G)-coloring of a graph G, there exists at least one colorful path (see [START_REF] Bondy | Graph Theory[END_REF], for instance). Furthermore, much more is known concerning this conjecture which, through recent, have already received attention. In [START_REF] Akbari | Colorful paths in vertex coloring of graphs[END_REF], S. Akbari, V. Liaghat, and A. Nikzad proved that Conjecture 1 is true for the graphs G having a complete subgraph of size χ(G). They also proved that every graph G admits a χ(G)-coloring such that every vertex is the beginning of a rainbow path on χ(G) 2 vertices. This result was improved by M. Alishahi, A. Taherkhani and C. Thomassen in [START_REF] Alishahi | Rainbow paths with prescribed ends[END_REF], who showed that we can obtain rainbow paths on χ(G) -1 vertices.

In this paper, we give another evidence for Conjecture 1, and prove it for 3-chromatic graphs.

Theorem 2. Every connected 3-chromatic graph G other than C 7 admits a 3-coloring such that every vertex of G is the beginning of a colorful path.

The proof of Theorem 2 uses an auxiliary oriented graph build from a coloring of the instance graph. This oriented graph was already used in [START_REF] Akbari | Colorful paths in vertex coloring of graphs[END_REF]. In the next section, we recall its definition and strengthen the results known about it to obtain some useful lemmas. In Section 3, we use these tools to derive the proof of Theorem 2. Finally, in Section 4, we conclude the paper with some remarks and open questions. In particular, we prove that Conjecture 1 is true for 4-chromatic graphs containing a cycle of length four.

Preliminaries

In this section, G = (V, E) is a connected graph and c is a proper coloring of G with χ(G) colors. Here, G is not necessarily 3-chromatic and, for short, we write χ instead of χ(G). In the following, we will consider modifications of colors and all these modifications have to be understood modulo χ. As defined in [START_REF] Akbari | Colorful paths in vertex coloring of graphs[END_REF], the oriented graph D c has vertex set V and ab is an arc of D c if {a, b} is an edge of G and the color of b equals the color of a plus one (this oriented graph was first introduced in [START_REF] Guichard | Acyclic graph coloring and the complexity of the star chromatic number[END_REF][START_REF] Zhu | Circular chromatic number: a survey[END_REF]). A colorful path starting at the vertex x is called a certifying path for

x. A colorful path x 1 . . . x χ is forward (resp. backward ) if for every i ∈ {1, . . . , χ -1} we have c(x i+1 ) = c(x i ) + 1 mod χ (resp. c(x i+1 ) = c(x i ) -1 mod χ).
Note that a forward (resp. backward) certifying path for a vertex x is an oriented path in D c on χ vertices starting (resp. ending) at x.

An initial section of D c is a subset X of V such that there is no arc of D c entering into X (i.e. from V (G) \ X to X). The initial recoloring of X consists of reducing the color used on each vertex in X by one. We have the following basic facts (which are mentioned in [START_REF] Akbari | Colorful paths in vertex coloring of graphs[END_REF], but we recall here their short proofs for the sake of completeness).

Lemma 3 (S. Akbari et al. [START_REF] Akbari | Colorful paths in vertex coloring of graphs[END_REF]). An initial recoloring of an initial section is still a proper coloring.

Proof. Let c be a coloring of G and X an initial section of D c . We denote by c the coloring of G obtained after the initial recoloring of X. Let x and y be two adjacent vertices. If both x and y are not in X, we have c (x) = c(x) = c(y) = c (y). If both x and y are in X, we have c (x) = c(x) -1 = c(y) -1 = c (y). So, by symmetry we may assume that x / ∈ X and y ∈ X. Since X is an initial section, there is no arc from x to y in D c and then we have c(x) = c(y) -1. Thus we have c (x) = c(x) = c(y) -1 = c (y).

We will intensively use Lemma 3 to prove Theorem 2, and so, without refereeing it precisely. Notice that when performing an initial recoloring on an initial section X, we remove from D c all the arcs leaving X and possibly add some arcs entering into X (the arcs xy with {x, y} ∈ E(G), x / ∈ X, y ∈ X and c(x) = c(y) -2). Moreover, we do not create any arc leaving X. Indeed suppose by contradiction that an arc xy is created with x ∈ X and y / ∈ X, then in the original coloring c, we must have c(x) = c(y), contradicting c being proper. The other arcs, standing inside or outside X remain unchanged.

