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Аннотация

The problem of constructing the asymptotics of the Green’s function
for the Helmholtz operator h2∆ + n2(x), x ∈ Rn with the small
positive parameter h and smooth n2(x) was studied in many papers,
e.g. [1, 2, 4]. In the case of variable coefficients, the asymptotics was
constructed by matching the asymptotics of the Green’s function for
the equation with frozen coefficients and WKB–type asymptotics or
more generally Maslov’s canonical operator. In our work we present a
different method for calculating Green’s function without assuming
any knowledge of exact Green’s function for the operator with frozen
variables. Our approach also works for a wider class of operators, and
also if the right hand side is a smooth localized function rather than
δ-function. In particular, the method works for the linearized water
waves equation.

1. Introduction. The problem of short-wave asymptotics for Green’s
function of Helholtz operator in Rn was studied in several works, e.g. [1],
[2, 3], [4] (other references could be fount in book [5]). If the refractive
index does not depend on x ∈ Rn, then the Green’s functions can be
calculated exactly (e.g. for n = 2 it is expressed via Hankel function).
If the refractive index is variable, the asympotics for Green’s function was
constructed in above mentioned papers by pasting the exact solution of the
equation with constant refractive index (’frozen’ in the point of the source)



with the WKB-asymptotics (see [2]) or more generally with MaslovвЂњs
canonical operator [4], when focal points appear. This approach can not
be straightforwardly generalized to different types of operators, because it
is necessary to know the exact Green’s function for operators with frozen
coefficients, and also to have in oneвЂњs disposal effective asymptotic
formulas for large |x|, and finally be able to paste the latter with WKB-
type solutions.

In this problem a geometric object called a ’pair of Lagrangian manifolds’
natutally appears. It was first observed by Melrose and Uhlmann [6]
(who introduced the term ’Lagrangian intersection’) in a close problem of
constructing parametrix for operators with real characterstics by methods
of Fourier integral operators. In the problem of short-wave asyptotics for
right inverse of Helmholtz-type operators the analogous construction was
proposed in [7]. However, in that work a Lagrangian manifold with boundary
was used rather than pair of Lagrangian manifolds. As a result some terms
in their formula have ’parasitic’ singularities (which cancel out in sum),
making the proposed formula less effecient in concrete calculations.

The problem of Green’s function is a limit case of a more physically
interesting problem with localized near a point ξ ∈ Rn right-hand side
instead of DiracвЂњs δ-function.This problem in turn is a special case of a
right-hand side represented with help of Maslov’s canonical operator. We
construct a formal asymptotic solution of the latter generalized problem,
and then study this solution in case of a localized right-hand side. Our
approach works for a wide class of operators, and does not appeal to
exact solutions of equation with frozen coefficients, and does not lead to
’parasitic’ singularities in a formula for solution.

We will use the following terminology. Let f(x, h) be a smooth function
of x = (x1, . . . , xn) and parameter h ∈ (0, 1]. It will be said that f = O(hm)

in domain U ⊂ Rn, which may depend on parameter h, if the function f is
defined for x ∈ U for all h ∈ (0, 1], moreover, for any measurable compact
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set K b Rn, not depending on h, and all integer s ≥ 0 it follows that
‖f‖s,K∩U ≤ Chm for some constant C (depending on K, s, but not h),
where

‖f‖s,Ω =

{ s∑
|α|=0

∥∥h|α|f (α)
∥∥2

L2(Ω)

}1/2

.

If domain U is not specified explicitly, it is assumed that U = Rn. Let f
depend on additional parameters. It is said that f = O(hm) uniformly with
respect to these parameters, if the constants in the above bounds do not
depend on the parameters. Finally, we say that f = O(h∞), if f = O(hm)

for all m.
2. Statement of the problem. Let Ĥ = H(

2
x,−i

1

h∂/∂x, h) be an h-
pseudo-differential operator with the symbol H(x, p, h) ∈ S∞ being a
smooth function of variables x, p ∈ Rn and parameter h ∈ [0, 1] that
satisfies for some m the bounds∣∣∣∣∂|α|+|β|+kH(x, p, h)

∂xα∂pβ∂hk

∣∣∣∣ ≤ Cαβk(1 + |x|+ |p|)m, |α|, |β|, k = 0, 1, 2, . . .

