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This paper investigates quantitatively the post-buckling response of irregular wrinkles in a trapezoidal
film/substrate bilayer. The geometric gradient can change the wrinkling profile to create ribbed and graded
structural patterns with variations of wave direction, amplitude and wavelength. The tapered angle and edge
dimension are examined numerically using a nonlinear shell/solid coupled finite element model that incorporates
a path-following continuation technique, which explores their influences on secondary bifurcations, localization
and surface mode transition. For instance, the competition between plate-like and beam-like post-buckling
behavior is discussed. An analysis of graded amplitude is also provided based on Fourier envelope equations
of beam/foundation models, which gives an insightful understanding of these fading wrinkles that differ from
the ones usually observed in rectangular geometric cases. The results of this work can be used to guide the design
of geometrically gradient film/substrate systems to achieve desired wavy instability patterns.

1. Introduction

Quantitative understanding and prediction of wrinkling pattern for-
mation and evolution is of great importance not only for comprehensive
knowledge on morphogenesis of growing soft tissues widely observed
in nature and biological systems [1–7], but also for large industrial
application areas including functional surface patterning design [8,9],
micro/nano-fabrication of flexible electronic devices [10,11], microlens
arrays production [12], adaptive aerodynamic drag control [13,14],
mechanical property measurement of material characteristics [15],
and the design of moisture-responsive wrinkling devices with tun-
able dynamics [16] and reversible optical writing/erasure functional
surface [17]. Previous works are mainly concerned with 2D or 3D
rectangular film/substrate systems and suggest that wrinkling patterns
strongly depend on applied loading [18–28]. For instance, a 3D rect-
angular film/substrate structure usually exhibits uniform sinusoidal
wrinkling patterns under uniaxial compression, except in the boundary
layers where stress concentration may occur and lead to localization
mode [23]. A recent investigation [29] demonstrates that graded wrin-
kles with varying amplitude and wavelength can appear in gradient
structured topology, e.g. trapezoidal geometry, which suggests that the
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stress gradient stemming from irregular geometric topology can change
wrinkling profile to create ribbed and graded structural texture, for
example shark skin is covered with ribbed, graded texture aligned in the
streamwise direction. Critical buckling conditions including load, mode
shape and wavelength can be deduced through linearized eigenvalue
analyses. Such finite element simulations have been performed by
Raayai-Ardakani et al. [29], but bifurcation analysis is still missing.
Therefore, a systematic study on how irregular post-buckling patterns
quantitatively evolve and their associated instability modes in trape-
zoidal geometry still merits further efforts.

This work aims at exploring the occurrence and post-bifurcation
evolution of irregular wrinkling patterns in uniaxially compressed trape-
zoidal film/substrate structures through advanced numerical methods.
A beam/foundation model [30] and a 3D shell/solid coupled finite
element model [23] are respectively applied to quantitatively predict
spatial surface morphology. The models incorporate Asymptotic Numer-
ical Method (ANM) [31] which is a robust path-following continuation
technique to trace secondary bifurcations on their post-buckling evolu-
tion path, i.e. bifurcation diagram, as the load increases. We consider
geometrically perfect film/substrate system without any imperfection.
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Fig. 1. Geometry of trapezoidal film/substrate system: (a) Airview; (b) Top view.

Fig. 2. Sketch of an elastic beam attached on a nonlinear elastic foundation.

The paper is organized as follows. In Section 2, a theoretical analysis
based on a nonlinear beam/foundation equation is recalled to find
critical buckling parameters. Then an analysis of graded amplitude is
provided in Section 3, based on a microscopic beam/foundation model
and a Fourier-related envelope model. In Section 4, a 3D nonlinear
shell/solid finite element model [23] is employed for post-buckling
analyses of 3D trapezoidal film/substrate systems. Concluding remarks
are given in Section 5.

2. Sinusoidal wrinkling with geometric gradient effect

We consider an elastic thin film bonded to a soft substrate under
uniaxial compression 𝐹 , in the case of linearly tapered geometry with
an angle 𝜃, as shown in Fig. 1. The geometric gradient leads to stress
gradient that can alter uniform sinusoidal wrinkles to graded undula-
tions, where the amplitude, wavelength and direction may vary along
the length simultaneously. Upon wrinkling, the film elastically buckles
to relax the compressive stress, and the substrate concurrently deforms
to maintain perfect bonding at the interface. The potential energy of
the system is considered within the framework of Hookean elasticity,
since the macroscopic strain is usually limited to linear regime and
will not exceed 4%, by taking the large modulus ratio 𝐸𝑓∕𝐸𝑠 ⩾ (102)
into account [29,32]. Nevertheless, in the post-buckling stage, the film
can undergo geometrically nonlinear rotations and displacements under
excess compression.