Similarly, a subset X of vertices is a terminal section of D c if there is no arc leaving X (i.e. from X to V (G) \ X). The terminal recoloring of X consists in adding one to the color of the vertices of X. As for the initial recoloring, this coloring is still proper. Note also that, when performing a terminal recoloring of X, we remove from D c all the arcs entering into X and possibly add some arcs leaving X (the arcs xy with {x, y} ∈ E(G), x ∈ X, y / ∈ X and c(x) = c(y) -2). Using initial and terminal recolorings, we prove some basic facts on the existence of colorful paths. Two colorings c and c are identical on X if c(x) = c (x) for all x ∈ X.

Lemma 4 (S. Akbari et al. [START_REF] Akbari | Colorful paths in vertex coloring of graphs[END_REF]). Let c be a χ-coloring of G and X be a subset of vertices of G. There exists a χ-coloring c of G identical to c on X such that every vertex is the beginning of an oriented path of D c which ends in X.

Proof. Let c be a χ-coloring of G identical with c on X. We define Y c as the set of vertices of G which are the beginning of an oriented path in D c ending in X. The path can have length 0, i.e. X is included in Y c . Now, we choose c a χ-coloring of G identical with c on X with an associated set Y c of maximal cardinality. Let us prove that Y c = V . Otherwise, notice that, by definition, Y c is an initial section of D c , and so that V \ Y c is a terminal section of D c . Denote by c t the terminal recoloring of V \ Y c . As X ⊂ Y c , c t is also identical to c on X. Moreover, the arcs from Y c to V (G) \ Y c of D c are not anymore in D ct and the only arcs which can be created are arcs from

V (G) \ Y c to Y c in D ct . If no arc from V (G) \ Y c to Y c is created, we can repeat the terminal recoloring of V \ Y c
until such an arc appears. As G is connected, the process must stop at some step, and at least one arc zz must appear from

V (G) \ Y c to Y c . So, c t is identical to c on X, and we have Y c ∪ {z} ⊆ Y ct which contradicts the maximality of Y c .
In particular, Lemma 4 implies that Conjecture 1 holds if D c contains an oriented cycle. Indeed, if C is such a cycle, then C has length a multiple of χ, and so C has length greater or equal than χ. If we apply Lemma 4 with X = V (C), then we obtain a χ-coloring c such that every vertex of G is the beginning of an oriented path of D c ending in V (C). So, extending possibly these paths with some vertices and arcs of C, every vertex of G is the beginning of an oriented path of D c of length χ. Thus, G satisfies Conjecture 1. As mentioned in [START_REF] Akbari | Colorful paths in vertex coloring of graphs[END_REF], note that if G contains a clique of size χ(G), then for every χ-coloring c of G, D c contains an oriented cycle, and so G verifies Conjecture 1.

So, we have to focus on the case where D c is an oriented acyclic graph. We introduce some notations for this case. Let D be an oriented acyclic graph. The level partition of D is the unique partition of

V (D) into subsets (V 1 , • • • , V k ) such that V i consists of all sinks of the oriented acyclic graph induced by D on V \ ∪ i-1 j=1 V j .
As each V i is the set of sinks of an acyclic induced oriented subgraph of D, it is in particular an independent set. The height of a vertex x, denoted by h D (x), is the index of the level x belongs to in the level partition of D. And, the height of the partition is the maximal height of a vertex (i.e. k in our notations, here). Now, we introduce notations for an oriented acyclic graph D c associated with a χ-coloring c of G. Assuming that D c is acyclic, we denote by (V c 1 , • • • , V c k ) its level partition. Note that by construction, if xy is an arc of D c with x ∈ V i and y ∈ V j we have i > j and i -j = 1 mod χ. We define the height of c as the height of this level partition. It is also the number of vertices in a longest oriented path of D c . We denote it by h(c), and to shorten notations, we write h c (x) instead of h Dc (x) to indicate the height of a vertex in the level partition of D c . Finally, a χ-coloring c is a nice coloring of G if D c is an oriented acyclic graph with a unique sink. Given a nice coloring c, every vertex of D c is the beginning of an oriented path which ends at this unique sink. An in-branching is an orientation of a tree in which every vertex has out-degree 1, except one vertex, called the root of the in-branching. It is well-known that, for a fixed vertex x of a digraph D, every vertex is the beginning of an oriented path ending at x if, and only if, D has a spanning in-branching rooted at x (see [START_REF] Bondy | Graph Theory[END_REF] Chap. 4 for instance). Thus, c is nice if, and only if, D c has a spanning in-branching. So, if we apply Lemma 4 with a set X containing a unique vertex v, we obtain a coloring c where every vertex is the beggining of a path ending in v, or equivalently where D c has an in-branching rooted at v. If v is not a sink of D c , then D c contains an oriented cycle. Otherwise D c has a unique sink v, and then c is a nice coloring. Thus we have the following.

