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Recently a signicant interest in ferromagnetic curved thin lms has appeared. In particular, thin spherical shells are currently of great interest due to their capability to support skyrmion solutions which can be stabilized by curvature eects only, in contrast to the planar case where the Dzyaloshinskii-Moriya interaction is required. This paper aims to a ¡-asymptotic analysis of the micromagnetic energy functional, when the shell is generated, like in the case of a sphere, by a bounded, convex and smooth surface.

Introduction and Physical Motivations

The Micromagnetic model

According to the Landau-Lifshitz theory of ne ferromagnetic particles (cf. [START_REF] Bertotti | Hysteresis in magnetism: for physicists, materials scientists, and engineers[END_REF][START_REF] Bertotti | Nonlinear magnetization dynamics in nanosystems[END_REF][START_REF] Brown | Magnetostatic Principles in Ferromagnetism[END_REF][START_REF] Brown | Micromagnetics[END_REF][START_REF] Hubert | Magnetic domains: the analysis of magnetic microstructures[END_REF][START_REF] Landau | On the theory of the dispersion of magnetic permeability in ferromagnetic bodies[END_REF]), the observable states of a rigid ferromagnetic body, occupying a region R 3 , are described by its magnetization M , a vector eld verifying the socalled fundamental constraint of micromagnetism: there exists a material dependent positive constant M s such that jM j = M s in .

The spontaneous magnetization M s := M s (T ) is highly dependent on the temperature T and vanishes above a critical value T c , characteristic of each crystal type, known as the Curie point. Since we will assume the specimen at a xed temperature well below T c , the value of M s will be considered constant in . We can, therefore, express the magnetization in the form M := M s m where m: ! S 2 is a vector eld with values in the unit sphere S 2 of R 3 .

Although the modulus of m is constant in space, in general, it is not the case for its direction. For single crystal ferromagnets (cf. [START_REF] Acerbi | Existence and regularity for mixtures of micromagnetic materials[END_REF][START_REF] Alouges | Homogenization of composite ferromagnetic materials[END_REF]), the observable states of the magnetization can then be described as the local minimizers of the micromagnetic energy functional which, after a suitable normalization, reads as (cf. [9, p. 22] or [30, p. 

=:Z(m) (1) 
with m 2 H 1 (; S 2 ) and m the extension of m by zero outside . The variational analysis of (1) arises as a non-convex and non-local problem. The rst term, E(m), is the exchange energy and penalizes nonuniformities in the orientation of the magnetization. The positive constant a ex is the socalled exchange stiness constant, a material specic energy parameter that summarizes the eects of short-range exchange interactions among neighbor spins.

The magnetocrystalline anisotropy energy, A(m), models the existence of preferred directions of the magnetization (the so-called easy axes). The energy density ' an : S 2 ! R + is assumed to be a non-negative Lipschitz continuous function that vanishes only on a nite set of directions, the so-called easy directions.

The quantity W(m) represents the magnetostatic self-energy and describes the energy due to the demagnetizing eld (stray eld) h d [m ] generated by m 2 L 2 (R 3 ; R 3 ). The operator h d : m 7 ! h d [m] is, for every m 2 L 2 (R 3 ), the unique solution in L 2 (R 3 ; R 3 ) of the Faraday-Maxwell equations of magnetostatics [START_REF] Brown | Magnetostatic Principles in Ferromagnetism[END_REF][START_REF] Jackson | Classical Electrodynamics[END_REF] (see section 2.2 for further mathematical details):

8 > < > : div b[m] = 0; curl h d [m] = 0; b[m] = 0 (h d [m] + m); (2) 
where b[m] denotes the magnetic ux density and 0 is the magnetic permeability of the vacuum. Finally, the term Z(m) is the interaction energy and models the tendency of the specimen to have its magnetization aligned with the (externally) applied eld h a . The applied eld is assumed to be unaected by variations of m.

Physical motivations and state of the art

The four terms in the energy functional (1) take into account eects that originate from dierent spatial scales, such as short-range exchange forces and longrange magnetostatic interactions. Depending on the relations among the material and geometric parameters of the particle, various asymptotic regimes arise and their investigation can be eciently carried out by the dimension reduction techniques of calculus of variations (see, e.g., [START_REF] Alouges | Convergence of a ferromagnetic lm model[END_REF][START_REF] Desimone | Hysteresis and imperfection sensitivity in small ferromagnetic particles[END_REF][START_REF] Desimone | A reduced theory for thin-lm micromagnetics[END_REF][START_REF] Desimone | Recent analytical developments in micromagnetics[END_REF][START_REF] Gioia | Micromagnetics of very thin films[END_REF][START_REF] Kohn | Another thin-lm limit of micromagnetics[END_REF][START_REF] Ignat | A survey of some new results in ferromagnetic thin lms[END_REF][START_REF] Slastikov | Reduced models for ferromagnetic nanowires[END_REF]; this list is certainly far from complete).

