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and
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Université de Reims Champagne-Ardenne,

Moulin de la Housse, BP 1039, 51687 REIMS Cedex 2, France.

Abstract

The aim of this paper is to review and compare the spectral properties of
(the closed extension of ) −∆+U (V ≥ 0) and −∆+iV in L2(Rd) for C∞ real
potentials U or V with polynomial behavior. The case with magnetic field
will be also considered. More precisely, we would like to present the existing
criteria for:

• essential selfadjointness or maximal accretivity

• Compactness of the resolvent.

• Maximal inequalities, i.e. the existence of C > 0 such that, ∀u ∈
C∞
0 (Rd),

||u||2H2(Rd)+ ||Uu||2L2(Rd) ≤ C
(

||(−∆+ U)u||2L2(Rd) + ||u||2L2(Rd)

)

, (0.1)

or
||u||2H2 + ||V u||2 ≤ C

(

||(−∆+ iV )u||2 + ||u||2
)

. (0.2)

Motivated by recent works with X. Pan, Y. Almog and D. Grebenkov ([3,
13, 2, 1]), we will actually improve the known results in the case with purely
imaginary potential.

1 Introduction

In this paper, we review and compare the spectral properties of (the closed extension
of ) −∆+ U (U ≥ 0) and −∆+ iV in L2(Rd) and more precisely the criteria for:

• essential selfadjointness or maximal accretivity

• Compactness of the resolvent.
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• Maximal inequalities, i.e. the existence of C > 0 such that, ∀u ∈ C∞
0 (Rd),

||u||2H2(Rd) + ||Uu||2L2(Rd) ≤ C
(

||(−∆+ U)u||2L2(Rd) + ||u||2L2(Rd)

)

, (1.1)

or
||u||2H2 + ||V u||2 ≤ C

(

||(−∆+ iV )u||2 + ||u||2
)

. (1.2)

We will also discuss the magnetic case. In this case the operator reads:

PA,W = −∆A + V :=
d
∑

j=1

(Dxj
−Aj(x))

2 +W (x) ,

where A = (A1, . . . , Ad) is a C
∞ vector fields on R

d and the maximal regularity is
expressed in terms of the magnetic Sobolev spaces:

||(D −A)u||2L2(Rd,Cd) +
∑

j,ℓ ||(Dj − Aj)(Dℓ − Aℓ)u||
2
L2(Rd) + || |W |u||2L2(Rd)

≤ C
(

||PA,Wu||
2
L2(Rd) + ||u||2L2(Rd)

)

,
(1.3)

The question of analyzing −∆+iV or more generally PA,iV := −∆A+iV appears
in many situations [2, 3, 1]. It seems therefore useful to present in a unified way,
what is known on the subject in the selfadjoint case and try to go further in the
accretive case, where much less is known. If we assume that the potential V is C∞,
we know that the operator is essentially selfadjoint starting from C∞

0 (Rd) in the first
situation and maximally accretive in the second case. Hence in the two cases the
closed operator in consideration is uniquely defined by its restriction to C∞

0 .
At least for the selfadjoint case, the subject has a long story, in which T. Kato and
his school plays an important role. We refer to [36] for a rather complete presen-
tation with an exhaustive list of reference. One should also mention the work of
Avron-Herbst-Simon (1978) [5] which popularizes the basic questions on the subject
and in particular the magnetic bottles.
For the compactness of the resolvent, outside the easy case when U → +∞, the
story starts around the eighties with the treatment of instructive examples (Simon
[35], Robert [29]) and in the case with magnetic field [5] (the simplest example being
for d = 2 and U = 0, when B(x) → +∞). In the polynomial case, many results are
deduced as a byproduct of the analysis in Helffer-Nourrigat [15], at least in the case
when V is a sum of square of polynomials. Using Kohn’s type inequality, B. Helffer
and A. Morame (Mohamed) [14] (1988) obtain more general results which can be
combined with the analysis of A. Iwatsuka [19] (1986). Another family of results
using the notion of capacity can be found in [22, 21] (see references therein).

T. Kato proves for example the inequality

||∆u||L1 + ||Uu||L1 ≤ 3 ||(−∆+ U)u||L1 , ∀u ∈ C∞
0 (Rd) , (1.4)

under the condition that U ≥ 0 and U ∈ L1
loc.