Corollary 5. Either G admits a χ-coloring c such that D c contains an oriented cycle, or for every vertex v of G, there is a nice χ-coloring of G with v as unique sink.

Note that, given a nice coloring c of G, the vertices belonging to a same level of the level partition of D c receive the same color by c. Indeed, V c 1 only contains the unique sink r of D c , and, as every vertex in V c i has an out-neighbour in V c i-1 , an easy induction shows that c(x) = c(r) -i + 1 mod χ for every x ∈ V i . Now, we can establish the following lower bound on the height of D c , for a nice coloring c of G. Lemma 6. Let c be a nice χ-coloring of G. We have h(c) ≥ 2χ -1.

Proof. Assume by contradiction that h(c) ≤ 2χ -2 for a nice coloring c of G. Denote by r the unique sink of D c (which forms the level V c 1 ), and consider the set

X = V c χ ∪ V c χ+1 ∪ • • • ∪ V c h(c)
. This set X is not empty (otherwise G would have a partition in less then χ independent sets) and is an initial section of D c . When performing the initial recoloring of X, the color c(r) + 1 disappears. Indeed, only the vertices of V c χ used this color before the recoloring, and no vertex of X uses it after the recoloring. So, we obtain a (χ -1)-proper coloring of G, a contradiction.

As a consequence, in a nice coloring of G, there exists a backward certifying path for the sink of D c . As, by Lemma 5, every vertex of G can be the sink of D c for a nice coloring c, or we find an oriented cycle in D c , it means that for every vertex x, there exists a coloring of G containing a colorful path with end x, what was already proved in [START_REF] Li | A generalization of the Gallai-Roy theorem[END_REF]. But, we can be more precise. Let c be a nice coloring of G, we denote by B c the set of vertices of G which have no certifying path. We have seen that the sink of D c is not in

B c . Moreover, in the level partition (V c 1 , • • • , V c k ) of D c , every vertex in V c i has an out-neighbour in V c i-1
, and then, every vertex in V c i with i ≥ χ has a forward certifying path. Then, we obtain the following.

Lemma 7. Let c be a nice coloring of G. We have

B c ⊆ V c 2 ∪ V c 3 ∪ • • • ∪ V c χ-1 .
Now, we pay attention to 3-chromatic graphs.

Colorful paths for 3-chromatic graphs

In this section, we focus on the special case χ = 3 and prove Theorem 2. Note that, when considering a 3-coloring c of a 3-chromatic graph G, every edge of G appears as an arc of the oriented graph D c (indeed, for any edge x, y of G, we have c(x) -c(y) ∈ {-1, 1}). Furthermore, when we perform an initial recoloring on an initial section X of D c , all the arcs leaving X become arcs entering into X.

Lemma 8 (S. Akbari et al. [START_REF] Akbari | Colorful paths in vertex coloring of graphs[END_REF]). Conjecture 1 is true for every odd cycle except C 7 .

Proof. For the sake of completeness, we just give the coloring yielding the result.

Let C = v 0 v 1 . . . v k v k v k-1 . . . v 2 v 1 v 0 be an odd cycle different from C 7 . We define the 3-coloring c of C by c(v 0 ) = 3, c(v i ) = c(v i ) = i mod 3 for 1 ≤ i ≤ k -1, c(v k ) = k mod 3 and c(v k ) = k + 1 mod 3. Now, it is easy to check that if k = 3 (i.e. C = C 7 )
, then every vertex is the beginning of a colorful path.

In the following we assume by contradiction that Theorem 2 is not true and consider a minimal counter-example G (subject to its number of vertices) distinct from C 7 . The only consequence of the minimal cardinality of G we use is given by the following claim.

Claim 8.1. The graph G does not contain any twins, that is, there is no two vertices x and y in G with N G (x) = N G (y).