In this regard, during the last two decades, considerable interest has appeared for magnetic particles having the shape of a curved convex surface (e.g., plane lms [START_REF] Desimone | A reduced theory for thin-lm micromagnetics[END_REF][START_REF] Gioia | Micromagnetics of very thin films[END_REF], nanotubes [START_REF] Goussev | Domain wall motion in thin ferromagnetic nanotubes: analytic results[END_REF][START_REF] Landeros | Reversal modes in magnetic nanotubes[END_REF][START_REF] Yan | Fast domain wall dynamics in magnetic nanotubes: suppression of walker breakdown and cherenkov-like spin wave emission[END_REF], spherical shells [START_REF] Gaididei | Curvature eects in thin magnetic shells[END_REF][START_REF] Kravchuk | Out-of-surface vortices in spherical shells[END_REF][START_REF] Sheka | Equilibrium states of soft magnetic hemispherical shell[END_REF]). In particular, spherical thin lms are currently worth of interest due to their capability to support skyrmion-type solutions which can be stabilized by curvature eects only, in contrast to the planar case where the Dzyaloshinskii-Moriya interaction is required [START_REF] Dzyaloshinsky | A thermodynamic theory of weak ferromagnetism of antiferromagnetics[END_REF][START_REF] Moriya | Anisotropic superexchange interaction and weak ferromagnetism[END_REF]. Nevertheless, and this is the main motivation for our paper, as remarked in [START_REF] Kravchuk | Topologically stable magnetization states on a spherical shell: curvature-stabilized skyrmions[END_REF]: It is well established in numerous studies on rigorous micromagnetism that the eects of non-local dipole-dipole interaction can be reduced to an eective easy-surface anisotropy for thin shells when the thickness is much less than the size of the system [..]. Being aware that these results were obtained for plane lms, we assume that the same arguments are valid for smoothly curved shells. Indeed, Gioia and James showed in [START_REF] Gioia | Micromagnetics of very thin films[END_REF] that for planar thin lms the eects of the demagnetizing eld operator come down to an eective easy-surface anisotropy. A generalization of this result can be found in [START_REF] Carbou | Thin layers in micromagnetism[END_REF] where the asymptotic behavior of the energy minimizers is addressed for thin shells generated by surfaces that are dieomorphic to the closed unit disk of R 2 (see Figure 1). Finally, in [START_REF] Slastikov | Micromagnetics of thin shells[END_REF], a ¡-convergence analysis is performed on pillow-like shells, i.e., on shells of small thickness > 0 having the form := f(x; z) 2 ! R : f 2 (x) 6 z 6 f 1 (x)g with ! R 2 and f 1 ; f 2 functions vanishing on the boundary of ! (see Figure 1). However, all these investigations, being local, do not cover signicant physical scenarios like the one of a magnetized thin spherical shell [START_REF] Kravchuk | Topologically stable magnetization states on a spherical shell: curvature-stabilized skyrmions[END_REF]. Nor they can be recovered by a local-to-global gluing argument due to the presence of the non-local demagnetizing eld operator h d (cf. eq. ( 1)). To have a rigorously justied micromagnetic model of spherical thin lms, and more generally of curved convex surfaces, the asymptotic analysis must take into account the global geometry of the surface, and this takes some work. In that respect, the main aim of this paper is the derivation of a reduced model of the micromagnetic energy functional when the region occupied by the ferromagnet is the one of a convex thin lm. More specically, let S be an orientable and smooth convex surface in R 3 (cf. Denition 2), : S ! S 2 the normal eld associated with the choice of an orientation for S. For any suciently small > 0 we denote by the shell having thickness and dened by (cf. Figure 2) := [ 2S `() with `() := f + t()g jtj< :

R 3 D 1 S D 1 f 2 f 1
(3)

We then consider the energy functional G(; ) and use the method of ¡-convergence to characterize the asymptotic behavior of the family G(; ) in the limit of vanishing thickness. The paper is organized as follows: In Section 2 we briey sketch the geometric setting under which we carry out our investigation. We then state the main result of the paper (cf. Theorem 1) whose proof is given in four steps. The rst two steps, developed in Section 3, concern a reformulation of the variational problem and the compactness of minimizing sequences. Finally, Section 4, devoted to the identication of the ¡-limit, completes the proof of the main result.
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Statement of the main result

Notation and setup

We summarize the relevant geometric and functional notions that we use throughout the paper.

Geometric notions

Let S be an orientable and smooth surface in R 3 , : S ! S 2 the normal eld associated with the choice of an orientation for S. For every 2 S and every 2 R + we denote by `() := f + t()g jtj< the normal segment to S having radius and centered at . We say that S admits a tubular neighborhood if there exists a 2 R + such that the following properties hold (cf. [23, p. 112 The existence of a tubular neighborhood of S turns out to be sucient to investigate the ¡-limit of the family of exchange energy functionals (E ) (cf. Proposition 9). On the other hand, due to its non-locality, something more is required for the asymptotic analysis of the family (W ) of magnetostatic self-energies. We, therefore, introduce the following notion. Definition 2. Let S be an orientable smooth surface. We say that S is convex if it admits an orientation such that the conditions TN 1 , TN 2 and TN 3 , still hold when the normal segments `() are replaced by the normal half-lines

` + () := f + t()g t2(¡;+1) : ( 4 
)
We then denote by

+ the unbounded open set [ 2S ` + (
) and refer to it as a tubular strip of S. Remark 3. Some simple examples of convex surfaces are the sphere S 2 (and more generally the triaxial ellipsoid E 2 ), the unit cylinder S 1 I, the innite cylinder S 1 R and the plane R 2 (cf. Figure 2). The name convex given to this class of surfaces comes from the compact case where such surfaces are intimately related to the convexity of the domain they bound (cf. [23, Remark 2, p. 393], see also [START_REF] Federer | Geometric Measure Theory[END_REF][START_REF] Klingenberg | A course in dierential geometry[END_REF]).

For every 2 S the symbols 1 (); 2 () are used for the orthonormal basis of T S made by its principal directions, i.e., the orthonormal basis induced by the eigenvectors of the shape operator of S (cf. [START_REF] Carmo | Dierential geometry of curves and surfaces[END_REF]). We then write 1 (); 2 () for the principal curvatures at 2 S. Note that, when S is convex, the trihedron

( 1 (), 2 (); ()) with := (x); x 2 + (5)
constitutes a moving frame of R 3 which depends only on S. Next, for every 2 I := (0; ), we introduce the dieomorphism of M onto given by

: (; s) 2 M 7 ! + s() 2 : (6)
Also, we denote by g the metric factor which relates the volume form on to the volume form on M, by h 1; ; h 2; the metric coecients which link the gradient on to the gradient on M. A direct computation shows that

g (; s) := j1 + 2sH() + (s) 2 G()j; h i; (; s) := g (; s) (1 + s i ()) 2 (i 2 N 2 ); (7) 
where H() and G() are, respectively, the mean and Gaussian curvature at 2 S.