The generalization to the Lp (p > 1) is only possible under stronger conditions on
U . We will mention some of these results but will focus on the L2 estimates which
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are some times easier to obtain. In the case, when U(x) =
∑

ℓ Uℓ(x)
2, the maximal

L2 estimate is obtained as a byproduct of the analysis of the hypoellipticity (see
Hörmander [17], Rothschild-Stein [30] and the book Helffer-Nourrigat [16] (including
polynomial magnetic potentials)). This was then generalized to the case when V is
a positive polynomial by J. Nourrigat in an unpublished paper [27] circulating in
the nineties and used in the PHD of D. Guibourg [11, 12] defended in 1992, which
considers the case when the electric potential U ≥ 0 and the magnetic potential A
are polynomials (one chapter treats a more general situation). In his thesis Zhong
(1993) proves the same result by showing that∇2(−∆+U)−1 is a Calderon-Zygmund
operator. Z. Shen (1995) [31] generalizes the result to the case when U is in the
reverse Hölder class RHq (q ≥ d

2
), a class which contains the positive polynomials.

Definition 1.1. A locally Lq function ω and strongly positive almost everywhere
belongs to RHq if there exists a constant C > 0 such that for any cube Q in Rd

(

1

|Q|

∫

ωq dx

)
1
q

≤ C

(

1

|Q|

∫

ω dx

)

.

One should also mention the unpublished thesis of Mba-Yébé [23] defended in
1995. Together with the techniques developed by Guibourg, some of his techniques
are useful for the improvments presented in the last section.

Z. Shen considers also the case with magnetic fields in 1996 [32]. Further progress
are obtained in the thesis of B. Ben Ali [6] (2007), published in [4], [7] and [8].
The methods applied by Shen and Auscher–Ben Ali include the Fefferman–Phong
inequalities, the Calderón–Zygmund decompositions, and various techniques of in-
terpolation. We will come back to one of these results in Subsection 2.3.

2 Kohn’s approach

This approach was mainly used for getting the compactness of the resolvent. Except
in a few cases, these estimates do not lead to the maximal regularity but are enough
for getting the compactness and we will see that surprisingly they could also be a
step for proving L2-maximal estimates.

2.1 Self-adjoint case

Here we mainly refer to [14] (see also [24], [15]). We analyze the problem for the
family of operators :

PA,V =
d
∑

j=1

(Dxj
− Aj(x))

2 +

p
∑

ℓ=1

Uℓ(x)
2 . (2.1)

Here the magnetic potentialA(x) = (A1(x), A2(x), · · · , An(x)) is supposed to be C∞

and that Uj ∈ C∞. Under these conditions, the operator is essentially self-adjoint
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on C∞
0 (Rd). We note also that it has the form :

PA,V =

d+p
∑

j=1

X2
j =

d
∑

j=1

X2
j +

p
∑

ℓ=1

Y 2
ℓ ,

with
Xj = (Dxj

− Aj(x)) , j = 1, . . . , d , Yℓ = Uℓ , ℓ = 1, . . . , p .

In particular, the magnetic field is recovered by observing that

Bjk =
1

i
[Xj, Xk] = ∂jAk − ∂kAj , for j, k = 1, . . . , d .

Of course, when U → +∞, it is well known that the operator has a compact
resolvent.(see the argument below).
On the opposite, when V = 0 and d = 2 if B(x) = B12 ≥ 0 , one immediately
deduces from the trivial inequality:

∫

B(x)|u(x)|2dx ≤ ||X1u||
2 + ||X2u||

2 = 〈PA,V u | u〉 . (2.2)

that lim|x|→+∞B(x) = +∞ implies that the operator has a compact resolvent. A
typical example is

A1(x1, x2) = −x2x
2
1 , A2(x1, x2) = +x1x

2
2 .