Proof. Assume that G has two vertices x and y with N G (x) = N G (y). First, notice that G \ {y} is 3-chromatic, as we can extend every coloring of G \ {y} to G by coloring y with the color of x. Now, if G \ {y} = C 7 , then in the coloring of G given Figure 1 every vertex is the beginning of a colorful path. So, G \ {y} is different from C 7 . Since G is a minimum counterexample, there is a proper coloring c of G \ {y} such that every vertex is the beginning of a colorful path. Extending the coloring c to y with c(y) = c(x) provides a certifying path for y since x has one. So, G would not be a counter-example to Theorem 2, a contradiction. Now, let c be a nice coloring of G, which exists by Corollary 5. As previously noticed, the associated oriented graph D c is acyclic since G is a counter-example to Theorem 2. We can describe precisely the structure of D c as follows. By Lemma 7, the set B c of vertices which do not have a certifying path is a subset of V 2 , the second level in the level partition of D c . So, if we denote by r c the unique sink of D c , every vertex of B c has a unique out-neighbour which is r c . Moreover, every vertex b of B c is not the end of an oriented path of length two in D c . Thus, either b is a source of D c or all its in-neighbours are sources of D c , and by construction of D c these in-neighbours belong to levels V c i with i = 0 mod 3. Finally, D c has height at least five by Lemma 6 and so, at least one vertex of V 2 is the beginning of a backward certifying path. In particular, we know that B c is a proper subset of V 2 . Figure 2 all the arc leaving N except the one with head b. So, we have V c 2 = {r c } ∪ N . Now, assume that for some integer i ∈ {3, . . . , h(c) + 1} the property ( ) is true for all j with j < i. Let x be a vertex of V c i-1 \ ({b} ∪ N ). The out-neighbours of x in D c are in ∪ i-2 k=1 V c k . All these vertices are in ∪ i-1 k=1 V c k by induction hypothesis. The other possible out-neighbours of x are vertices of {b} ∪ N which are in V c 1 ∪ V c 2 as previously shown. Therefore, the height of x is at most i in D c . Let y be an out-neighbour of x in D c such that y ∈ V c i-2 . Since y is not a source in D c we have y / ∈ N , and as y = b (otherwise, x would be in N ), we have by induction hypothesis y ∈ V c i-1 . So, the height of x is exactly i and x ∈ V c i , which finally proves ( ) and (b). In particular, (b) directly implies (c). It also implies (d) easily. Indeed, assume that V c h(c) ⊆ N , then as V c h(c) ∩N = ∅ we have h(c) = 0 mod 3. Thus, by (b), we have

V c h(c)+1 = V c h(c) \N = ∅ and V c h(c) = V c h(c)-1 = ∅. So we obtain h(c ) = h(c).
To prove (e), as we know that B c is a subset of V c 2 , which is {r c } ∪ N by (b), we just have to check that r c is the end of a certifying path in D c . Let P = x 4 x 3 x 2 x 1 be an oriented path of length 3 in D c with x 1 = r c and x i ∈ V c i for i = 1, 2, 3, 4. Such a path exists since the height of c is at least 5 by Lemma 6. As x 3 is not a source in D c , we have x 3 / ∈ N . As x 2 is certified in c by the path x 4 x 3 x 2 , we also have x 2 = b. So, the oriented path x 3 x 2 x 1 still exists in D c and is a certifying path in D c for r c . So, (e) is proved.

Before going on the main proof, let us establish the following technical result. Claim 8.3. Let c be a nice coloring of G and assume that there exists at least one arc from

V c h(c) to B c in D c . If X ⊆ V c h(c) ∪ V c h(c)-1 is an initial section of D c , then every vertex of D c \ (X ∪ B c ) has a certifying path lying in D c \ X.
Proof. As X is an initial section of D c , every forward certifying path starting at a vertex of