Let S be a smooth and bounded convex surface. We set I := (¡1; 1) and denote by M the product manifold S I. We then denote by H 1 (M; R 3 ) the Sobolev space of vector-valued functions dened on M (see [START_REF] Agranovich | Sobolev Spaces, Their Generalizations and Elliptic Problems in Smooth and Lipschitz Domains[END_REF]) endowed with the norm kuk

H 1 (M) 2 := kuk L 2 (M) 2 + kr uk L 2 (M) 2 + k@ s uk L 2 (M) 2
where r u stands for the tangential gradient of u on S. Finally, we write H 1 (M; S 2 ) for the subset of H 1 (M; R 3 ) made by functions with values in S 2 .

The demagnetizing field operator on R 3

We introduce the Beppo-Levi space

W 1 (R 3 ) = fu 2 S 0 (R 3 ) : u! 2 L 2 (R 3 ); ru 2 L 2 (R 3 ; R 3 )g; !(x) := 1 1 + jxj 2 p ; ( 8 
)
which is a Hilbert space when endowed with the norm kuk

W 1 (R 3 ) 2 := kruk L 2 (R 3 ;R 3 ) 2 (cf. [17, Lemma 1, p. 117]. If h d [m] 2 L 2 (R 3 ; R 3
) is a solution of the Faraday-Maxwell equations (2) then, by Poincaré's lemma [16, Lemma 4, p. 232], there exists a unique magnetostatic potential

u m 2 W 1 (R 3 ) such that h d [m] = ru m . Hence, ¡u m = div m in S 0 (R 3 ) ( 9 
)
and it is straightforward to check, via Lax-Milgram lemma, that for every m 2 L 2 (R 3 ; R 3 ) there exists a unique solution of ( 9) in W 1 (R 3 ). Therefore, the demagnetizing eld can be described as the map which to every magnetization m 2 L 2 (R 3 ; R 3 ) associates the distributional gradient of the unique solution of ( 9) in W 1 (R 3 ).

Remark 4. The weight ! x the behavior at innity of the magnetostatic potential. Note that, in general, 9) and, by construction,

u m does not belong to L 2 (R 3 ) if m 2 L 2 (R 3 ; R 3 ). Indeed, consider any v 2 W 1 (R 3 )nH 1 (R 3 ) and set m = ¡rv. We then have m 2 L 2 (R 3 ; R 3 ) and div m = ¡v. Hence, u m := v is the unique solution in W 1 (R 3 ) of (
u m = v 2 / L 2 (R 3 ).
It is easily seen that the map

¡h d : m 2 L 2 (R 3 ; R 3 ) 7 ! ¡ru m 2 L 2 (R 3 ; R 3
) denes a self-adjoint and positive-denite bounded linear operator from L 2 (R 3 ; R 3 ) into itself:

¡(h d [m]; m) L 2 (R 3 ;R 3 ) = kh d [m]k L 2 (R 3 ;R 3 ) 2 6 kmk L 2 (R 3 ;R 3 ) 2 (10) for every m 2 L 2 (R 3 ; R 3 ). Also, notice that for any 2 I , if m 2 H 1 ( " ; S 2 ) then m 2 L 2 (R 3 ; R 3 ) and therefore h d [m ] 2 L 2 (R 3 ; R 3 ). Moreover, since h d [m] is a gradient eld, for any 2 I the following two variational equations are satised Z R 3 (h d [m ] + m ) r'dx = 0; (11) Z R 3 h d [m ] curl 'dx = 0; (12) 
for every ' 2 W 1 (R 3 ) and any ' 2 W 1 (R 3 ; R 3 ).

The anisotropy energy density and the external applied field

The anisotropy energy density ' an : S 2 ! R + , which does not depend on 2 I , is assumed to be a non-negative Lipschitz continuous function that vanishes only on a nite set of directions, the so-called easy directions. The hypotheses on ' an are suciently general to treat the most common classes of crystal anisotropies arising in applications (e.g., uniaxial, triaxial, cubic). Finally, the external applied eld h a is assumed to be Lipschitz continuous.

The main result

To avoid uninformative results (cf. Remark 5) we consider a rescaled version of the energy functional [START_REF] Acerbi | Existence and regularity for mixtures of micromagnetic materials[END_REF]. Precisely, let := [ 2S `() be a tubular neighborhood of a smooth convex surface S. For any 2 I := (0; ) we denote by G the micromagnetic energy functional dened on H 1 ( ; S 2 ) by

G (m) = 1 (E (m) + W (m) + A " (m) + Z (m)) (13) = 1 Z jrmj 2 dx ¡ 1 2 Z h d [m ] m dx + Z ' an (m) dx ¡ Z h a mdx ; ( 14 
)
where m is the extension of m by zero outside . The existence for any 2 I of at least a minimizer for G in H 1 ( ; S 2 ) is an easy application of the direct method of the calculus of variations (cf. [START_REF] Visintin | On Landau-Lifshitz'equations for ferromagnetism[END_REF]). We are interested in the asymptotic behavior of the family of minimizers of (G ) 2I as ! 0.

Remark 5. Let us briey explain why we rescaled the energy functional (1). It is easily seen that the family (G ) 2I is equi-coercive for the weak topology of H 1 ( ) and therefore the fundamental theorem of ¡-convergence applies [START_REF] Braides | Homogenization of multiple integrals[END_REF][START_REF] Maso | Introduction to ¡-convergence[END_REF]. On the other hand, as a simple computation shows, the ¡-lim !0 (G ) coincides with the null functional. From this result no information can be retrieved about the asymptotic behavior of the minimizing sequences because every element of H 1 ( ) is obviously a minimizer of the null functional.