(see [8] for details). Consider in Rn the inhomogeneous equation:

Ĥu = f(x, h). (1)

Definition. A function u(x, h), x ∈ Rn, h ∈ (0, 1] is called an asymptotic
solution of equation (1) with (asymptotic) limit absorbtion condition, if
there exists a family of functions uε(x, h) depending on parameter ε ∈ (0, 1)

such that (Ĥ − iε)uε = f + O(h∞) uniformly in ε, and ‖u− uε‖s,Ω → 0

uniformly in h for ε→ 0 for any bounded domain Ω ⊂ Rn and any integer
s ≥ 0.

Remark. The condition stated in this definition is none else than the
asymptotic analog of the well-known limit absorbtion principle for Helmholtz
equation
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We will construct asymptotic solutions of the equation (1) in a sense of
the above definition in case, when the right-hand side f(x, h) is represented
as follows:

f(x, h) = [Kh
(Λ,dµ)A](x, h), (2)

where Kh
(Λ,dµ) — is a Maslov’s canonical operator [10], [11] on a Lagrangian

manifold Λ ⊂ R2n, satisfying the quantization conditions, and equipped
with a smooth measure (volume form) dµ, and A ∈ C∞(Λ) is a compactly
supported function in Λ. (Recall that [11] the canonical operator is defined
uniquely up to arbitrary unimodular factor modulo higher-order terms as
h→ 0. To define this factor, it is necessary to choose an initial point on Λ

and also choose the argument of some Jacobian; we don’t reflect these
objects in our notation to avoid clumsity.) Particularly, if the Lagrangian
manifold and measure are as follows:

Λ = {(x, p) ∈ R2n : x = ξ, p is arbitrary}, dµ = dp1 ∧ · · · ∧ dpn, (3)

the right-hand side as h→ 0 near the point x = ξ has a form

f(x, h) =
1

hn/2
V

(
x− ξ
h

)
, where V (y) =

eiπn/4

(2π)n/2

∫
Rn

eipyA(p) dp1 · · · dpn

(4)
is an inverse Fourier transform of the function A(p).

We will describe construction of asymptotic solution for a general right-
hand side (2), and then study the equation with right-hand side (4), which
is the most important in applications and admits far more constructive
solution formula.
3. General case. First of all, we introduce the assumptions:

C0. The principal symbol H(x, p) = H(x, p, 0) of the operator Ĥ is
real-valued.

C1. The Hamiltonian vector field VH ≡ d
dt

= (Hp,−Hx) is tranversal
to Λ everywhere in L0 = {(x, p) ∈ Λ: H(x, p) = 0}.
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C2. Every trajectory (X(x0, p0, t), P (x0, p0, t)) = gtH((x0, p0)) of the
vector field VH issueing from (x0, p0) ∈ L0 (a) does not go back to L0, (b)
satisfy the condition limt→T |X(x0, p0, t)| = ∞, where [0, T ), T ≤ +∞ is
the maximal existence interval of the trajectory. (Here the assumption (b)
is more essential, sufficient condition for it can be found e.g. in [4]. The
condition (Р◦) has a technical nature, it can be dropped out but theorems
would be a bit more complicated.)

Proposition 1. If conditions C0–C2 hold, then:
1. The set L0 is a smooth (n− 1)-dimensional submanifold in Λ.
2. The set Λ+ =

⋃
t≥0 g

t
H(L0) is a Lagrangian manifold with boundary

L0 in the space R2n 1.
3. The pair (Λ,Λ+) defines a Lagrangian intersection in sense of [6]:

T(x0,p0)Λ ∩ T(x0,p0)Λ+ = T(x0,p0)L0 for (x0, p0) ∈ L0.
4. Let Λ̃ ⊂ Λ be sufficiently small neighborhood of the submanifold L0

in Λ, and t0 > 0 is sufficiently small. Then for all t ∈ [0, t0] the following
Lagrangian manifolds Λt = gtH(Λ̃) are well-defined.

5. If the manifold Λ meets the quantization conditions, then so do the
manifolds Λ+ and Λt, t ∈ [0, t0].

Let us define some other objects that are necessary to construct a
canonical operator on Λ+ and Λt.

Without loss of generality, we will assume that the initial point α∗

on the manifold Λ is chosen on L0; let us also choose the same point as
initial on Λ+. Finally, on Λt we choose the point gtH(α∗). Next, we define a
measure on Λt as follows: dµt = (gt∗H)−1dµ, where dµ is measure on Λ, and
the measure dµ+ on Λ+ in the following way. At points of the submanifold
L0 ⊂ Λ, the measure dµmay written out as dµ = dH∧dσ, where dσ is some

1In case of Green’s function for the Helmholtz equation, the manifold Λ+ was
introduced in [4].
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(uniquely determinted) measure on L0. At last, we define the measure dµ+

on submanifold gtH(L0) ⊂ Λ+ for all t > 0, by setting dµ+ = dt∧ (gt∗H)−1dσ.
For trajectories of the vector field VH , issuing from every point (x0, p0) ∈