In order to treat more general situations, we introduce the quantities:

m̌q(x) =
∑

ℓ

∑

|α|=q

|∂αxUℓ|+
∑

j<k

∑

|α|=q−1

|∂αxBjk(x)| . (2.3)

It is easy to reinterpret this quantity in terms of commutators of the Xj’s.
When q = 0, the convention is that

m̌0(x) =
∑

ℓ

|Uℓ(x)| . (2.4)

Let us also introduce

m̌r(x) = 1 +
r
∑

q=0

m̌q(x) . (2.5)

Then the criterion proven by Helffer-Mohamed in 1988 ([14]) is

Theorem 2.1.
Let us assume that there exist r and C such that

m̌r+1(x) ≤ C m̌r(x) , ∀x ∈ R
d , (2.6)

and
m̌r(x) → +∞ , as |x| → +∞ . (2.7)

Then, with U =
∑

ℓ U
2
ℓ , PA,U(h) has a compact resolvent.
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Remark 2.2.
It is shown in [24], that one can get the same result as in Theorem 2.1 under the
weaker assumption that

m̌r+1(x) ≤ C [m̌r(x)]1+δ , (2.8)

where δ = 1
2r+1−3

(r ≥ 1). This result is optimal for r = 1 according to a counterex-
ample by A. Iwatsuka [19] who has exhibited an example of a Schrödinger operator
which has a non compact resolvent and such that

∑

j<k |∇Bjk(x)| has the same order

as
∑

j<k |Bjk|
2.

Other generalizations are given in [31] (Corollary 0.11) (see also references therein
and [22] for a quite recent contribution including other references).
One can for example replace

∑

j U
2
j by a more general U and the conditions on the

mj’s can be reformulated in terms of the variation of U and B in suitable balls. In
particular A. Iwatsuka [19] showed that a necessary condition is :

∫

B(x,1)

(

U(x) +
∑

j<k

Bjk(x)
2

)

dx→ +∞ as |x| → +∞ , (2.9)

where B(x, 1) is the ball of radius 1 centered at x.

2.2 The accretive case : maximal accretivness

There is a general statement (see for example [15], [3]) about the maximal accre-
tiveness of PA,W := −∆A +W , when U ≥ 0.

Theorem 2.3. Consider the magnetic Schrödinger operator P := PA,W defined on
Rd with A ∈ C∞(Rd,Rd) and W = U + iV ∈ C∞(Rd,C) such that

U(x) ≥ 0 . (2.10)

Then the operator P is maximally accretive. Moreover

PA,W = (PA,W̄ )∗ . (2.11)

We extend Theorem 2.1 to the family of operators:

PA,W =

d
∑

j=1

(Dxj
− Aj(x))

2 +

p
∑

ℓ=1

Uℓ(x)
2 + i V (x) . (2.12)

Here U =
∑p

ℓ=1 Uℓ(x)
2 and V is C∞. We note also that it has the form:

PA,W =

d+p
∑

j=1

X2
j =

d
∑

j=1

X2
j +

p
∑

ℓ=1

Y 2
ℓ +X0 ,

with

Xj = (Dxj
−Aj(x)) , j = 1, . . . , d , Yℓ = Uℓ , ℓ = 1, . . . , p , X0 = iV .
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We introduce the new quantity:

m̌q(x) =
∑

ℓ

∑

|α|=q

|∂αxUℓ|+
∑

j<k

∑

|α|=q−1

|∂αxBjk(x)|+
∑

|α|=q−1

|∂αxV | . (2.13)

and keep for m̌r(x) the same definition as in previous subsection:

m̌r(x) = 1 +

r
∑

q=0

m̌q(x) . (2.14)

Then the criterion reads

Theorem 2.4.
Let us assume that there exist r and C0 such that

m̌r+1(x) ≤ C0 m̌
r(x) , ∀x ∈ R

d . (2.15)

In this case, we say that (A,W ) ∈ T (r, C0).
Then there exist δ > 0 and C1 := C1(C0) such that, ∀u ∈ C∞

0 (Rd)

||(m̌r(x))δu||2 ≤ C1

(

||PA,Wu||
2 + ||u||2

)

. (2.16)

Remark 2.5. The proof, which was first given in a particular case in [3], will show
that we can take δ = 2−r which is in general not optimal. This δ can indeed be
improved when U = 0 and A = 0 (see [1]) but this improvment will not be used in
this paper.