Next, let us introduce the following functionals dened on H 1 (M; S 2 ), which can be thought as the pull-back of E ; W ; A " and Z on the product manifold M := S I, I := (¡1; 1):

The exchange energy on M reads as E M (u) := E (u) + E (u), where the tangential and normal component of the exchange energy are respectively given by

E (u) : = Z M X i2N 2 j@ i () u(; s)j 2 h i; (; s) d ds; (15) 
E (u) := 1 2 Z M j@ s u(; s)j 2 g (; s) d ds: (16) 
The magnetostatic self-energy on M is dened by

W M (u) := W (u) + W (u)
, where the tangential and normal components of the energy are respectively given by

W (u) := ¡ 1 2 Z M X i2N 2 (h [u](; s) i ()) (u(; s) i ()) g " (; s) d ds; (17) 
W (u) := ¡ 1 2 Z M (h [u](; s) ()) (u(; s) ()) g " (; s) d ds: (18) 
Here, the symbol h [u] 2 L 2 (M; R 3 ) stands for the demagnetizing led on M:

h [u] := h d [(u I ) ¡1 ] : (19) 
The family of dieomorphisms ( ) 2I is the one given in [START_REF] Alouges | Liouville type results for local minimizers of the micromagnetic energy[END_REF].

The anisotropy and interaction energies on M, respectively given by

A M (u) := Z M ' an (u(; s)) g " (; s) d ds; (20) 
Z M (u) := ¡ Z M h a (; s) u(; s) g " (; s) d ds: (21) 
For every 2 I , we have used the symbol h a for the expression of h a on M which, for every (; s) 2 M, is dened by h a (; s) := h a ( (; s)). Note that, in the new coordinate system, the applied eld depends upon 2 I .

The main result of the paper is stated in the next result.

Theorem 1. For any 2 I , the minimization problem for G in H 1 ( ; S 2 ) is equivalent to the minimization in H 1 (M; S 2 ) of the functional F dened by

F (u) := E M (u) + W M (u) + A M (u) + Z M (u); ( 22 
)
in the sense that a conguration m 2 H 1 ( ; S 2 ) minimizes G if and only if u := m 2 H 1 (M; S 2 ) minimizes F . The family (F ) 2I is equi-coercive in the weak topology of H 1 (M; S 2 ) and F 0 := ¡-lim !0 F is given by

F 0 (u) := E 0 (u) + W 0 (u) + A 0 (u) + Z 0 (u) (23) 
= 2

Z S jr uj 2 d + Z S (u 0 ) 2 d + 2 Z S ' an (u) d ¡ 2 Z S h a ud; ( 24 
)
if @ s u = 0 or by +1 otherwise. Therefore,

min H 1 ( ;S 2 ) G = min H 1 (M;S 2 ) F = min H 1 (M;S 2 ) F 0 + O(1) ( 25 
)
and if (u ) 2I is a minimizing family for (F ) 2I , there exists a subsequence of (u ) 2I which weakly converges in H 1 (M; S 2 ) to a minimum point of F 0 .

Remark 6. For the identication of the ¡-limit of the family of exchange energies, no convexity hypothesis on S is needed. Indeed, following an idea suggested in [START_REF] Carbou | Thin layers in micromagnetism[END_REF], we only use this assumption to analyze the asymptotic behavior of the magnetostatic self-energy.

Remark 7. Notice that the families

(A M ) 2I and (Z M ) 2I constitute a continuous perturbation of (E M + W M ) 2I
. This means that, with respect to the (topological)

product space I H 1 (M; S 2 ), the following relations hold lim

(;u)!(0;u 0 ) A M (u) = Z M ' an (u()) d; (26) 
lim

(;u)!(0;u 0 ) Z M (u) = ¡ Z M h a () u(; s) d ds: (27) 
Hence, the theorem on the sum of ¡-limits holds (cf. [15, Prop. 6.20, p. 62]), namely:

¡-lim !0 F 0 = ¡-lim !0 (E M + W M ) + ¡-lim !0 A M + ¡-lim !0 Z M (28) = ¡-lim !0 (E M + W M ) + A 0 + Z 0 : ( 29 
)
For this reason, in the identication of the ¡-limit we shall only focus on the family

(E M + W M ) 2I .
The proof of Theorem 1 is given in four steps. In Subsection 3.1 we prove that for any 2 I and any m 2 H 1 ( ; S 2 ) the equality G (m) = F (m ) holds, where stands for the dieomorphism of M onto given by (; s) := + s(). In Subsection 3.2 we show that the family (F ) 2I is equi-coercive for the weak topology of H 1 (M; S 2 ). Finally, the complete characterization of the ¡-limit F 0 is the object of Section 4.

Compactness

The equivalence of G and F

In this section we prove the rst part of Theorem 1, namely that once introduced, for any 2 I , the dieomorphism of M onto given by : (; s) 2 M 7 ! + s() 2 , one has G (m) = F (m ), and therefore u minimizes G if and only if u (; s) := m( (; )) minimizes F .

We only prove the equality E (m) = E M (m ), the other ones being easier. For any m 2 H 1 ( ; S 2 ), by coarea formula we infer

E (m) := 1 Z jrm(x)j 2 dx = Z (S)I jrm (; s)j 2 d ds (30) 
= Z M jrm (; s)j 2 g " (; s) d ds:

In writing the last equality we have taken into account that for any (; s) 2 I I the volume form on " (S) is related to the volume form on S by the metric factor g " (; s) := j1 + 2s H() + (s) 2 G()j. Next, we project the gradient onto the orthonormal (moving) frame ( 1 (); 2 (); ()) induced by S on R 3 (cf. ( 5)). For any x 2 we have jrm(x)j 2 = P i2N 2 j@ i () m(x)j 2 + j@ () m(x)j 2 with = (x). Moreover, the following relations hold j@ i () m( (; s))j 2 = 1 (1 + s i ()) 2 j@ i () m(; s)j 2 ;

(32) j@ () m( (; s))j 2 = 1 2 j@ s m(; s)j 

G (m) = inf u2H 1 (M;S 2 ) E M (u) + W M (u) + A M (u) + Z (u): (34) 
This concludes the proof of the rst part of Theorem 1.