Let 𝑥 and 𝑦 be in-plane coordinates, while 𝑧 is the direction per-
pendicular to the mean plane of the film/substrate. The length of
the system is denoted by 𝐿, and the shorter and longer widths are
represented by 𝐵0 and 𝐵𝐿, respectively. The parameters ℎ𝑓 , ℎ𝑠 and ℎ𝑡
represent, respectively, the thickness of the film, the substrate and the
total thickness of the system. Young’s modulus and Poisson’s ratio of
the film are respectively denoted by 𝐸𝑓 and 𝜈𝑓 , while 𝐸𝑠 and 𝜈𝑠 are the
corresponding material properties for the substrate.

The geometric gradient generates non-uniform distributed axial
stress 𝜎𝑓 (𝑥) in the film:

𝜎𝑓 (𝑥) =
𝐹

ℎ𝑓𝐵(𝑥)
, (1)

where the width of the system 𝐵(𝑥) is given as

𝐵(𝑥) = 𝐵𝐿 − 2(𝐿 − 𝑥) tan 𝜃. (2)

Fig. 3. Bifurcation curves of the microscopic model (4) and macroscopic model (7). The
analytical critical load 𝜆𝑐𝑟 = 2 agrees with the numerical solutions.

For 1D sinusoidal wrinkles, nonlinear Föppl–von Kármán plate equa-
tions that govern the deflection of the film can be reduced to a
fourth-order ordinary differential equation (ODE), namely a nonlinear
beam model, which can be solved from eigenvalue analysis where the
critical load 𝐹𝑐𝑟 and wavelength 𝓁𝑐𝑟 are obtained by minimizing the
corresponding parameters with respect to eigenvalues [29]:
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)1∕2
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(3)

where the last terms on the right-hand sides demonstrate the effect of
tapered geometry compared with rectangular geometry [18,19].

Even though the eigenvalue analysis captures the onset of instabil-
ities, nonlinear buckling analyses are essential to determine the post-
buckling response and the mode transition of surface wrinkles. Besides,
deformations obtained from eigenvalue analysis are eigenvectors rather
than the actual deformation itself [33]. Thus, in what follows, post-
buckling analyses will be based either on a nonlinear beam/foundation
model or on a shell/solid coupled 3D finite element model. The resulting
differential equations will be solved by a path-following continuation
technique which is able to quantitatively trace the post-bifurcation
evolution.

3. Microscopic and macroscopic graded wrinkling

To investigate 1D graded wrinkles, we recall a classical example of
an elastic beam lying on a nonlinear elastic foundation, as shown in
Fig. 2.
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Fig. 4. Wrinkling evolution of the microscopic model (4) and macroscopic model (7) with an increasing load from (a) to (f).

Fig. 5. Film/substrate subjected to uniaxial compression: (a) Trapezoidal film/substrate (Film/Sub I–III); (b) Trapezoidal–rectangular film/substrate (Film/Sub IV–VII).

The unknown is deflection 𝑤(𝑥) and the problem depends on a
scalar parameter 𝜆 which represents the applied compressive load.
The governing ODE which is similar to the Swift−Hohenberg equation
reads

d4𝑤
d𝑥4

+ 𝜆d
2𝑤
d𝑥2

+ 𝑐(𝑥)𝑤 +𝑤3 = 0. (4)

This film/substrate system is able to describe periodic wrinkles. For
instance, with a constant stiffness of foundation 𝑐, relation between the
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Fig. 6. Bifurcation curve of Film/Sub I with tan 𝜃 = 0.25, 𝐿 = 1 mm and 𝐵0 = 0.75 mm.
Representative wrinkling shapes in Fig. 7 on the post-buckling evolution path are marked.
Each point corresponds to one incremental step.

critical load 𝜆 and wave number 𝑞 of periodic patterns can be deduced
from the linearized version of (4):

𝜆(𝑞) = 𝑞2 + 𝑐
𝑞2

. (5)

The critical wave number 𝑞 = 4
√

𝑐 and critical load 𝜆𝑐𝑟 = min 𝜆(𝑞) =
2
√

𝑐 = 2𝑞2 = 2𝑐∕𝑞2 can be defined as the minimum of the neutral
stability curve 𝜆(𝑞).