Corollary 2.6. Under the same assumptions, if

m̌r(x) → +∞ , as |x| → +∞ . (2.17)

Then PA,W (h) has a compact resolvent.

Before entering into the core of the proof, we observe that we can replace m̌r(x)
by an equivalent C∞ function Ψ(x) which has the property that there exist constants
Cα and C > 0 such that :

1
C
Ψ(x) ≤ m̌r(x) ≤ CΨ(x) ,

|Dα
xΨ(x)| ≤ CαΨ(x) .

(2.18)

Indeed, it suffices to replace quantities like
∑

|uk| by (
∑

|uk|
2)1/2, in the definition

(2.13) of m̌q. The second condition is a consequence of (2.15).
In the same spirit as in Kohn’s proof, let us introduce:

Definition 2.7.
For all s > 0, we denote by Ms the space of C∞ real functions T such that there
exists Cs such that:

||Ψ−1+sTu||2 ≤ Cs

(

||PA,Wu|| ||u||+ ||u||2
)

, ∀u ∈ C∞
0 (Rd) . (2.19)
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We observe that
Uℓ ∈M1 , (2.20)

and we will show the

Lemma 2.8.
i [Xj, Xk] ∈M

1
2 , ∀j, k = 1, . . . , d . (2.21)

and
V ∈M

1
2 (2.22)

Another claim is contained in the

Lemma 2.9.
If T is in Ms and |∂αxT | ≤ CαΨ then i[Xk, T ] ∈M

s
2 , when |α| = 1 or |α| = 2 .

Assuming these two lemmas, then it is clear that

Ψ(x) ∈ M2−r

.

Lemma 2.9 and (2.20) lead to

∂αxUℓ ∈M2−|α|

,

and we deduce from Lemmas 2.8 and 2.9:

∂αxBjk ∈ M2−(|α|+1)

.

The proof of Theorem 2.4 then becomes easy.
Proof of Lemma 2.8
We start from the identity (and observing that X∗

j = Xj) :

||Ψ− 1
2 [Xj , Xk]u||

2 = 〈(XjXk −XkXj)u | Ψ−1[Xj, Xk]u〉
= 〈Xku | XjΨ

−1[Xj, Xk]u〉
−〈Xju | XkΨ

−1[Xj , Xk]u〉
= 〈Xju | Ψ−1[Xk, Xj]Xku〉
−〈Xku | Ψ−1[Xk, Xj]Xku〉
+〈Xju | [Xk,Ψ

−1[Xk, Xj]]u〉
−〈Xku | [Xj,Ψ

−1[Xk, Xj]]u〉 .

If we observe that Ψ−1[Xk, Xj] and [Xk,Ψ
−1[Xk, Xj]] are bounded (look at the def-

inition of Ψ), we obtain :

||Ψ− 1
2 [Xj , Xk]u||

2 ≤ C
(

||Xku||
2 + ||Xju||

2 + ||u||2
)

.

We just observe that
∑

j

||Xju||
2 = Re 〈PA,Wu | u〉 . (2.23)

This ends the proof of the first part of the lemma.
For the second part, we start from

Im
(

〈Ψ−1PA,Wu , Qu〉
)

= ||ψ− 1
2Qu||2 + Im

(

〈Ψ−1
∑

j

X2
j u , V u〉

)

,
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and observe that

〈Ψ−1X2
j u , V u〉 = 〈Ψ−1V Xju Xju〉+ 〈[Xj,Ψ

−1V ]Xju | u〉 .

Hence
Im 〈Ψ−1X2

j u , V u〉 = Im 〈[Xj,Ψ
−1V ]Xju | u〉 .

Then using the property of V and Ψ, we get the proof easily.
Proof of Lemma 2.9
Let T ∈Ms. For each k, we can write :

||Ψ−1+ s
2 [Xk, T ]u||

2 = 〈Ψ−1+s(XkT − TXk)u | Ψ−1[Xk, T ]u〉
= 〈Ψ−1+sXkTu | Ψ−1[Xk, T ]u〉
−〈Ψ−1+sTXku | Ψ−1[Xk, T ]u〉

= 〈Ψ−1+sTu | Ψ−1[Xk, T ]Xku〉
−〈Xku | Ψ−1[Xk, T ]Ψ

−1+sTu〉
+〈Tu | [Xk,Ψ

−2+s[Xk, T ]]u〉
= 〈Ψ−1+sTu | Ψ−1[Xk, T ]Xku〉
−〈Xku | Ψ−1[Xk, T ]Ψ

−1+sTu〉
+〈Ψ−1+sTu | Ψ1−s[Xk,Ψ

−2+s[Xk, T ]]u〉 .