Equi-coercivity

We now show that the family (F ) 2I is equi-coercive in the weak topology of H 1 (M; S 2 ). This means, by denition (see [START_REF] Braides | Homogenization of multiple integrals[END_REF]), that there exists a nonempty and weakly compact set K H 1 (M; S 2 ) such that inf H 1 ( ;S 2 ) F = inf K F for every 2 I . This is a crucial step in a ¡-convergence result as it assures the validity of the fundamental theorem of ¡-convergence concerning the variational convergence of minimum problems ( [START_REF] Braides | Homogenization of multiple integrals[END_REF][START_REF] Maso | Introduction to ¡-convergence[END_REF]).

Since A M and Z M are uniformly (in 2 I ) bounded terms, it is sucient to show the equi-coercivity of the family V := (E M + W M ) 2I . To this end, we observe that for any constant in space v 2 H 1 (M; S 2 ) we have min

u2H 1 (M;S 2 ) V (u) 6 E M (v) + W M (v) = W M (v): (35) 
Taking into account [START_REF] Braides | Homogenization of multiple integrals[END_REF] and that g is bounded on M, uniformly with respect to 2 I , we end up with min

u2H 1 (M;S 2 ) V (u) 6 Z M g " (; s) d ds 6 M jMj; ( 36 
)
for a suitable positive constant M depending only on M. Therefore, for every 2 I , the minimizers of (V ) 2I are in K(M; S 2 ) := [ 2I fu 2 H 1 (M; S 2 ) : V (u) 6 M jMjg. On the other hand, since the principal curvatures 1 ; 2 are bounded in S, whenever the radius 2 R + of the tubular neighborhood is suciently small, there exists a positive constant c M , independent from 2 I , such that for any i 2 N 2 one has inf (;s)2M h i; (; s) > c M for every 2 I . Therefore, since W M is always nonnegative because of (10), we get (M; S 2 ) of H 1 (M; R 3 ) given by the intersection of H 1 (M; S 2 ) with the ball of H 1 (M; R 3 ) centered at the origin and of radius 1 + M /c M . Thus, for any 2 I min

kuk H 1 (M;S 2 ) 2 = jMj + X i2N 2 Z M j@ i () u(; s)j 2 d ds + Z M j@ s u(; s)j 2 dds 6 jMj + 1 c M V (u); (37 
u2H 1 (M;S 2 ) V (u) = min u2H b 1 (M;S 2 ) V (u): (38) 
To prove that H b 1 (M; S 2 ) is weakly compact it is sucient to show that the set

H b 1 (M; S 2
) is weakly closed. To this end, we note that if

(u n ) n2N is a sequence in H b 1 (M; S 2 ) such that u n * u 0 weakly in H 1 (M; R 3 ), due to Rellich-Kondrachov theorem, u n ! u 0 strongly in L 2 (M; R 3
), and therefore, up to the extraction of a subsequence, 1 ju n j ! ju 0 j a.e. in M. Thus u 0 (; s) 2 S 2 for a.e. (; s) 2 M and this concludes the proof.

The identication of the ¡-limit

In this section, we compute F 0 := ¡-lim !0 F . As pointed out at the end of Subsection 2.2, it is sucient to focus on the ¡-convergence of the family

V : u 2 H 1 (M; S 2 ) 7 ! E M (u) + W M (u): (39) 
We set V 0 := E 0 + W 0 with E 0 and W 0 given by [START_REF] Carmo | Dierential geometry of curves and surfaces[END_REF]. Note that, as a consequence of (10), V (u) > 0 for any u 2 H 1 (M; S 2 ).

Let us prove the ¡-liminf inequality for (V ) 2I , i.e., that for any family (u ) 2I weakly convergent to some u 0 2 H 1 (M; S 2 ) we have V 0 (u 0 ) 6 liminf !0 V (u ). With no loss of generality, we can assume that liminf !0 V (u ) < +1. We then have (see [START_REF] Dautray | Mathematical Analysis and Numerical Methods for Science and Technology: Volume 3 Spectral Theory and Applications[END_REF])

+1 > liminf !0 F (u ) > liminf !0 E (u ) = liminf !0 1 2 Z M j@ s u (; s)j 2 g " (; s) dds: (40) 
Moreover, for any i 2 N 2 , since sup 2S j i ()j < 1, there exists a strictly positive real-valued function : I ! R + such that, at least in a neighborhood of 0 2 R, the following estimate holds: inf 1): [START_REF] Osborn | Demagnetizing factors of the general ellipsoid[END_REF] Using ( 40) and ( 41) we nd that lim !0 k@ s u 0 k L 2 (M) = 0. Since @ s u * @ s u 0 in D 0 (M) we infer that @ s u ! @ s u 0 (; s) strongly in L 2 (M); @ s u 0 (; s) = 0 a.e. in M: [START_REF] Sheka | Curvature eects in statics and dynamics of low dimensional magnets[END_REF] Therefore, for the identication of the ¡-limit of (V ) 2I it is sucient to restrict the analysis to the families of H 1 (M; S 2 ) functions which weakly converge to an element u 0 2 H 1 (M; S 2 ) having the form

(;s)2M h i; (; s) = inf (;s)2M g " (; s) (1 + s i ()) 2 > () with () = 1 + O(
u 0 (; s) = I (s)u ~0(); (43) 
for some u ~0 2 H 1 (S ; S 2 ), i.e., not depending on the s variable. In the following, with a slight abuse of notation, we shall write u 0 () instead of u ~0().

In computing V 0 , we rst show that the ¡-limit of the families (E M ) 2I and (W M ) 2I , is respectively equal to E 0 and W 0 (cf. ( 23)), then we prove that V 0 := ¡lim !0 V = E 0 + W 0 .