To explore graded wrinkles, we further consider a variable founda-
tion stiffness 𝑐(𝑥) as follows:

𝑐(𝑥) = 1 + 𝑎
( 𝑥
𝐿

)2
, 𝑥 ∈ [−𝐿,𝐿], (6)

where 𝑎 is a positive constant representing the spatial variation of
foundation stiffness. Thus, the critical load varies with the minimum
value in the middle (𝜆𝑐𝑟 = 2) and maximum value on the boundary
(𝜆𝑐𝑟 = 2

√

1 + 𝑎), which means that the instability first occurs in the
center and then propagate progressively to the boundary.

We can then write the corresponding Fourier-related macroscopic
form of the microscopic model (4) through introducing an envelope
𝑤1(𝑥), by ensuring 𝑤(𝑥) = 𝑤1(𝑥) exp(𝑖𝑞𝑥) + 𝑤1 exp(−𝑖𝑞𝑥) or 𝑤(𝑥) =
2𝑤1(𝑥) sin(𝑞𝑥) in the case where the envelope 𝑤1(𝑥) is real valued

Fig. 7. The left column shows a sequence of representative wrinkling patterns of Film/Sub I with tan 𝜃 = 0.25, 𝐿 = 1 mm and 𝐵0 = 0.75 mm, when the load increases. The color contour
represents 𝑤∕ℎ𝑓 . The right column presents the corresponding wrinkling modes along the length.
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Fig. 8. Bifurcation curve of Film/Sub II with tan 𝜃 = 0.15, 𝐿 = 1.5 mm and 𝐵0 = 0.75 mm.
Representative wrinkling shapes in Fig. 9 on the post-buckling evolution path are marked.
Each point corresponds to one incremental step.

(see [30] for more details):

− (6 − 𝜆)
d2𝑤1

d𝑥2
+ [1 + 𝑐(𝑥) − 𝜆]𝑤1 + 3𝑤3

1 = 0. (7)

This envelope equation (7) can describe both the collective behavior of
wrinkles and local appearance of instability patterns. The local character
of the instability can be seen by disregarding the first term of (7):

[1 + 𝑐(𝑥) − 𝜆]𝑤1 + 3𝑤3
1 = 0. (8)

This equation was referred in the instability community [34] as Landau
equation, while the full envelope equation (7) is Ginzburg−Landau
equation with a spatially variable coefficient 𝑐(𝑥). According to the
Landau model, a classical pitchfork bifurcation can be defined at each
point 𝑥, with local critical load and local value of the envelope being:

⎧

⎪

⎨

⎪

⎩

𝜆𝑙𝑜𝑐 = 1 + 𝑐(𝑥),

𝑤𝑙𝑜𝑐 = ±

√

𝜆𝑙𝑜𝑐 (𝑥) − 𝜆
3

.
(9)

This explains clearly why instability appears first in the region with the
weakest stiffness 𝑐(𝑥), here in the middle. According to (9), amplitude
follows the same distribution. The same qualitative results should
remain valid for trapezoidal systems, with local stiffness being inversely
proportional to the width of the film/substrate system.

a b

c d

e f

Fig. 9. The left column shows a sequence of representative wrinkling patterns of Film/Sub II with tan 𝜃 = 0.15, 𝐿 = 1.5 mm and 𝐵0 = 0.75 mm, when the load increases. The color contour
represents 𝑤∕ℎ𝑓 . The right column presents the corresponding wrinkling modes along the length.
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Fig. 10. Bifurcation curve of Film/Sub III with tan 𝜃 = 0.15, 𝐿 = 1 mm and 𝐵0 = 0.375
mm. Each point corresponds to one incremental step.

Fig. 11. Top view of final patterns: (a) Film/Sub I; (b) Film/Sub II; (c) Film/Sub III. The
color contour denotes 𝑤∕ℎ𝑓 .

Table 1
Common material characteristics and geometric properties.