We now observe, according to the assumptions of the lemma and the properties of
Ψ, that Ψ1−s[Xk,Ψ

−2+s[Xk, T ]] and Ψ−1[Xk, T ] are bounded.
So finally we get :

||Ψ− 1
2 [Xk, T ]u||

2 ≤ C
(

||Ψ−1+sTu||2 + ||Xku||
2 + ||u||2

)

.

This ends the proof of the lemma.

2.3 Nourrigat-Guibourg-Shen results

The results where first obtained in the polynomial case (V = 0 , U ≥ 0), then for A
and U ≥ 0 satisfying a condition ”à la Helffer-Mohamed” and then with condition
of type Reverse-Hölder. We take a version presented in Shen [32] as a consequence
of his Theorem 0.9 (see p. 820 lines -13 to -8) which in addition refers to [33]. We
only write the L2 criterion.

Theorem 2.10. For d ≥ 3, let us assume that A ∈ Cr+2(Rd), U ∈ Cr+2(Rd) and
U ≥ 0 and

∑

|β|=r+1

|∂βxB(x)| +
∑

|β|=r+2

|∂βxU(x)| ≤ C m̌B,U (x) , (2.24)

where
m̌B,U (x) =

∑

|β|≤r

|∂βxB(x)| +
∑

|β|≤r+1

|∂βxU(x)| + 1 . (2.25)

Then
∑

1≤j,ℓ≤d

||(Dxj
−Aj(x))(Dxℓ

− Aℓ(x))u||2 ≤ C (||PA,Uu||2 + ||u||2) , ∀u ∈ C∞
0 (Rd) .

(2.26)
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Remark 2.11. As observed in [32], the statement appearing in the thesis of D.
Guibourg (Chapter B) is a little weaker. When d = 2, according to [34] there is no
particular difficulty. The assumption (RH)n/2 appearing in [32] needs to change to
(RH)p for some p > 1, and the size estimate for the fundamental solution should
have a logarithm. Otherwise, all results should be true.

3 Nilpotent approach

The basic idea is to start from the maximal hypoellipticity of the Hörmander op-
erator P :=

∑

j X̌
2
j + X̌0 where the X̌j ’s are real vector fields satisfying the so

called Hörmander condition. When considering the special case of a stratified group
G = G1 ⊕ · · · ⊕ Gr, with the X̌j ’s (j = 1, . . . , k) being a basis of G1, X̌0 ∈ G2 and the
X̌j (j = 0, . . . , k) generating the Lie algebra of rank r.
We get for any induced representation Π of G in HΠ ∼ L2(Rk) the maximal estimate

||Π(X̌0)u||HΠ
+

∑

j,ℓ=1,...,k

||Π(X̌j X̌ℓ)u||HΠ
≤ C||π(P)u||HΠ

, ∀u ∈ SΠ . (3.1)

We can then use a variant of Proposition 1.6.1 in [16], to get for any polynomial V
with k variables the inequality

∑

j,ℓ

||∂2xjxℓ
u||+ ||V (x)u|| ≤ C ||(−∆+ iV (x))u|| , ∀u ∈ C∞

0 (Rk) . (3.2)

We can indeed find G, a subalgebra V and ℓ ∈ G∗ such that Π is unitary equivalent
to the representation πℓ,V with

πℓ,V(X̌j) = ∂xj
for j = 1, . . . , k , πℓ,V(X̌0) = i V (x) .