The ¡-limit of the family (E M

) 2I

This section provides the identication of the ¡-limit of the family of exchange energies on M. Note that, in what follows, we will not make use of the convexity assumption on S. We start by addressing the ¡-liminf inequality for (E M ) 2I . Taking into account the lower semicontinuity of the norm, for any u * u 0 in H 1 (M; S 2 ), with u 0 of the type (43), we get

ku 0 k H 1 (M;S 2 ) 2 = Z M ju 0 (; s)j 2 d ds + X i2N 2 Z M j@ i () u 0 ()j 2 d ds (44) 
6 jMj + liminf !0 Z M X i2N 2 j@ i () u (; s)j 2 + j@ s u (; s)j 2 d ds (45) 
= jMj + liminf !0 Z M jr () u (; s)j 2 d ds: (46) 
In deriving the last equality, we used [START_REF] Sheka | Curvature eects in statics and dynamics of low dimensional magnets[END_REF] and denoted by r () u (; s) the tangential gradient of u on S whose norm, with respect to an orthonormal basis ( 1 (); 2 ()) of T S, can be expressed as jr () u (; s)j 2 := P i2N 2 j@ i () u (; s)j 2 . Thus

2kr u 0 k H 1 (S ;S 2 ) 2 = 2 X i2N 2 Z S j@ i () u 0 ()j 2 d ds 6 liminf !0 Z M jr u j 2 : (47) 
Next, by making use of the well-known properties of the liminf operator and taking into account relation [START_REF] Osborn | Demagnetizing factors of the general ellipsoid[END_REF], we compute:

liminf !0 Z M jr u j 2 = liminf !0 () liminf !0 Z M jr () u (; s)j 2 d ds (48) 
6 liminf !0 () Z M jr () u (; s)j 2 d ds (49) = liminf !0 X i2N 2 () Z M j@ i () u (; s)j 2 d ds ! (50) 6 liminf !0 X i2N 2 Z M j@ i () u (; s)j 2 g " (; s) (1 + s i ()) 2 d ds ! (51) = liminf !0 E (u ): (52) 
Substituting ( 51) into (47) we get the following result.

Lemma 8. Suppose that u * u 0 weakly in H 1 (M; S 2 ) and liminf !0 V (u ) < +1.

The following estimate holds

2 kr u 0 k H 1 (S ;S 2 ) 2 6 liminf !0 E (u ) 6 liminf !0 (E (u ) + E (u )): (53) 
We now address the existence of a recovery sequence. To this end, it is sucient to note that for every u 2 H 1 (M; S 2 ) having the product form u (; s) = I (s)u 0 () we have (cf. [START_REF] Osborn | Demagnetizing factors of the general ellipsoid[END_REF])

limsup !0 (E (u ) + E (u )) = limsup !0 X i2N 2 Z M j@ i () u 0 ()j 2 g " (; s) (1 + s i ()) 2 dds (54) = X i2N 2 Z M j@ i () u 0 ()j 2 d ds (55) = 2kr u 0 k L 2 (S ;S 2 ) 2 : (56) 
We so proved the following result.

Proposition 9. Let S be a smooth compact surface (convex or not) and M := S I.

The family (E M ) 2I of exchange energy on M, ¡-converges, with respect to the weak topology of H 1 (M; S 2 ), to the functional

E 0 : u 2 H 1 (M; S 2 ) 7 ! 8 < : 2kr uk L 2 (S ;S 2 ) 2 if @ s u = 0; +1 otherwise: (57)
4.2. The ¡-limit of the family

(W M ) 2I
This section is devoted to the identication of the ¡-limit of the family (W M ) 2I of magnetostatic self-energies on M.

Note that for every u 2 L 2 (M; R 3 ) the distribution (u I ) ¡1 , with given by [START_REF] Alouges | Liouville type results for local minimizers of the micromagnetic energy[END_REF], is in L 2 ( ; R 3 ), and it is therefore possible to evaluate the demagnetizing eld h d on its extension by zero outside . To simplify the notation, we still denote by (u I )

¡1 such an extension. Since S is a convex surface (cf. Denition 2), for every 2 I there exists the tubular strip of S. Namely

M + := f + s()g (;s)2M + (58) 
with M + := S (¡1; +1). We consider the restriction of ( 11) and ( 12) to M + and pull-back them via the dieomorphism : (; s) 2 M + 7 ! + s() 2 M + . We so obtain the following relations: ] . Next, let (u ) 2I be a family of H 1 (M; S 2 ) functions weakly converging to some u 0 2 H 1 (M; S 2 ) and such that liminf !0 F (u ) < +1. By relations [START_REF] Braides | Homogenization of multiple integrals[END_REF] and ( 19), we deduce that for any m := (u I )

Z M + (h [u](; s) + u(; s) I (s)) (r' ) g (; s) d ds = 0 (59) 
Z M + h [u](; s) (curl
¡1 1 2 Z M + jh [u ](; s)j 2 g (; s) d ds = 1 2 Z M + jh d [m ]j 2 d (61) 6 1 2 Z R 3 jh d [m ]j 2 d (62) = ¡ 1 2 Z h d [m ] m d (63) = W (u ) + W (u ); (64) 
with W and W respectively given by ( 17) and [START_REF] Desimone | Hysteresis and imperfection sensitivity in small ferromagnetic particles[END_REF]. Hence, there exist a subsequence extracted from (h [u I ]) 2I , still denoted by (h [u I ]) 2I , and an element

h 0 2 L 2 (M + ; R 3 ), such that h [u I ] * h 0 weakly in L 2 (M + ; R 3 ).
Let us consider the energy term W , i.e., the normal part of the family of magnetostatic self-energy functionals dened by [START_REF] Desimone | Hysteresis and imperfection sensitivity in small ferromagnetic particles[END_REF]. Decomposing (59) into its normal and tangential part, and evaluating it on the weakly convergent sequence (u ) 2I we get that

Z M + [(h [u ](; s) + u (; s) I (s)) ()]@ s '(; s) g (; s) d ds = ¡ X i2N 2 Z M + (h [u ](; s) + u (; s) I (s)) i () @ i '(; s) h i; (; s) d ds: (65)
for any ' 2 D(M + ). Taking into account (41) and passing to the limit for ! 0 in (65) we get, up to the extraction of a subsequence,