Λ, we determine a function Ã as a solution of the transport equation:

dÃ

dt
+Hsub(X(x0, p0, t), P (x0, p0, t))Ã = 0, Ã

∣∣
t=0

= A(x0, p0), (5)

where A ∈ C∞0 (Λ) is the amplitude in formula (2) for the right-hand side,
and

Hsub(x, p) = i
∂H
∂h

(x, p, 0)− 1

2

n∑
j=1

∂2H

∂xj∂pj
(x, p)

is a sub-principal symbol of the operator Ĥ. Let us denote the restrictions
of the function Ã onto Lagrangian manifolds Λ+ and Λt by A+ and A(t)

respectively. Let ρ ∈ C∞(Λ) and θ ∈ C∞0 (R1) be cutoff functions such that

ρ(α) = 1 in a neighborhood of L0, supp ρ ⊂ Λ;

θ(t) = 1 for |t| ≤ t0/2, θ(t) = 0 for |t| ≥ t0.
(6)

The function θ(t) may be interpretted as a function on Λ+, if we think of t
as a time along a trajectory of the field VH . Similarly, ρ may be thought of
as a function on Λt, if we assume it to be constant along the trajectories
of VH .

Theorem 1. If conditions C0–C2 are fullfilled, then the equation (1) with
right-hand side (2) has an asymptotic solution u = u(x, h), satisfying the
asymptotic limit absorbtion principle and (if the arguments of Jacobians
in definition of canonical operators are chosen appropriately)2 with the

2The choice of arguments of Jacobians will be described in a detailed version of the
paper.
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principal term as follows:

u = Kh
(Λ,dµ)

[
(1− ρ(α))A

H

]
+

(
2π

h

)1/2

eiπ/4Kh
(Λ+,dµ+) [(1− θ(t))A+]

+
i

h

t0∫
0

exp

{ gtH(α∗)∫
α∗

p dx

}
Kh

(Λt,dµt)ρ(α)θ(t)A(t) dt+O(h1/2),

(7)

where the integral in the exponent is calculated along the trajectory of the
field VH .

4. The case of localized right-hand side. Let us study in more detail
the particular case of (1), (2), when the right-hand side is the localized
function (4). Then the Lagrangian manifold and the measure are (3), and
the condition C1 takes the form:

Hp(ξ, p) 6= 0 РїСЂРё H(ξ, p) = 0.

Theorem 2. If the right-hand side of (1) has the form (4), then the
solution u(x, h) constructed in Theorem 1 u(x, h) has the principle term as
follows:

u(x, h) =
eiπn/4

(2πh)n/2
lim
ε→+0

∫
Rn

A(p)e
i
h
p(x−ξ)

H(ξ, p)− iε
dp1 · · · dpn +O(h2β−3/2) (8)

in domain |x− ξ| < Chβ, and

u(x, h) =

(
2π

h

)1/2

eiπ/4[Kh
(Λ+,dµ+)(1−θ(Lt/hβ))A+](x, h)+O(h2β−3/2) (9)

in domain |x − ξ| > Chβ for all constant C > 0, β ∈ (1/2, 1), and
sufficiently large L > 0.

The equality (8) means that the principal term of the asymptotic solution
for small |x − ξ| coincides with the solution u0(x, h) given by the limit
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absorbtion principle of the equation (1) with coefficients frozen in the point
x = ξ. This solution can be calculated without passage to the limit as
ε→ 0 (which is difficult from the numerical viewpoint, since the integrand
contains a singularity). To do this, one should use the following formula:

u0(x, h) =
eiπ(n+1)/4

(2πh)n/2h1/2

t0∫
0

∫
Rn

e
i
h

(p(x−ξ)−tH(ξ,p))θ(t)ρ(p)A(p) dp1 . . . dpndt

+
( i

2πh

)n/2 ∫
Rn

(1− ρ(p))A(p)e
i
h
p(x−ξ)

H(ξ, p)
dp1 · · · dpn +O(h1/2).