As observed a long time ago, the same approach but looking only at
U(x) =

∑

j Uj(x)
2 and using the maximal hypoellipticity of

∑

j X̌
2
j , we obtain

∑

j,ℓ

||∂2xjxℓ
u||+ ||U(x)u|| ≤ C ||(−∆+ U(x))u|| , ∀u ∈ C∞

0 (Rd) . (3.3)

It is then natural to ask if it is true for any polynomial U ≥ 0 and more generally
if we can relax the polynomial condition. Here we refer to Guibourg or Nourrigat1

[27, 28] for the first point (this is indeed true) and to Shen [31] for the second point.
There is indeed a more general class of reverse Hölder potentials:

Definition 3.1. We say that a non negative ω belongs to the reverse Hölder class
if there exists C such that, ∀x ∈ Rd, ∀r > 0,

sup
y∈B(x,r)

ω(x) ≤
C

|B(x, r)|

∫

B(x,r)

ω(y) dy . (3.4)

Note that a non negative polynomial satisfies this condition.

Then other authors work on the subject with the aim of obtaining Lp estimates
[4, 6]. The case with magnetic fields is always considered.

1There are actually two different proofs proposed by J. Nourrigat a rather direct one and another
based to the analysis of

∑

j X̌
2

j + iX̌0 the difficulty (but this was sometimes treated in [15]) that
this operator is no more hypoelliptic.
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4 Maximal estimates for the complex Schrödinger

operator with magnetic potentials (non neces-

sarily polynomial case)

4.1 Main statement

We consider as before
W =

∑

ℓ

U2
ℓ + iV ,

and the associated complex Schrödinger operator PA,W .

Theorem 4.1. If (A,W ) ∈ T (r, C0), there exists C > 0 such that, for all u ∈
C∞

0 (Rd):
‖|W |u‖2 ≤ C

(

‖PA,W u‖2 + ||u||2
)

. (4.1)

4.2 Hörmander’s metrics and partition of unity.

We introduce, for t ∈ [0, 1] and x ∈ Rd,

Φ(x, t) =
∑

ℓ

∑

|α|≤r

t|α|+1 |∂αxUℓ(x)|+
∑

j<k

∑

|α|≤r−1

t|α|+2 |∂αxBjk(x)|+
∑

|α|≤r−1

t|α|+2|∂αxV (x)| .

(4.2)
As in Mba-Yébé [23], we introduce a parameter µ ≥ 1 to be determined later and
which is at the moment arbitrary and we define:

R(x, µ) = sup{t ∈ [0, 1], Φ(x, t) ≤ µ}

Proposition 4.2. If (A,W ) ∈ T (r, C0) (see condition (2.15), there exists C2 > 1
such that, for all t ∈ (0, 1), we have the implication:

|y − x| ≤ t =⇒ Φ(y, t) ≤ C2Φ(x, t) + C2 t
r+1 .

Proof. For all x et u in Rd such that |u| = 1, for all t and θ such that 0 < θ ≤
t ≤ 1, let us introduce:

Ψ(x, u, θ, t) = Φ(x+ θu, t) .

Using Taylor’s formula with integral remainder, we can write, if θ ≤ t ,

Ψ(x, u, θ, t) ≤ C Φ(x, t) + CR(t) ,

with

R(t) = tr+1
∑

ℓ

∑

|β|=r+1

∫ θ

0

|∂βxUℓ(x+ σu)| dσ + ...

... + Ctr+1
∑

j<k

∑

|β|=r

∫ θ

0

|∂βxBjk(x+ σu)| dσ + Ctr+1
∑

|β|=r

∫ θ

0

|∂βxV (x+ σu)|dσ .

10



Using condition (2.15) and θ ≤ t ≤ 1 , there exists C > 0 such that

R(t) ≤ C

∫ θ

0

Ψ(x, u, σ, t) dσ + Ctr+1 .

We now apply Gronwall’s Lemma and obtain the existence of C2 > 0 such that, for
θ ≤ t ≤ 1 ,

Ψ(x, u, θ, t) ≤ C2Φ(x, t) + C2t
r+1 .

This achieves the proof of the proposition.

Proposition 4.3. Let C2 > 1 the constant of Proposition 4.2. Then we have:

|y − x| ≤
R(x, µ)

2C2

=⇒
1

2C2

≤
R(y, µ)

R(x, µ)
≤ 2C2

Proof. We apply Proposition 4.2 with t0 = R(x, µ) ≤ 1. If |y − x| ≤ R(x, µ), we
have

Φ(y, t0) ≤ C2(Φ(x, t0) + tr+1
0 ) ≤ 2C2µ .