Z M + [(h 0 (; s) + u 0 () I (s)) ()]@ s ' (; s) d ds = 0 (66) 
for any ' 2 D(M + ). Thus the quantity (h 0 (; s) + u 0 () I (s)) () is constant with respect to the s-variable, and since it belongs to L 2 (M + ) we infer that

h 0 (; s) () = ¡ u 0 () I (s) () (67) 
for a.e. (; s) 2 M + . In particular, the normal component of the weak limit h 0 2 L 2 (M + ; R 3 ) does not depend on the extracted subsequence so that the full subsequence h [u I ](; s) () weakly converges to ¡u 0 () I (s) () in L 2 (M + ; R 3 ). By RellichKondrachov theorem, the weak convergence of (u ) 2I to u 0 () 2 H 1 (M; S 2 ) implies that u (; s) ! u 0 () strongly in L 2 (M; R 3 ). By taking the limit for ! 0 of both members of (65), taking into account (67), we nish with the following relation:

lim !0 W (u ) = 1 2 Z M (u 0 () ()) 2 d ds: (68) 
Note that the right-hand side of (68) coincides with W 0 because, as we are going to show, the demagnetizing eld h 0 has no tangential component. We now address the tangential energy term W dened by [START_REF] Dautray | Mathematical Analysis and Numerical Methods for Science and Technology: Volume 4 Integral Equations and Numerical Methods[END_REF]. We start by decomposing the integrand along its tangent and normal directions. For any ' 2 D( M + ; R 3 ) one has (let us temporarily set 3 () := () to shorten notation)

h [u] (curl ' ); = 1 2 X i2N 3 (h [u] i ) (curl ' i ): (69) 
We then denote by r skw the skew-symmetric part of the gradient dened by r skw ' := (r T ' ¡ r')/2. From (69) we obtain

h [u] (curl ' ) = X i;j 2N 3 (h [u] i ) ((r skw ' ) i j ) j (70) = 2 X i<j 2N 3 ((h [u] i ) j )((r skw ' ) i j ): (71) 
Next, we compute the relation between r skw ' and r M (' ). To this end, let us rst note that for any ' 2 D(M + ; R 3 ), the function ' := ' ¡1 is in D( M + ; R 3 ), and moreover

(r skw ' ) 1 2 = (d' ) 1 2 ¡ (d' ) 2 1 = 1 1 + s 1 @ 1 (' ) 2 ¡ 1 1 + s 2 @ 2 (' ) 1 : (72)
Similarly, we compute the normal component of the tangential image of r skw . For any i 2 N 2 we get

(r skw ' ) i = (d' ) i ¡ (d' ) i = 1 1 + s i @ 2 ' ¡ 1 @ s ' i : (73) 
By taking the limit for ! 0, of both members of (72) and (73), we get

lim !0 [ (r skw ' ) 1 2 ] = 0; lim !0 [(r skw ' ) i ] = ¡@ s ' i ; ( 74 
)
for any i 2 N 2 . As (h [u ]) 2I satises (60), taking into account (71), we have that for every ' 2 D(M + ; R 3 ) (here we set as before ' := ' )

0 = Z M + h [u ] (curl' ) g d ds (75) = 2 X i< j 2N 3 Z M + [(h [u ] i ) j ] [(r skw ' ) i j ] g d ds: (76) 
Since h [u ] * h 0 weakly in L 2 (R 3 ; R 3 ), taking into account ( 41) and (74) and passing to the limit for ! 0 in the previous expression, we nish with the relation

Z M + (h 0 (; s) ()) @ s '(; s) d ds = 0 8' 2 D(M + ; R 3 ); (77) 
from which we deduce that the quantity h 0 does not depend on the s-variable.

Since h 0 2 L 2 (M + ) one necessarily has h 0 = 0. Hence, the weak limit h 0 has no tangential component and that means (cf. ( 18)) that lim !0 W (u ) = 0. We have so proved the following result.

Lemma 10. If u * u 0 weakly in H 1 (M; S 2 ) and liminf !0 V (u ) < +1, then lim !0 W (u ) = 0 and W 0 = lim !0 W M (u ) = lim !0 W (u ) = Z S (u 0 () ()) 2 d: (78) 
4.3. The ¡-limit of the family (F ) 2I

We complete the proof of Theorem 1 by showing that F 0 is given by [START_REF] Dzyaloshinsky | A thermodynamic theory of weak ferromagnetism of antiferromagnetics[END_REF]. As pointed out in Remark 7, it is sucient to show that ¡-lim V = E 0 + W 0 . We note that if u * u in H 1 (M; S 2 ) and @ s u = / 0 then liminf !0 V (u ) = +1 and therefore the ¡-liminf inequality is trivially satised. On the other hand, if @ s u = 0, then from Lemma 8 and Lemma 10 we get liminf

!0 V (u ) = liminf !0 (E (u ) + E (u )) + lim !0 (W (u ) + W (u )) (79) 
> E 0 (u 0 ) + W 0 (u 0 ) (80) 
= V 0 (u 0 ):

Finally, for any u 0 2 H 1 (M; S 2 ) such that @ s u 0 = 0, the constant (with respect to the index ) family (u ) 2I = (u 0 ) 2I is a recovery sequence. Indeed we have limsup

!0 V (u 0 ) = limsup !0 (E (u 0 ) + E (u 0 )) + lim !0 (W (u ) + W (u )) = V 0 (u 0 ); (81) 
and this completes the proof of Theorem 1.