𝐸𝑓 (MPa) 𝐸𝑠 (MPa) 𝜈𝑓 𝜈𝑠 ℎ𝑓 (mm) ℎ𝑠 (mm)

1.3 × 105 1.8 0.3 0.48 10−3 0.1

Both ODEs (4) and (7) can be solved numerically by finite element
method to investigate post-buckling pattern evolution [30], with given
values of 𝑎 = 1 and 𝐿 = 15𝜋, for example. Load–displacement curves

Table 2
Different dimensional parameters.

Film/Sub 𝐿(mm) 𝐵0(mm) 𝐵𝐿(mm) tan 𝜃

I 1 0.75 1.25 0.25
II 1.5 0.75 1.2 0.15
III 1 0.375 0.675 0.15
IV 1.2 0.8 1.2 0.25
V 1.2 0.8 1.2 0.5
VI 1.2 0.4 1.2 0.5
VII 1.2 0.4 1.2 1

are depicted in Fig. 3 and the evolution of graded wrinkles is presented
in Fig. 4, where the critical load corresponds to the analytical solution
𝜆𝑐𝑟 = 2. Precisely, wrinkles first appear in the center with the minimum
stiffness and then propagate gradually to the boundary. This graded
wrinkling depends on the variable coefficient in the envelope equa-
tion (7) and can also be described by the microscopic model (4). Phase
difference between microscopic and macroscopic models is observed.
This discrepancy is mainly because the simplest macroscopic model
(7) with real envelopes cannot account for phase variation near the
boundary. There exist other Ginzburg−Landau equations with complex
envelopes which could explain this phase evolution [35–37].

4. Finite element results and discussion

Spatially graded wrinkles and their post-buckling evolution for
uniaxially compressed trapezoidal film/substrate structures will be in-
vestigated numerically through the established 3D finite element model,
which was first introduced by Xu et al. [23] and subsequently applied
to hyperelastic film/substrate [32]. The models incorporate a path-
following continuation technique named ANM [31]. It can be applied to
solve nonlinear partial differential equations, and appears as an efficient
continuation predictor which does not require corrective iterations to
trace post-buckling evolution on the equilibrium path and to predict
secondary bifurcations without using special tool. This finite element
framework is sufficiently versatile for the present case of linearly tapered
geometry. In this model, the surface layer is represented by a thin
shell model to allow large rotations while the substrate is modeled by
small strain elasticity. Indeed, the considered instabilities are governed
by nonlinear geometric effects for the stiff material, while the effects
are much smaller for the soft material. For rectangular film/substrate
systems, a thorough investigation on comparison between finite strain
hyperelastic model and small strain elastic model with respect to a wide
range of Young’s modulus was carried out in [32]. It demonstrates that
unless the stiffness ratio is rather small, e.g. 𝐸𝑓∕𝐸𝑠 ≈ (10), deformation
of the system can be so large that finite strain constitutive laws have
to be taken into account. In most cases of film/substrate systems, i.e.
𝐸𝑓∕𝐸𝑠 ≫ (10), small strain elastic models appear to be sufficient
and are qualitatively or even quantitatively equivalent to finite strain
hyperelastic models. This remains valid for trapezoidal film/substrate
structures where macroscopic strain normally does not exceed 4% and
thus remains in linear regime [29]. Therefore, we consider in the
following Hookean elasticity for the potential energy of the system for
reasons of simplicity.

The following computational technique has been chosen to avoid
most restrictive assumptions on initial geometric imperfections that are
generally performed in the literature [21,22]: the considered domain
herein is three-dimensional without geometric imperfection and path-
following technique provides the post-buckling response of the system
beyond the primary bifurcation [23]. On the bottom surface of the
substrate, deflection 𝑤 and tangential traction are taken to be zero.
In this paper, force load is applied to the film whereas the substrate
is load free. Common material characteristics and geometric properties
of the tapered film/substrate system are shown in Table 1, which are
the same as the ones in [23,24]. Different dimensional parameters for
each case are presented in Table 2, where two classes of geometry,
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Fig. 12. Deflection differences between two neighboring incremental steps around the second bifurcation in Fig. 6: (a) Cross-section 𝑥 = 0; (b) Cross-section 𝑦 = 0. The arrows denote
the evolution of incremental direction under increasing load.