We have indeed Φ(x, t0) ≤ µ and tr+1
0 ≤ 1 ≤ µ.

Consequently t1 = t0/2C2 = R(x, µ)/(2C2) satisfies t1 ≤ 1 and Φ(y, t1) ≤ µ. There-
fore we get t1 ≤ R(y, µ), hence the first inequality above.
If now |y − x| ≤ R(x, µ)/(2C2), we deduce |y − x| ≤ R(y, µ), and, permuting the
roles of x and y, we effectively get

R(y, µ) ≤ 2C2R(x, µ) .

This achieves the proof of the proposition.

This proposition shows that the metric defined on Rd by gx(t) = |t|2/R(x, µ)2

(x ∈ Rd, t ∈ Rd), is slowly varying in the sense of Definition 18.4.1 in [18]. Moreover,
the constant in the definition can be chosen independently of µ. We deduce from
Lemma 18.4.4 in [18] the following proposition.

Proposition 4.4. For any µ ≥ 1, there exist a sequence of real valued functions
(ϕj) in C

∞
0 (Rd), and a sequence (xj) in Rd, such that:

•
∑

j

ϕj(x)
2 = 1 , ∀x ∈ R

d . (4.3)

•
suppϕj ⊂ B(xj , R(xj , µ)) . (4.4)

• For any multi-index α, there exists Ĉα > 0, independent of µ, such that

∑

j

|∂αϕj(x)|
2 ≤

Ĉα

R(x, µ)2|α|
. (4.5)

• There exists Ĉ > 0, independent of µ, such that, for k = 1, 2, for any u in
C∞

0 (Rd),
∫

Rd

|u(x)|2

R(x, µ)2k
dx ≤ Ĉ

∑

j

∫

Rd

ϕj(x)
2|u(x)|2

R(xj , µ)2k
dx . (4.6)
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4.3 Proof of Theorem 4.1.

Just observing that:

Re < PU+iV f, f >= ||(D −A)f ||2 +

∫

U |f |2dx ,

we obtain:

Lemma 4.5. For all f ∈ C∞
0 (Rd), we have:

∑

j

‖(Dxj
−Aj)f‖

2 +

p
∑

ℓ=1

‖Uℓf‖
2 ≤ ‖PA,Wf‖ ‖f‖ . (4.7)

Proposition 4.6. For any µ > 1, let (xm) be a sequence of points in Rd as in
Proposition 4.4. Let (A,W ) ∈ T (r, C0). Then there exist µ0 > 1 and C3 (depending
only on r and C0) such that, for any m such that R(xm, µ) ≤ 1/2, and for any
f ∈ C∞

0 (Rd) supported in the ball Bm = B(xm, R(xm, µ)) and µ ≥ µ0,

µδ

R(xm, µ)2
‖f‖+

µδ/2

R(xm, µ)
‖(D −A)f‖ ≤ C3‖PA,W f‖ (4.8)

where δ is the constant given by Theorem 2.4.

Proof.
If Rm := R(xm, µ) and

V (m,loc)(y) = R2
mV (xm +Rmy) , U

(m,loc)
ℓ (y) = RmUℓ(xm +Rmy) ,

A
(m,loc)
k (y) = RmAk(xm +Rmy) , B

(m,loc)
jk (y) = R2

mBjk(xm +Rmy) .

If Rm ≤ 1, one verifies that, for any (A,W ) ∈ T (r, C0), the corresponding pair
(A(m,loc),W (m,loc)) belongs to T (r, C0).

If Rm ≤ 1/2, we have Φ(xm, R(xm, µ)) = µ. Applying Proposition 4.2 with
t = Rm = R(xm, µ) ≤ 1, we have, if |y| ≤ 1 ,

Φ(xm, Rm) ≤ C2Φ(xm +Rmy, Rm) + C2 ≤ C2m̌
r,m,loc(y) ,

where m̌r,m,loc(y) is the function associated, as in (2.13), with the localized operator
PAm,loc,Wm,loc at the point xm. Consequently we have µ ≤ C2m̌

r,m,loc(y) for all y ∈ Rd

such that |y| ≤ 1.