D c \ X lies in D c \ X. Thus every vertex of D c \ (X ∪ V c 2 ∪ {r c }) has a (forward) certifying path in D c \ X. We have X ∩ V c 3 = ∅ since h(c) ≥ 5 and X ⊆ V c h(c) ∪ V c h(c)-1 .
Thus there exists a path on three vertices starting in V c 3 , ending on r c and lying in D c \ X. This path is a backward certifying path for r c . To conclude, let z be a vertex of V c 2 \ B c . As z / ∈ B c , z is certified in D c by a backward path P = vwz on three vertices. By construction we have h c (z) = 2 mod 3 and then h c (w) = 0 mod 3 and h c (v) = 1 mod 3. Note that, since there is an arc from V c h(c) to B c , we have h c (y) = 0 mod 3 for every vertex y of V c h(c) and then h c (y ) = 2 mod 3 for every vertex

y of V c h(c)-1 . Since h c (w) = 0, if w ∈ X then w must be in V c h(c)
, which is impossible since w is not a source. So w is not contained in X. Moreover since h c (v) = 1 mod 3 and X only contains vertices y satisfying h c (y) ∈ {0, 2} mod 3, we have v / ∈ X. Thus vwz is a certifying backward path in D c \ (X ∪ B c ).

From now on, we consider a nice coloring of G with maximal height among all the nice colorings of G. This choice implies that if we perform a switch coloring in c, case (c) of Claim 8.2 cannot occur. The next claim establishes some properties on the structure of the last levels of D c for such nice colorings of G. Claim 8.4. Let c be a nice coloring of G with maximal height. Then the graph G induces a complete bipartite graph on V c h(c) ∪ B c with bipartition (V c h(c) , B c ) and also on

V c h(c) ∪ V c h(c)-1 with bipartition (V c h(c) , V c h(c)-1 ).
Proof. We know that B c , V c h(c) and V c h(c)-1 form three independent sets of G. By maximality of h(c), for every vertex b of B c a switch recoloring on b produces case (d) of Claim 8.2, so we have

V c h(c) ⊆ N - Dc (b). Thus G induces a complete bipartite graph on V c h(c) ∪ B c with bipartition (V c h(c) , B c ). Now let us prove that G induces a complete bipartite graph on V c h(c) ∪V c h(c)-1 with bipartition (V c h(c) , V c h(c)-1 )
. By contradiction assume that there exist vertices x ∈ V c h(c) and y ∈ V c h(c)-1 such that {x, y} / ∈ E(G). First we will prove that y has an in-neighbour in V c h(c) . Indeed, we consider a vertex b in B c and remark that y has no out-neighbour which is also an in-neighbour of b. Otherwise let y be such a vertex and denote by i its level, ie. y ∈ V c i . As yy ∈ E(D c ) we would have h(c) -1 = i -1 mod 3 and as y b ∈ E(D c ) we would have i = 2 -1 mod 3. So we would get h(c) = 2 mod 3 a contradiction to h(c) = 0 mod 3, previously noticed. So the only neighbours of y which are in-neighbours of b in D c are in-neighbours of y and lie in V c h(c) . Now we apply a switch recoloring on b to obtain the coloring c . By assumption G is not a counter-example to Theorem 2, and then B c contains at least one vertex z. By Claim 8.2 (e), we know that

B c ⊆ N - Dc (b). Moreover, Claim 8.2 (b) ensures that V c h(c ) = V c h(c)-1 (because h(c) = 0 mod 3). Thus y belongs to V c h(c )
, and by maximality of h(c) = h(c ) the first part of the claim implies that yz is an arc of D c . Thus z was an in-neighbour of b in D c and is a neighbour of y. By the previous remark we know that z ∈ V c h(c) and z is an in-neighbour of y in D c . Now, in D c , we know that y has at least one non neighbour in V c h(c) (the vertex x) and also at least one in-neighbour in V c h(c) . We denote by Y the set N - Dc (y), which is contained in V c h(c) , and apply an initial recoloring on the initial section {y} ∪ Y to obtain the coloring c . Let us prove that every vertex of G has a certifying path in D c . First, every vertex of 

V c h(c) ∪ {y} ∪ B c = (V c h(c) \ Y ) ∪ B c ∪ Y ∪ {y}
D c \ (V c h(c) ∪ V c h(c)-1
) is unchanged by the recoloring. So we apply Claim 8.3 with X = V c h(c) ∪ V c h(c)-1 and conclude that every vertex of

D c \ (V c h(c) ∪ V c h(c)-1 ∪ B c ) has a certifying path in D c \ (V c h(c) ∪ V c h(c)-1 ) = D c \ (V c h(c) ∪ V c h(c)-1
). In all, every vertex of G has a certifying path in D c , a contradiction to the fact that G is a counter-example to Theorem 2. Now, it is possible to conclude the proof of Theorem 2 by applying repeated switch colorings on vertices of B c . More precisely, let c be a coloring of G with maximal height. By Claim 8.5, the in-neighbourhood of every vertex b of B c is exactly V c h(c) , and its out-neighbourhood is {r c }. So, as G has no twins by Claim 8.1, it means that B c contains only one vertex which is linked to r c and to all the vertices of V c h(c) . Then, we consider the following partition of G: 