Conclusion and Acknowledgment

We have computed the ¡-limit of the micromagnetic energy functional when the shell is generated by a bounded and smooth convex surface. Our result provides a solid ground to most of the studies on nanomagnets with curved shape which are currently under investigation by the theoretical physics community (e.g., [START_REF] Gaididei | Curvature eects in thin magnetic shells[END_REF][START_REF] Goussev | Domain wall motion in thin ferromagnetic nanotubes: analytic results[END_REF][START_REF] Kravchuk | Topologically stable magnetization states on a spherical shell: curvature-stabilized skyrmions[END_REF][START_REF] Kravchuk | Out-of-surface vortices in spherical shells[END_REF][START_REF] Landeros | Reversal modes in magnetic nanotubes[END_REF][START_REF] Sheka | Curvature eects in statics and dynamics of low dimensional magnets[END_REF][START_REF] Sheka | Equilibrium states of soft magnetic hemispherical shell[END_REF][START_REF] Yan | Fast domain wall dynamics in magnetic nanotubes: suppression of walker breakdown and cherenkov-like spin wave emission[END_REF]; this list is certainly far from complete).

In particular, our result validates the variational model widely used in the analysis of magnetic thin spherical shells which are currently worth of interest due to their capability to support skyrmion solutions (see e.g. [START_REF] Kravchuk | Topologically stable magnetization states on a spherical shell: curvature-stabilized skyrmions[END_REF]). Indeed, for a magnetic spherical lm with perpendicular magnetocrystalline anisotropy, the ¡-limit (after a suitable rescaling and in the absence of an external applied eld) reads as

F 0 : u 2 H 1 (S 2 ; S 2 ) 7 ! Z S 2 jr uj 2 + 2 (u ) 2 d ( 82 
)
with 2 summarizing the contributions of both the crystal and shape anisotropy. The investigation of the metastable states of (82) turns out to be a challenging problem with far-reaching consequences in the modern magnetic storage technology. Indeed, as some formal asymptotics shows, F 0 exhibits two topologically protected metastable states, known as the vortex and the onion state, depending on the value of 2 ( onion 2 < vortex 2 , cf. Figure 3). These states are characterized by distinct skyrmion numbers [START_REF] Sloika | Geometry induced phase transitions in magnetic spherical shell[END_REF] and therefore appropriate for the design of future racetrack memory devices [START_REF] Fert | Skyrmions on the track[END_REF]. The formation of these two states can be heuristically explained as follows. Let us recall that a ferromagnetic particle occupying a spherical region can support constant in space magnetizations. In other words, if the ferromagnet occupies the spherical region B r (of radius r) and m is constant in B r , then the induced demagnetizing eld h d [m] is also constant in B r (see [START_REF] Fratta | The newtonian potential and the demagnetizing factors of the general ellipsoid[END_REF][START_REF] Kellogg | Foundations of potential theory[END_REF][START_REF] Osborn | Demagnetizing factors of the general ellipsoid[END_REF]). Moreover, according to Brown's fundamental theorem of the theory of ne ferromagnetic particles (cf. [START_REF] Aharoni | Elongated single-domain ferromagnetic particles[END_REF][START_REF] Alouges | Magnetization switching on small ferromagnetic ellipsoidal samples[END_REF][START_REF] Alouges | Liouville type results for local minimizers of the micromagnetic energy[END_REF][START_REF] Brown | The fundamental theorem of the theory of ne ferromagnetic particles[END_REF][START_REF] Di Fratta | A generalization of the fundamental theorem of Brown for ne ferromagnetic particles[END_REF]), there exists a critical radius r c below which both the global and the local minimizers of the micromagnetic energy functional G(; B r ) are constant in space. Also, there exists a critical radius R c > r c such that when r > R c the global minimizers of G(; B r ) are no more constant in space and vortex type solutions start to be energetically preferable (cf. [START_REF] Brown | The fundamental theorem of the theory of ne ferromagnetic particles[END_REF]). Now, for a spherical shell ;r := B r nB r , with < 1, one has

G(; ;r ) = G(; B r ) ¡ G(; B r ); (83) 
and the relations r < r c and r > R c translate, in the framework of the limiting energy functional (82), as 2 < c 2 and 2 > K c 2 for some suitable constants c 2 and K c 2 . Therefore, when r < r c , i.e., when 2 is suciently small, the ground states are the result of an energetic competition among constant in space magnetizations, which tend to minimize G(; B r ), and normal (to the sphere) congurations which tend to maximize G(; B r ). This leads to onion type congurations. On the other hand, when r > R c , i.e., when 2 is suciently large, the minimizers are the result of an energetic competition among vortex type congurations, which tend to minimize G(; B r ), and the normal ones which tend to maximize G(; B r ). This leads to the vortex type congurations. This and many other aspects of the question will be the object of forthcoming works. 
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 1 Figure 1. (Left) The thin shell is generated by extruding, in the normal direction , a surface S whose closure is globally dieomorphic to the closed unit disk D 1 of R 2 : := fx 2 R 3 : x = + (); 2 S g. (Right) A pillow-like thin shell: := f(x; z) 2 ! R : f 2 (x) 6 z 6 f 1 (x)g where ! R 2 is a planar surface and f 1 ; f 2 functions vanishing on the boundary of !.
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 2 Figure 2. Examples of thin shells generated by extruding convex surfaces in their normal direction. (From left to right) The extrusion of a cylinder (S 2 I), an ellipsoid (E 2 ) and a sphere (S 2 ).
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 23 Figure 3. Magnetic spherical lms are currently worth of interest due to their capability to support skyrmion solutions. (From left to right) The vortex and the onion state ( onion 2 < vortex 2
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]): TN 1 . For

  every 1 ; 2 2 S one has `( 1 ) \ `( 2 ) = ; whenever 1 = / 2 .

TN 2 . The

  union := [ 2S `()is an open set of R 3 containing S. We call the tubular neighborhood of S of radius .

	TN 3 . The map : (; s) 2 S I 7 ! + s() 2 , I := (¡1; 1), is a dieomorphism of S I onto . In particular, the nearest point projection : ! S, which maps any x 2 onto the unique 2 S such that x 2 `(), is a smooth map.
	Remark 1. Any compact and smooth surface is orientable and admits a tubular
	neighborhood [23, Prop. 1, p. 113].