By Theorem 2.4, for all g ∈ C∞
0 (Rd) with support in B(0, 1), we have :

µδ(1/C2)
δ‖g‖ ≤ C1(‖PAm,loc,Wm,locg‖+ ‖g‖)

where C1 and C2 depend only on C0.
Then one can find µ0 and C3 with the same properties such that, for µ ≥ µ0:

µδ‖g‖ ≤ C3‖PAm,loc,Wm,locg‖ . (4.9)

If f is supported in B(xm, R(xm, µ)), we apply (4.9) to the function
g(y) = f(xm + yR(xm, µ)) and obtain for µ ≥ µ0

µδ

R(xm, µ)2
‖f‖ ≤ C3 ‖PA,Wf‖ .

Inequality (4.7) leads to (4.8).
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4.4 End of the proof of Theorem 4.1.

Let u ∈ C∞
0 (Rd). For any µ ≥ 1, we apply (4.6) and get, distinguishing in the

localization formula the xm such that R(xm, µ) > 1
2
from the terms such that

R(xm, µ) ≤
1
2
,

∫

Rd

[

|u(x)|2

R(x, µ)4
+

|(D −A)u(x)|2

R(x, µ)2

]

dx ≤ C(‖u‖2 + ‖(D −A)u‖2) +R ,

R = C
∑

R(xm,µ)≤1/2

‖ϕmu‖
2

R(xm, µ)4
+

‖(D −A)(ϕmu)‖
2

R(xm, µ)2
.

Here we have also used (4.5) for the control of commutators. If µ ≥ µ0 with µ0

large enough, for any m such that R(xm, µ) ≤ 1/2, we apply Proposition 4.6 to the
function f = ϕmu and obtain:

R ≤ Cµ−2δ
∑

R(xm,µ)≤ 1
2

‖PA,W (ϕmu)‖
2

≤ Cµ−2δ‖PA,Wu‖
2 + Cµ−2δ

∑

m

[

‖∇ϕm · (∇− iA)u‖2 + ‖u(∆ϕm)‖
2
]

.

From (4.5), we deduce:

R ≤ Cµ−2δ‖PA,Wu‖
2 + Cµ−2δ

∫

Rd

[

|u(x)|2

R(x, µ)4
+

|(D −A)u(x)|2

R(x, µ)2

]

dx .

There exists a possibly new µ0 such that, for µ ≥ µ0,
∫

Rd

[

|u(x)|2

R(x, µ)4
+

|(D −A)u(x)|2

R(x, µ)2

]

dx ≤ C(‖u‖2 + ‖(D −A)u‖2) + Cµ−2δ‖PA,Wu‖
2 .

Using again (4.7), we get:
∫

Rd

[

|u(x)|2

R(x, µ)4
+

|(D −A)u(x)|2

R(x, µ)2

]

dx ≤ C‖u‖2 + C(1 + µ−2δ)‖PA,Wu‖
2 .

Theorem 4.1 follows since Φ(x,R(x, µ)) ≤ µ and consequently

R(x, µ)
∑

ℓ

|Uℓ(x)|+R(x, µ)2
∑

j<k

|Bjk(x)| +R(x, µ)2|V (x)| ≤ µ .

Remark 4.7. The proof of Theorem 4.1 does not give directly the maximal estimates
as described in the introduction. But the control of the theorem reduces this question
to the analysis for a selfadjoint operator which could be either the magnetic Laplacian
(W = 0), or the magnetic Schrödinger operator PA,U or the operator P

A,U+
√
1+V 2.

For these operators one can for example use Shen’s Theorem 2.10 (at least when
d ≥ 3, but see Remark 2.11 for d = 2). Note that to be in T (r, C0) is usually not
enough except if A is a polynomial. In this case, one can use the nilpotent approach
for getting the maximal regularity of the magnetic Laplacian. Otherwise, one can for
example prove the complete maximal estimates under the condition that (A,W = 0)
belongs to T (r′, C ′

0).
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[6] B. Ben Ali. Inégalités maximales et estimations Lp des transformées de Riesz
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Thesis, Université de Rennes 1, 1992.
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