Fig. 13. The left column shows a sequence of representative wrinkling patterns of Film/Sub IV with tan 𝜃 = 0.25, 𝐿 = 1.2 mm, 𝐵0 = 0.8 mm and 𝐵𝐿 = 1.2 mm, when the load increases.
The color contour represents 𝑤∕ℎ𝑓 . The right column presents the corresponding wrinkling modes along the length.

i.e. trapezoid and trapezoid–rectangle, are taken into account (see
Fig. 5). Huge ratio of Young’s modulus, 𝐸𝑓∕𝐸𝑠, determining the critical
wavelength 𝓁𝑐𝑟 as shown in Eq. (3), is considered. Compliant materials
for the substrate, such as elastomers, are nearly incompressible with
Poisson’s ratio 𝜈𝑠 = 0.48. In order to trigger a transition from the

fundamental to the bifurcated branch, a small perturbation force, 𝑓𝑧 =
10−8, is imposed on the shell. Introduction of such small perturbation
forces is a common technique for solving bifurcation problems by
continuation techniques [38,39], even when using commercial finite
element codes. This artifice could be avoided by applying a specific
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Fig. 14. The left column shows a sequence of representative wrinkling patterns of Film/Sub VI with tan 𝜃 = 0.5, 𝐿 = 1.2 mm, 𝐵0 = 0.4 mm and 𝐵𝐿 = 1.2 mm, when the load increases.
The color contour represents 𝑤∕ℎ𝑓 . The right column presents the corresponding wrinkling modes along the length.

procedure to compute the bifurcation branch as in [40,41]. In this
paper, the perturbation force 𝑓𝑧 allows computing the whole bifurcated
branch with a single continuation algorithm. The number of elements
required for a convergent solution was carefully examined. Bifurcation
points are detected by the criterion of small step accumulation. Indeed,
when the starting point of a step is close to bifurcation, the radius
of convergence of Taylor series coincides with the distance to the
singular point, which explains that the continuation process ‘knocks’
against the bifurcation [42]. More advanced techniques are available
for bifurcation detection such as bifurcation indicator [23,24] and
power series analysis [43]. In what follows, we will explore the spatial
formation and evolution of irregular wrinkling patterns.

4.1. Trapezoid

First, we investigate pattern formation and post-buckling evolution
via Film/Sub I with 𝜃 = 0.25 under uniaxial compression along 𝑥
direction. Clamped boundary conditions are applied on side 𝐵𝐿 and
symmetry condition is considered on side 𝐵0. The two taper edges
are set free. Consequently, the surface layer is meshed with 70 × 30
shell elements to ensure at least six quadratic elements within a single
wave. The substrate is compatibly discretized by 10 500 solid elements
with five layers. Mesh convergence was carefully examined. Totally,
the film/substrate system contains 85 227 degrees of freedom (DOF)
including the Lagrange multipliers.

The critical load of graded sinusoidal wrinkles based on the lin-
earized stability analysis of 1D beam/foundation model is determined
by Eq. (3). By introducing the material and geometric parameters of
Film/Sub I listed in Tables 1 and 2, one can obtain analytical solution of
critical compressive force 𝐹𝑐𝑟∕𝐵𝐿 = 0.051 N/mm, which agrees well with
our 3D finite element results (about 0.046 N/mm for the first bifurcation
in Fig. 6). Two representative wrinkling patterns on the supercritical
load–displacement curve are illustrated in Fig. 7. A localized corner
mode occurs on the shorter edges at the critical load, which corresponds
to the region where compressive stress is larger. This localized mode
is captured by the 3D finite element model [23] incorporating the
continuation technique ANM, while it has not been observed through
linearized eigenvalue analysis [29]. When load increases to the second
bifurcation, localized corner pattern tends to be a graded sinusoidal
shape where the amplitude fades along 𝑥 direction. This wavy pattern
grows and spreads along the length beyond the second bifurcation, while
the wavelength remains almost constant. These irregular wrinkles are
mainly caused by the tapered geometric gradient that leads to stress
gradient in the film.

The second case is dedicated to Film/Sub II with a smaller 𝜃 = 0.15.
Half of the system is taken into account for calculation due to symmetry.
The mesh, load and boundary conditions are the same as before. Similar
supercritical bifurcation diagram as in Film/Sub I is found, except a
slight change of critical load (0.049 N/mm in Fig. 8 and 𝐹𝑐𝑟∕𝐵𝐿 = 0.050
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N/mm for analytical solution). A sequence of representative wrinkling
patterns on the post-buckling curve is shown in Fig. 9. The same
bifurcation scenario is observed in the case of Film/Sub III with a shorter
𝐵0 (see Fig. 10). Therefore, a generic mechanical response emerges
for any trapezoidal film/substrate system: a supercritical, stable post-
bifurcation and a ribbed buckling shape localized on the shorter side at
the beginning which then tends to be a graded wavy pattern.