U c = (U c 1 , . . . , U c h(c)+1 ) = (V c 1 , B c , V c h(c) , V c h(c)-1 , . . . , V c 3 , V c 2 \ B c
c 2 = U c 3 is U c 1 ∪ U c 3 = U c 4 ∪ U c 2 .
By repeating switch colorings, a direct induction shows that, for every i, U c i contains exactly one vertex, and the neighbourhood of this vertex is U c i-1 ∪ U c i+1 . So, the graph G is a cycle, a contradiction to Lemma 8.

Concluding remarks

Notice that we can derive a polynomial time algorithm from the proof of Theorem 2. Indeed, one can verify that all the proofs of the lemmas and the claims provide algorithms in order to improve B c at each step or find a coloring for which every vertex admits a colorful path. So, given a 3-chromatic graph G different from C 7 and a 3-coloring of G, we can find in polynomial time a 3-coloring of G for which every vertex of G is the beginning of a colorful path.

Besides, it seems that the methods used in the proof of Theorem 2 cannot be immediately generalized to graphs with higher chromatic number. We can nevertheless state the following weaker result for 4-chromatic graphs. Lemma 9. Every 4-chromatic graph G containing a cycle of length 4 admits a 4-coloring such that every vertex of G is the beginning of a colorful path.

Proof. Let c be a 4-coloring of a 4-chromatic graph G. Denote by H = x 1 x 2 x 3 x 4 x 1 a (non necessarily induced) cycle of length 4 of G. Recall that Lemma 4 ensures that the conclusion holds if D c contains a circuit. If the four colors appear on H, then up to a permutation on colors, we can assume that c(x i ) = i for i = 1, 2, 3, 4. So, H appear as an oriented cycle in D c and we are done. So we can assume that H is colored with two or three colors. Let us prove that in both cases, either there is a oriented cycle in D c or the number of colors appearing on H in a 4-coloring of G can be increased.

First assume that only two colors of c appear in H. Up to a permutation on colors, we can assume that x 1 , x 3 are colored with 1 and that x 2 , x 4 are colored with 2. For a vertex y of G, we denote by S - Dc (y) the set of vertices of G which are the beginning of an oriented path in D c with end y. Notice that S - Dc (y) is always an initial section of D c . Consider the set S - Dc (x 1 ). If it contains x 2 or x 4 , it means that D c has an oriented cycle. So, we assume that x 2 / ∈ S - Dc (x 1 ) and x 4 / ∈ S - Dc (x 1 ). If x 3 / ∈ S - Dc (x 1 ), then we perform an initial recoloring on S - Dc (x 1 ) and in the resulting coloring, H receives three colors. Indeed x 2 , x 3 and x 4 do not belong to S - Dc (x 1 ) and still have the same color (i.e. respectively 2, 1 and 2), and x 1 receive now color 4. Otherwise there is a directed path in D c from x 3 to x 1 . But, by symmetry there also exists a directed path from x 1 to x 3 , which provides an oriented cycle in D c .

Assume now that H receives three colors by c. Up to permutation on colors, we can assume that x 1 is colored with 1, x 2 and x 4 are colored with 2 and x 3 is colored with 3. Consider the set S - Dc (x 2 ). If it contains x 3 , then D c has an oriented cycle. So we assume that x 3 / ∈ S - Dc (x 2 ). If S - Dc (x 2 ) does not contain x 4 , then we apply an initial recoloring on it. As x 1 ∈ S - Dc (x 2 ), x 1 , x 2 , x 3 and x 4 respectively receive colors 4, 1, 3, 2, and we have a coloring of G with four different colors on H. So, assume that x 4 ∈ S - Dc (x 2 ). It means that there exists an oriented path from x 4 to x 2 in D c . By symmetry, there exists also a directed path from x 2 to x 4 in D c and D c contains an oriented cycle.