Formula (8) describes a part of the solution associated with the Lagrangian
manifold Λ, which becomes singular in a limit A(p) → 1 (if it exists).
Formula (9) describes rapidly oscillating ’wave’ (or ’hyperbolic’) part of
the solution. One of the key results of our work is that we have an explicit
formula for the function (9) in terms of Fourier transform A of the right-
hand side (4). This function according to general theory [10], [11] as h →
+0 is localized near the projection of the support of A+ onto Rn

x. The
canonical operator admits different representation in different points x,
depending on whether they are located on caustics, i.e. a projection onto
Rn
x of the singularity cycle on the manifold Λ+. Let φ be the coordinates

on L0. Then we can choose as coordinates on Λ+ the pair (τ, φ), where
τ ≥ 0 is the Hamiltonian time along VH . Thus, the manifold Λ+ is given
by the equations: (x, p) = (X (τ, φ),P(τ, φ)). The point (τ, φ) on Λ+ is said
to be regular, if the Jacobian J(τ, φ) = det ∂X

∂µ+
(τ, φ) does not vanish in it.

If the point x belongs to the domain |x − ξ| > Chβ, and its pre-image on
the manifold Λ+ is the unique and regular point (τ, φ), then the principal
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part of the solution (9) near x may be written out as

u(x, h) =

√
2πA+(τ, φ)√
h|J(τ, φ)|

e
i
h
S(τ,φ)− iπ

2
(m− 1

2
), S(τ, φ) =

τ∫
0

p ·Hp

∣∣∣ x=X (φ,η)

p=P(φ,η)
dη,

m = ind γ + s−

((
0 H∗p (X (0, φ0), ξ)

Hp(X (0, φ0), ξ) Hpp(X (0, φ0), ξ)

))
.

Here φ0 is the point on L0, where the determinant of the described above
self-adjoint matrix A does not vanish. Let s−(A) be its negative inertia
index, and ind γ the Maslov’s index [10], [11] of the path γ, connecting in
Λ+ two regular points: (+0, φ0) and (τ, φ).

If points φ0 with mentioned earlier properties do not exist, then the
formula form becomes more complicated. This formula along with a solution
expression near caustics (СЃРj.[11]) will be presented in a detailed paper.

Remark. Under additional assumptions in formulas (8) and (9) one can set
A = 1, then one obtains the Green’s function asymptotics. And vice versa,
if one knows the asymptotics for Green’s function, then one can write out
a solution of (1) as a convolution with the right-hand side. However, the
direct way of finding the asymptotic formulas from Theorems 1 and 2 in our
opinion is simpler and more naturally from the viewpoint of applications.

5. Examples. Let n = 2. Consider the Helmholtz equation H(x, p, h) =

H(x, p) = p2 − n2(x), n2(x) > 0, and the linear water waves equation [12]
(H(x, p) = |p| tanh(|p|D(x)) − ω2 and Hsub(x, p) = 0). Here the smooth
function D(x) determines the depth, and ω > 0 is the frequency. Let us
study two forms of right-hand sides (4), in which

V (y) = exp

[
−1

2

(
y2

1

a2
+
y2

2

b2

)]
or (a1y1 + b1y2) exp

[
−1

2

(
y2

1

a2
+
y2

2

b2

)]
and, respectively,

A(p) = ab exp

[
−a

2p2
1 + b2p2

2

2

]
or iab(a2a1p1 + b2b1p2) exp

[
−a

2p2
1 + b2p2

2

2

]
.
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Let ξ = 0. Then L0 = {x = 0, p = ρ(cosφ, sinφ)}, where ρ = |n(0)| for
Helmholtz equation, and ρ is the root of the equation ρ tanh(ρD(0)) = ω2

for the water waves problem. As coordinates on Λ+ we choose (φ, t), where
t ≥ 0 is the Hamiltonian time along VH , and φ is the initial point on L0.
The amplitude A+ has the following form:

A+(φ, t) = abE(φ), where E(φ) = exp
(
−ρ

2(a2 cos2 φ+ b2 sin2 φ

2

)
, (a)

A+(φ, t) = iabρ(a2a1 cosφ+ b2b1 sinφ)E(φ) (b)

respectively for the first and second form of the right-hand side. In case
(a) the maximal amplitude is attained for smaller values of ρ, and in
case (b) this maximum will be at the point ρ = 1/

√
a2 cos2 φ+ b2 sin2 φ,

tanφ = b2b1
a2a1

. Thus, by varying the parameters ω, a and b, we can increase
or decrease the amplitude in a given domain of the space R2

x. For the
Helmholtz equation with constant refractive index n2(x), and A = 1,
theorem gives the Green’s function as a Hankel function, along with its
asymptotics for large x. At last, we remark that the Maupertuis-Jacobi
principle the initial Hamiltonian for Helmholtz and water waves equation
can be replaced with C(x)|p|, which simplifies the computer implementation
of canonical operator [13].

The work was supported by RFBR (grant no. 14-01-00521). The authors
thank A.I. Shafarevich for useful discussions.
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