A top view of the final deformed shape for each case is depicted in
Fig. 11. One can observe that wavelength varies from the cases, which
implies the influence of trapezoidal topology as explained in the last
terms on the right-hand sides of Eq. (3). Furthermore, spatially graded
wrinkles are not straightly ribbed along 𝑦 direction but have a wavy
curvature perpendicular to the taper edges, indicating that the wave
direction varies as well. This is mainly due to stress relaxation along
the edges and is actually distinguished from the analytical assumption
on 1D sinusoidal wrinkles in models (4) and (7). Note that such
orthogonality between the boundary and instability patterns seems a
generic feature, which have been previously observed in experimental
fluid mechanics [34].

Competition between plate-like and beam-like post-buckling re-
sponses can be observed in Figs. 6, 8 and 10, where plate-like stiffening
behavior appears between two bifurcations, while beam-like softening
behavior occurs beyond the second bifurcation. Note that the second
bifurcation can be identified from the considerable deflection variations
(instability mode change) between two neighboring incremental steps
around the point accumulation region (see Fig. 12 for example). Before
the second bifurcation, the instability mode is completely localized
near the corners, while it develops mainly in the center after the
bifurcation. One can see that the range of plate-like response shortens
when the tapered angle decreases. This means for a sharp taper, plate-
like response dominates the post-buckling behavior, while for a small
tapered angle, beam-like response is more significant.

4.2. Trapezoid–rectangle

To further explore the effect of tapered angle on irregular wrinkling
pattern and its evolution, we consider trapezoid–rectangle geometry
with finite taper dimension, i.e. the cases of Film/Sub IV–VII. The
symmetry, mesh, loading and boundary conditions remain the same
as before. Results on pattern evolution are respectively reported in
Figs. 13 and 14, and a top view of the final pattern shape for each
case is presented in Fig. 15. It can be seen that inside the taper region,
wavy patterns emerge; while outside the taper region, straight stripes
appear. The transition between the two happens at the interface where
the wavelength and its amplitude alter. Nevertheless, for the cases with
a relative large geometric gradient, wavy patterns are constrained inside
the taper region and cannot propagate outside (see Figs. 14, 15(c) and
(d)).

5. Concluding remarks

Post-buckling evolution of irregular wrinkling patterns in trapezoidal
film/substrate systems was investigated from a quantitative point of
view. Numerical simulations were performed based on a 3D finite
element model, associating geometrically nonlinear shell formulation
for the surface layer and linear elasticity for the substrate. This model
can describe moderately large rotations and displacements on the
trapezoidal surface. The resulting nonlinear differential equations were
solved by a robust path-following continuation technique, namely ANM,
which is able to detect secondary bifurcations on a severely nonlinear
response curve and to trace the whole post-wrinkling evolution on the
equilibrium path. Occurrence of a localized corner mode and evolution
of fading wrinkles have been captured. These ribbed and graded pat-
terns are caused by stress gradient stemming from irregular geometric
topology. In fact, graded wrinkles are not straight stripes but hold a
wavy curvature shape perpendicular to the trapezoidal edges due to the

Fig. 15. Top view of final patterns: (a) Film/Sub IV; (b) Film/Sub V; (c) Film/Sub VI; (d)
Film/Sub VII. The color contour denotes 𝑤∕ℎ𝑓 .

release of stresses on the boundary, and this phenomenon cannot be
captured by 1D beam/foundation models. Besides, competition between
plate-like and beam-like post-wrinkling responses has been discussed.
The significance of plate-like behavior increases with the raising of
tapered angle, and vice versa. The numerical results could be helpful for
the design of film/substrate bilayers to achieve desired irregular wavy
wrinkling patterns, for example, for potential applications of fabricating
hierarchical morphology holding special hydrodynamic or aerodynamic
properties such as the reduction of turbulent drag/hydrodynamic fric-
tion as found in sharkskin and dragonfly wings [1,44].
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