In particular, if a 3-chromatic graph contains a cycle of length three, it appears as an oriented cycle in D c for any 3-coloring c, and then Lemma 4 ensures that Conjecture 1 holds. If a 4chromatic graph contains a cycle of length four, then Lemma 9 ensures that Conjecture 1 holds. In both cases the proofs are simple. It raises the following natural question. Problem 10. Does Conjecture 1 hold for k-chromatic connected graphs containing a cycle of length k?

To conclude, note also that in the case of 2 and 3-chromatic graphs, every colorful path is either forward or backward (recall that forward (resp. backward) means that the color of the i-th vertex is the color of the (i-1)-th vertex plus (resp. minus) one). When D c contains an oriented cycle or in Lemma 9, we obtain certifying paths which are all forward or backward. In [START_REF] Alishahi | Rainbow paths with prescribed ends[END_REF], M. Alishahi, A. Taherkhani and C. Thomassen provides paths with χ -1 vertices intersecting χ -1 colors which are union of at most 2 increasing paths. It raises the following strengthened conjecture.

Conjecture 11. Every k-chromatic connected graph different from C 7 admits a k-coloring such that every vertex is the end of a forward or backward certifying path.
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 1 Figure 1: A coloring of the 'twinned C 7 ' in which every vertex is the beginning of a colorful path.

  depicts the situation. Consider the following special initial recoloring of D c . For a vertex b of B c , the previous argument ensures that {b} ∪ N - Dc (b) is an initial section of D c . The switch recoloring on b is

  has a certifying path. Indeed for every vertex z ∈ V c h(c) \ Y (which is non empty since it contains x), for every vertex b ∈ B c and for every vertex z of Y (which is non empty by the previous paragraph), the oriented path zbz y exists in D c . Moreover, the oriented graph D c \ (Y ∪ {y}) is unchanged by the recoloring. So it is possible to apply Claim 8.3 with X = Y ∪ {y} to conclude that every vertex ofD c \ (Y ∪ {y} ∪ B c ) has also a certifying path in D c \ (Y ∪ {y})=D c \ (Y ∪ {y}).In all, every vertex of G has a certifying path in D c , a contradiction to the fact that G is a counter-example to Theorem 2. The final claim gives more precision on the in-neighbourhood of the vertices of B c in D c . Claim 8.5. For a coloring c of G with maximal height, every vertex b of B c satisfies N - Dc (b) = V c h(c) . Proof. Let b be a vertex of B c . By Claim 8.4 we know that V c h(c) ⊆ N - G (b). So assume that b has an in-neighbour u / ∈ V c h(c) , and consider the initial recoloring of the initial section V c h(c) ∪ V c h(c)-1 of D c . We denote by c the obtained coloring of G, and let us prove that there is a certifying path in c for every vertex of the graph G. Let z, z , b be respectively vertices of V c h(c) , V c h(c)-1 and B c . By Claim 8.4 both (V c h(c) , V c h(c)-1 ) and (B c , V c h(c) ) induce complete bipartite graphs in G, and then b zz is an oriented path in D c . So, it is a backward certifying path for z and a forward certifying path of b . Moreover, ubz is also an oriented path of D c , and then a certifying backward path for z. So every vertex of B c ∪ V c h(c) ∪ V c h(c)-1 has a certifying path in D c . To conclude we notice that the oriented graph

  ). By the previous remark, we have |U c 1 | = |U c 2 | = 1 and the neighbourhood of the unique vertex of U c 2 is included in U c 1 ∪ U c 3 . Now, if we apply a switch coloring on the unique vertex of B c and obtain a coloring c , properties (b) and (d) of Claim 8.2 imply that U c i = U c i+1 for i = 1, . . . , h(c) and U c h(c)+1 = U c 1 . As c is also a nice coloring of G with maximal height, we also have that |U c 2 | = |U c 3 | = 1 and that the neighbourhood of the unique vertex of U

Throughout the paper, we use the notation xy to indicate the (oriented) arc from x to y, while {x, y} designates the (non-oriented) edge between x and y.

(a) c is a nice coloring of G, the unique sink of D c is b and so Now, we will prove that V c 2 = {r c } ∪ N and V c i-1 \ ({b} ∪ N ) ⊆ V c i for i = 3, . . . , h(c) + 1. We call ( ) this property. Assuming that ( ) is true, each part of the partition ({b},

) of G will be respectively included in the corresponding part of the partition (V c 1 , . . . , V c h(c ) ). So, the two partitions will be equal, and using that N